51
|
Huang MN, Jiang ZQ, Li FB, Yang H, Xu ZL. Preparation and characterization of a PFSA–PVDF blend nanofiber membrane and its preliminary application investigation. NEW J CHEM 2017. [DOI: 10.1039/c7nj01555k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, electrospinnability of perfluorosulfonic acid (PFSA)–polyvinylidene fluoride (PVDF) blends with different ratios of PVDF were investigated in detail.
Collapse
Affiliation(s)
- Meng-Nan Huang
- State Key Laboratory of Chemical Engineering
- Membrane Science and Engineering R&D Lab
- Chemical Engineering Research Center
- East China University of Science and Technology
- Shanghai 200237
| | - Zhong-Qing Jiang
- School of Materials and Chemical Engineering
- Ningbo University of Technology
- Ningbo 315211
- China
| | - Fang-bing Li
- State Key Laboratory of Chemical Engineering
- Membrane Science and Engineering R&D Lab
- Chemical Engineering Research Center
- East China University of Science and Technology
- Shanghai 200237
| | - Hu Yang
- State Key Laboratory of Chemical Engineering
- Membrane Science and Engineering R&D Lab
- Chemical Engineering Research Center
- East China University of Science and Technology
- Shanghai 200237
| | - Zhen-liang Xu
- State Key Laboratory of Chemical Engineering
- Membrane Science and Engineering R&D Lab
- Chemical Engineering Research Center
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
52
|
Aldana AA, Abraham GA. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm 2016; 523:441-453. [PMID: 27640245 DOI: 10.1016/j.ijpharm.2016.09.044] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
The development of biomimetic highly-porous scaffolds is essential for successful tissue engineering. Electrospun nanofibers are highly versatile platforms for a broad range of applications in different research areas. In the biomedical field, micro/nanoscale fibrous structures have gained great interest for wound dressings, drug delivery systems, soft and hard-tissue engineering scaffolds, enzyme immobilization, among other healthcare applications. In this mini-review, electrospun gelatin-based scaffolds for a variety of tissue engineering applications, such as bone, cartilage, skin, nerve, and ocular and vascular tissue engineering, are reviewed and discussed. Gelatin blends with natural or synthetic polymers exhibit physicochemical, biomechanical, and biocompatibility properties very attractive for scaffolding. Current advances and challenges on this research field are presented.
Collapse
Affiliation(s)
- Ana A Aldana
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| | - Gustavo A Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina.
| |
Collapse
|
53
|
Fuller KP, Gaspar D, Delgado LM, Pandit A, Zeugolis DI. Influence of porosity and pore shape on structural, mechanical and biological properties of poly ϵ-caprolactone electro-spun fibrous scaffolds. Nanomedicine (Lond) 2016; 11:1031-40. [DOI: 10.2217/nnm.16.21] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Electro-spun scaffolds are utilized in a diverse spectrum of clinical targets, with an ever-increasing quantity of work progressing to clinical studies and commercialization. The limited number of conformations in which the scaffolds can be fabricated hampers their wide acceptance in clinical practice. Materials & methods: Herein, we assessed a single-strep fabrication process for predesigned electro-spun scaffold preparation and the ramifications of the introduction of porosity (0, 30, 50, 70%) and pore shape (circle, rhomboid, square) on structural, mechanical (tensile and ball burst) and biological (dermal fibroblast and THP-1) properties. Results: The collector design did not affect the fibrous nature of the scaffold. Modulation of the porosity and pore shape offered control over the mechanical properties of the scaffolds. Neither the porosity nor the pore shape affected cellular (dermal fibroblast and THP-1) response. Conclusion: Overall, herein we provide evidence that electro-spun scaffolds of controlled architecture can be fabricated with fibrous fidelity, adequate mechanical properties and acceptable cytocompatibility for a diverse range of clinical targets.
