51
|
Lehmann B, Wagenknecht HA. Fluorogenic “photoclick” labelling of DNA using a Cy3 dye. Org Biomol Chem 2018; 16:7579-7582. [DOI: 10.1039/c8ob02068j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two 2′-deoxyuridines as new building blocks for automated DNA synthesis carry a small aryltetrazole as a “photoclickable” group at their 5-positions.
Collapse
Affiliation(s)
- Benjamin Lehmann
- Institute of Organic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| |
Collapse
|
52
|
Su F, Lu Y, Kong L, Liu J, Luo T. Total Synthesis of Maoecrystal P: Application of a Strained Bicyclic Synthon. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fan Su
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Yandong Lu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Jingjing Liu
- Peking-Tsinghua Center for Life SciencesAcademy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
- Peking-Tsinghua Center for Life SciencesAcademy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| |
Collapse
|
53
|
Light-induced functions in DNA. Curr Opin Chem Biol 2017; 40:119-126. [DOI: 10.1016/j.cbpa.2017.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/13/2017] [Accepted: 07/20/2017] [Indexed: 12/30/2022]
|
54
|
Guo H, Li Z. Developments of bioorthogonal handle-containing photo-crosslinkers for photoaffinity labeling. MEDCHEMCOMM 2017; 8:1585-1591. [PMID: 30108869 PMCID: PMC6071706 DOI: 10.1039/c7md00217c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/14/2017] [Indexed: 01/14/2023]
Abstract
Photoaffinity labeling (PAL) has been widely applied in various research areas such as medicinal chemistry, chemical biology and structural biology, owing to its capability of investigating non-covalent ligand-protein interactions under native environments and elucidating protein structures, functions etc. One important application of this technique is to use affinity-based proteome profiling (AfBP) coupled with bioimaging for profiling drug-target interactions in situ. In order to accurately report drug-target interactions via these approaches, several considerations as follows need to be made: (1) maximally retaining bioactivities of photoprobes upon functionalization with a photoreactive group and a reporter tag from a parental compound; (2) performing proteome profiling and imaging in situ simultaneously, to monitor drug-target interactions in different manners; and (3) developing excellent photo-crosslinkers capable of photo-crosslinking and fluorescence turn-on at the same time. With these considerations in mind, we have developed three versions of "minimalist" bioorthogonal handle-containing photo-crosslinkers (L3-L6) during the years and successfully applied them in all kinds of small bioactive molecules for protein labeling and cellular imaging studies. In this mini-review, the features and functions of these linkers are specifically highlighted and summarized.
Collapse
Affiliation(s)
- Haijun Guo
- College of Pharmacy , Jinan University , Guangzhou , 510632 China .
| | - Zhengqiu Li
- College of Pharmacy , Jinan University , Guangzhou , 510632 China .
| |
Collapse
|
55
|
Abstract
In this issue of Cell Chemical Biology, Martín-Gago et al. (2017a) disclose a new strategy for the selective covalent targeting of binding site carboxylic acids within the proteome using the isoxazolium salt as a warhead. This discovery paves the way for developing new protein ligation methods as well as covalent drug candidates.
Collapse
Affiliation(s)
- Alexander Jones
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China; Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoyun Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China; Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoguang Lei
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China; Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
56
|
Guo Y, Quan T, Lu Y, Luo T. Enantioselective Total Synthesis of (+)-Wortmannin. J Am Chem Soc 2017; 139:6815-6818. [DOI: 10.1021/jacs.7b02515] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yinliang Guo
- Key
Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry
of Education and Beijing National Laboratory for Molecular Science,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianfei Quan
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yandong Lu
- Key
Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry
of Education and Beijing National Laboratory for Molecular Science,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key
Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry
of Education and Beijing National Laboratory for Molecular Science,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
57
|
Martín-Gago P, Fansa EK, Winzker M, Murarka S, Janning P, Schultz-Fademrecht C, Baumann M, Wittinghofer A, Waldmann H. Covalent Protein Labeling at Glutamic Acids. Cell Chem Biol 2017; 24:589-597.e5. [DOI: 10.1016/j.chembiol.2017.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/07/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022]
|
58
|
Liu L, Feng S. Ligand-free Cu(ii)-mediated aerobic oxidations of aldehyde hydrazones leading to N,N'-diacylhydrazines and 1,3,4-oxadiazoles. Org Biomol Chem 2017; 15:2585-2592. [PMID: 28266668 DOI: 10.1039/c7ob00042a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A Cu(ii)-mediated synthesis of N,N'-diacylhydrazines and 1,3,4-oxadiazoles from aldehyde hydrazones has been developed. This is the first time that the synthesis of N,N'-diacylhydrazines and 1,3,4-oxadiazoles using N,N-dimethylamides as the acylation reagent and O2 in air as the oxidation reagent is reported. These reactions offered several advantages including simple workups, ligand-free inexpensive metal salts as mediators, high yields, and wide scope of substrates.