Collapse
Affiliation(s)
- Kieran P Fuller
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland, Galway (NUI Galway), Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland, Galway (NUI Galway), Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland, Galway (NUI Galway), Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland, Galway (NUI Galway), Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
54
|
Zhu J, Huang W, Zhang Q, Ling S, Chen Y, Kaplan DL. Aqueous-Based Coaxial Electrospinning of Genetically Engineered Silk Elastin Core-Shell Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E221. [PMID: 28773344 PMCID: PMC5502692 DOI: 10.3390/ma9040221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 11/16/2022]
Abstract
A nanofabrication method for the production of flexible core-shell structured silk elastin nanofibers is presented, based on an all-aqueous coaxial electrospinning process. In this process, silk fibroin (SF) and silk-elastin-like protein polymer (SELP), both in aqueous solution, with high and low viscosity, respectively, were used as the inner (core) and outer (shell) layers of the nanofibers. The electrospinnable SF core solution served as a spinning aid for the nonelectrospinnable SELP shell solution. Uniform nanofibers with average diameter from 301 ± 108 nm to 408 ± 150 nm were obtained through adjusting the processing parameters. The core-shell structures of the nanofibers were confirmed by fluorescence and electron microscopy. In order to modulate the mechanical properties and provide stability in water, the as-spun SF-SELP nanofiber mats were treated with methanol vapor to induce β-sheet physical crosslinks. FTIR confirmed the conversion of the secondary structure from a random coil to β-sheets after the methanol treatment. Tensile tests of SF-SELP core-shell structured nanofibers showed good flexibility with elongation at break of 5.20% ± 0.57%, compared with SF nanofibers with an elongation at break of 1.38% ± 0.22%. The SF-SELP core-shell structured nanofibers should provide useful options to explore in the field of biomaterials due to the improved flexibility of the fibrous mats and the presence of a dynamic SELP layer on the outer surface.
Collapse
Affiliation(s)
- Jingxin Zhu
- College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | - Qiang Zhang
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430073, China.
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
55
|
Furtos G, Rivero G, Rapuntean S, Abraham GA. Amoxicillin-loaded electrospun nanocomposite membranes for dental applications. J Biomed Mater Res B Appl Biomater 2016; 105:966-976. [DOI: 10.1002/jbm.b.33629] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Gabriel Furtos
- Department of Dental Materials; Babes-Bolyai University-Raluca Ripan, Institute of Research in Chemistry; Cluj-Napoca Romania
| | - Guadalupe Rivero
- Biomedical Polymers Division; Research Institute for Materials Science and Technology (INTEMA); B7608FDQ Mar del Plata Argentina
| | - Sorin Rapuntean
- Faculty of Veterinary Medicine; University of Agricultural Sciences and Veterinary Medicine; Cluj-Napoca Romania
| | - Gustavo A. Abraham
- Biomedical Polymers Division; Research Institute for Materials Science and Technology (INTEMA); B7608FDQ Mar del Plata Argentina
| |
Collapse
|
56
|
Chen J, Ge J, Guo B, Gao K, Ma PX. Nanofibrous polylactide composite scaffolds with electroactivity and sustained release capacity for tissue engineering. J Mater Chem B 2016; 4:2477-2485. [DOI: 10.1039/c5tb02703a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A conveniently fabricated electroactive nanofibrous composite scaffold serves as a sustained drug release system and promotes myoblast differentiation.
Collapse
Affiliation(s)
- Jing Chen
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
- Xi'an Modern Chemistry Research Institute
| | - Juan Ge
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
| | - Kun Gao
- State Key Laboratory for Manufacturing Engineering
- Xi'an Jiaotong University
- Xi'an
- China
| | - Peter X. Ma
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
- Department of Biomedical Engineering
| |
Collapse
|
57
|
Baranowska-Korczyc A, Warowicka A, Jasiurkowska-Delaporte M, Grześkowiak B, Jarek M, Maciejewska BM, Jurga-Stopa J, Jurga S. Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth. RSC Adv 2016. [DOI: 10.1039/c6ra02486f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study discusses the value of polymer electrospun materials in three-dimensional (3D) scaffolds and antibacterial wound dressings for potential dental applications.
Collapse
Affiliation(s)
| | - Alicja Warowicka
- NanoBioMedical Centre
- Adam Mickiewicz University
- PL-61614 Poznań
- Poland
| | | | | | - Marcin Jarek
- NanoBioMedical Centre
- Adam Mickiewicz University
- PL-61614 Poznań
- Poland
| | - Barbara M. Maciejewska
- NanoBioMedical Centre
- Adam Mickiewicz University
- PL-61614 Poznań
- Poland
- Department of Macromolecular Physics
| | - Justyna Jurga-Stopa
- Department of Biomaterials and Experimental Dentistry
- Poznań University of Medical Sciences
- PL-61701 Poznań
- Poland
| | - Stefan Jurga
- NanoBioMedical Centre
- Adam Mickiewicz University
- PL-61614 Poznań
- Poland
- Department of Macromolecular Physics
| |
Collapse
|
58
|
Wang Z, Du Z, Chan JKY, Teoh SH, Thian ES, Hong M. Direct Laser Microperforation of Bioresponsive Surface-Patterned Films with Through-Hole Arrays for Vascular Tissue-Engineering Application. ACS Biomater Sci Eng 2015; 1:1239-1249. [DOI: 10.1021/acsbiomaterials.5b00455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zuyong Wang
- Department
of Mechanical Engineering, National University of Singapore, 9 Engineering
Drive 1, Singapore 117576, Singapore
- Department
of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Zheren Du
- Department
of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Jerry Kok Yen Chan
- Department
of Reproductive Medicine, KK Women’s and Children’s Hospital, 100 Buikit Timah Road, Singapore 229899, Singapore
- Department
of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Cancer
and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College
Road, Singapore 169857, Singapore
| | - Swee Hin Teoh
- School of
Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Eng San Thian
- Department
of Mechanical Engineering, National University of Singapore, 9 Engineering
Drive 1, Singapore 117576, Singapore
| | - Minghui Hong
- Department
of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| |
Collapse
|
59
|
Wen P, Zhu DH, Feng K, Liu FJ, Lou WY, Li N, Zong MH, Wu H. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem 2015; 196:996-1004. [PMID: 26593582 DOI: 10.1016/j.foodchem.2015.10.043] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 02/07/2023]
Abstract
A novel antimicrobial packaging material was obtained by incorporating cinnamon essential oil/β-cyclodextrin inclusion complex (CEO/β-CD-IC) into polylacticacid (PLA) nanofibers via electrospinning technique. The CEO/β-CD-IC was prepared by the co-precipitation method and SEM and FT-IR spectroscopy analysis indicated the successful formation of CEO/β-CD-IC, which improved the thermal stability of CEO. The CEO/β-CD-IC was then incorporated into PLA nanofibers by electrospinning and the resulting PLA/CEO/β-CD nanofilm showed better antimicrobial activity compared to PLA/CEO nanofilm. The minimum inhibitory concentration (MIC) of PLA/CEO/β-CD nanofilm against Escherichia coli and Staphylococcus aureus was approximately 1 mg/ml (corresponding CEO concentration 11.35 μg/ml) and minimum bactericidal concentration (MBC) was approximately 7 mg/ml (corresponding CEO concentration 79.45 μg/ml). Furthermore, compared with the casting method, the mild electrospinning process was more favorable for maintaining greater CEO in the obtained film. The PLA/CEO/β-CD nanofilm can effectively prolong the shelf life of pork, suggesting it has potential application in active food packaging.
Collapse
Affiliation(s)
- Peng Wen
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Ding-He Zhu
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Kun Feng
- Laboratory of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Fang-Jun Liu
- Laboratory of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Ning Li
- Laboratory of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Min-Hua Zong
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China; Laboratory of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Hong Wu
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China; Laboratory of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
60
|
Trinca RB, Abraham GA, Felisberti MI. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:511-7. [PMID: 26249621 DOI: 10.1016/j.msec.2015.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/14/2015] [Accepted: 07/10/2015] [Indexed: 11/28/2022]
Abstract
Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications.
Collapse
Affiliation(s)
- Rafael Bergamo Trinca
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Zip Code 13083-970 Campinas, SP, Brazil.
| | - Gustavo A Abraham
- Research Institute for Materials Science and Technology INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina.
| | - Maria Isabel Felisberti
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Zip Code 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
61
|
Wang Z, Teoh SH, Hong M, Luo F, Teo EY, Chan JKY, Thian ES. Dual-Microstructured Porous, Anisotropic Film for Biomimicking of Endothelial Basement Membrane. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13445-13456. [PMID: 26030777 DOI: 10.1021/acsami.5b02464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human endothelial basement membrane (BM) plays a pivotal role in vascular development and homeostasis. Here, a bioresponsive film with dual-microstructured geometries was engineered to mimic the structural roles of the endothelial BM in developing vessels, for vascular tissue engineering (TE) application. Flexible poly(ε-caprolactone) (PCL) thin film was fabricated with microscale anisotropic ridges/grooves and through-holes using a combination of uniaxial thermal stretching and direct laser perforation, respectively. Through optimizing the interhole distance, human mesenchymal stem cells (MSCs) cultured on the PCL film's ridges/grooves obtained an intact cell alignment efficiency. With prolonged culturing for 8 days, these cells formed aligned cell multilayers as found in native tunica media. By coculturing human umbilical vein endothelial cells (HUVECs) on the opposite side of the film, HUVECs were observed to build up transmural interdigitation cell-cell contact with MSCs via the through-holes, leading to a rapid endothelialization on the PCL film surface. Furthermore, vascular tissue construction based on the PCL film showed enhanced bioactivity with an elevated total nitric oxide level as compared to single MSCs or HUVECs culturing and indirect MSCs/HUVECs coculturing systems. These results suggested that the dual-microstructured porous and anisotropic film could simulate the structural roles of endothelial BM for vascular reconstruction, with aligned stromal cell multilayers, rapid endothelialization, and direct cell-cell interaction between the engineered stromal and endothelial components. This study has implications of recapitulating endothelial BM architecture for the de novo design of vascular TE scaffolds.
Collapse
Affiliation(s)
- Zuyong Wang
- †Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Swee Hin Teoh
- ‡School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Minghui Hong
- §Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Fangfang Luo
- §Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Erin Yiling Teo
- ⊥Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Buikit Timah Road, Singapore 229899, Singapore
| | - Jerry Kok Yen Chan
- ⊥Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Buikit Timah Road, Singapore 229899, Singapore
- ∥Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- ⊗Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Eng San Thian
- †Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
62
|
Pan JF, Liu NH, Shu LY, Sun H. Application of avidin-biotin technology to improve cell adhesion on nanofibrous matrices. J Nanobiotechnology 2015; 13:37. [PMID: 25980573 PMCID: PMC4461904 DOI: 10.1186/s12951-015-0096-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electrospinning is an easy and effective technique to produce submicron fibers possessing a range of attractive characteristics such as interconnected porous structures similar to natural ECM and good resilience to movement. Rapid and efficient cell attachment to nanofibrous matrices is a necessary prerequisite in tissue engineering. Thus, the aim of this study is to evaluate poly(ε-caprolactone-co-lactide)/Pluronic (PLCL/Pluronic) nanofibrous matrices with avidin-biotin technology for improving cell adhesion for the first time. RESULTS PLCL/Pluronic nanofibers had relatively homogeneous fibers and interconnected porous structures. Pluronic significantly modified the hydrophilicity of nanofibrous matrices and PLCL/Pluronic nanofibrous matrices had better performance on maintaining cell proliferation. Avidin-biotin technology had no negative effect on the hydrophilic property, mechanical property and cell proliferation. Meanwhile, the attachment and spreading of adipose-derived stem cells (ADSCs) onto PLCL/Pluronic nanofibrous matrices with avidin-biotin technology was promoted obviously. CONCLUSIONS PLCL/Pluronic nanofibrous matrices inheriting the excellent characteristics of both PLCL and Pluronic have the better cell adhesion ability through avidin-biotin technology, implying a promising application in skin care, tissue regeneration and other related area.
Collapse
Affiliation(s)
- Jian-feng Pan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 YiShan Road, Shanghai, 200233, China.
| | - Ning-hua Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 YiShan Road, Shanghai, 200233, China.
| | - Lin-yuan Shu
- Department of Emergency, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 YiShan Road, Shanghai, 200233, China.
| | - Hui Sun
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 YiShan Road, Shanghai, 200233, China.
| |
Collapse
|
63
|
Zhao C, Xia L, Zhai D, Zhang N, Liu J, Fang B, Chang J, Lin K. Designing ordered micropatterned hydroxyapatite bioceramics to promote the growth and osteogenic differentiation of bone marrow stromal cells. J Mater Chem B 2015; 3:968-976. [DOI: 10.1039/c4tb01838a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HAp bioceramics with micropatterned surfaces significantly enhance cell responses.
Collapse
Affiliation(s)
- Cancan Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Lunguo Xia
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Na Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiaqiang Liu
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Bing Fang
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
64
|
Wang Z, Wang Y, Zhang P, Chen X. Methylsulfonylmethane-loaded electrospun poly(lactide-co-glycolide) mats for cartilage tissue engineering. RSC Adv 2015. [DOI: 10.1039/c5ra19183a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electrospun MSM-loaded PLGA mat is a promising candidate for cartilage regeneration.
Collapse
Affiliation(s)
- Zongliang Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
65
|
Zhang C, Cheng D, Tang T, Jia X, Cai Q, Yang X. Nanoporous structured carbon nanofiber–bioactive glass composites for skeletal tissue regeneration. J Mater Chem B 2015; 3:5300-5309. [DOI: 10.1039/c5tb00921a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bioactive glass (BG) decorated nanoporous composite carbon nanofibers (PCNF–BG) were prepared for the purpose of obtaining effective substrates for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Cuihua Zhang
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Dan Cheng
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Tianhong Tang
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaolong Jia
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
66
|
Tian R, Zhang P, Lv R, Na B, Liu Q, Ju Y. Formation of highly porous structure in the electrospun polylactide fibers by swelling-crystallization in poor solvents. RSC Adv 2015. [DOI: 10.1039/c5ra05738h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly porous polylactide fibers with very large surface area were produced by swelling-crystallization of as-spun counterparts in a poor solvent.
Collapse
Affiliation(s)
- Renping Tian
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory
- School of Chemistry, Biology and Materials Science
- East China Institute of Technology
- Nanchang
- People's Republic of China
| | - Peng Zhang
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory
- School of Chemistry, Biology and Materials Science
- East China Institute of Technology
- Nanchang
- People's Republic of China
| | - Ruihua Lv
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory
- School of Chemistry, Biology and Materials Science
- East China Institute of Technology
- Nanchang
- People's Republic of China
| | - Bing Na
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory
- School of Chemistry, Biology and Materials Science
- East China Institute of Technology
- Nanchang
- People's Republic of China
| | - Qingxian Liu
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory
- School of Chemistry, Biology and Materials Science
- East China Institute of Technology
- Nanchang
- People's Republic of China
| | - Yunhui Ju
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory
- School of Chemistry, Biology and Materials Science
- East China Institute of Technology
- Nanchang
- People's Republic of China
| |
Collapse
|
67
|
He C, Nie W, Feng W. Engineering of biomimetic nanofibrous matrices for drug delivery and tissue engineering. J Mater Chem B 2014; 2:7828-7848. [PMID: 32262073 DOI: 10.1039/c4tb01464b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biomimetic nanofibers have emerged as promising candidates for drug delivery and tissue engineering applications. In this paper, recent advances on the fabrication and application of biomimetic nanofibers as drug carriers and scaffolding materials are reviewed. First, we delineate the three popular nanofiber fabrication techniques including electrospinning, phase separation and molecular self-assembly, covering the principal materials used for different techniques and surface functionalization strategies for nanofibers. Furthermore, we focus our interest on the nanofiber-based delivery strategies and underlying kinetics for growth factors and other bioactive molecules, following which we summarize the recent advances in the development of these nanofibrous matrices for bone, vascular and neural tissue engineering applications. Finally, research challenges and future trends in the related areas are discussed.
Collapse
Affiliation(s)
- Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | | | | |
Collapse
|
68
|
Ma W, Yang X, Ma L, Wang X, Zhang L, Yang G, Han C, Gou Z. Fabrication of bioactive glass-introduced nanofibrous membranes with multifunctions for potential wound dressing. RSC Adv 2014. [DOI: 10.1039/c4ra10232k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioactive glass-introduced gelatin/chitosan nanofibrous dressings were developedviaelectrospinning to endow improved antibacterial activity, adjustable bioactivity and water uptake capacity for enhancing chronic wound healing.
Collapse
Affiliation(s)
- Weibin Ma
- Zhejiang-California International Nanosystems Institute
- Zhejiang University
- Hangzhou 310058, China
| | - Xianyan Yang
- Zhejiang-California International Nanosystems Institute
- Zhejiang University
- Hangzhou 310058, China
| | - Liang Ma
- Zhejiang-California International Nanosystems Institute
- Zhejiang University
- Hangzhou 310058, China
| | - Xingang Wang
- Department of Burns
- The 2nd Affiliated Hospital
- College of Medicine of Zhejiang University
- Hangzhou 310009, China
| | - Lei Zhang
- Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University
- Rui’an 325200, China
| | - Guojing Yang
- Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University
- Rui’an 325200, China
| | - Chunmao Han
- Department of Burns
- The 2nd Affiliated Hospital
- College of Medicine of Zhejiang University
- Hangzhou 310009, China
| | - Zhongru Gou
- Zhejiang-California International Nanosystems Institute
- Zhejiang University
- Hangzhou 310058, China
| |
Collapse
|