Collapse
Affiliation(s)
- Lei Liu
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China.
| | - Suliu Feng
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China.
| |
Collapse
|
59
|
Ismael A, Fausto R, Cristiano MLS. Photochemistry of 1- and 2-Methyl-5-aminotetrazoles: Structural Effects on Reaction Pathways. J Org Chem 2016; 81:11656-11663. [PMID: 27809524 DOI: 10.1021/acs.joc.6b02023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of the position of the methyl substituent in 1- and 2-methyl-substituted 5-aminotetrazoles on the photochemistry of these molecules is evaluated. The two compounds were isolated in an argon matrix (15 K) and the matrix was subjected to in situ narrowband UV excitation at different wavelengths, which induce selectively photochemical transformations of different species (reactants and initially formed photoproducts). The progress of the reactions was followed by infrared spectroscopy, supported by quantum chemical calculations. It is shown that the photochemistries of the two isomers, 1-methyl-(1H)-tetrazole-5-amine (1a) and 2-methyl-(2H)-tetrazole-5-amine (1b), although resulting in a common intermediate diazirine 3, which undergoes subsequent photoconversion into 1-amino-3-methylcarbodiimide (H2N-N═C═N-CH3), show marked differences: formation of the amino cyanamide 4 (H2N-N(CH3)-C≡N) is only observed from the photocleavage of the isomer 1a, whereas formation of the nitrile imine 2 (H2N-C-═N+═N-CH3) is only obtained from photolysis of 1b. The exclusive formation of nitrile imine from the isomer 1b points to the possibility that only the 2H-tetrazoles forms can give a direct access to nitrile imines, while observation of the amino cyanamide 4 represents a novel reaction pathway in the photochemistry of tetrazoles and seems to be characteristic of 1H-tetrazoles. The structural and vibrational characterization of both reactants and photoproducts has been undertaken.
Collapse
Affiliation(s)
- A Ismael
- CCMAR and Department of Chemistry and Pharmacy, F.C.T., University of Algarve , P-8005-039 Faro, Portugal.,CQC, Department of Chemistry, University of Coimbra , P-3004-535 Coimbra, Portugal
| | - R Fausto
- CQC, Department of Chemistry, University of Coimbra , P-3004-535 Coimbra, Portugal
| | - M L S Cristiano
- CCMAR and Department of Chemistry and Pharmacy, F.C.T., University of Algarve , P-8005-039 Faro, Portugal
| |
Collapse
|
60
|
Weigt D, Hopf C, Médard G. Studying epigenetic complexes and their inhibitors with the proteomics toolbox. Clin Epigenetics 2016; 8:76. [PMID: 27437033 PMCID: PMC4950666 DOI: 10.1186/s13148-016-0244-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 12/27/2022] Open
Abstract
Some epigenetic modifier proteins have become validated clinical targets. With a few small molecule inhibitors already approved by national health administrations and many more in the pharmaceutical industry pipelines, there is a need for technologies that can promote full comprehension of the molecular action of these drugs. Proteomics, with its relatively unbiased nature, can contribute to a thorough understanding of the complexity of the megadalton complexes, which write, read and erase the histone code, and it can help study the on-target and off-target effect of the drugs designed to modulate their action. This review on the one hand gathers the published affinity probes able to decipher small molecule targets and off-targets in a close-to-native environment. These are small molecule analogues of epigenetic drugs conceived as protein target enrichment tools after they have engaged them in cells or lysates. Such probes, which have been designed for deacetylases, bromodomains, demethylases, and methyltransferases not only enrich their direct protein targets but also their stable interactors, which can be identified by mass spectrometry. Hence, they constitute a tool to study the epigenetic complexes together with other techniques also reviewed here: immunoaffinity purification with antibodies against native protein complex constituents or epitope tags, affinity matrices designed to bind recombinantly tagged protein, and enrichment of the complexes using histone tail peptides as baits. We expect that this toolbox will be adopted by more and more researchers willing to harness the spectacular advances in mass spectrometry to the epigenetic field.
Collapse
Affiliation(s)
- David Weigt
- />Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- />HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Carsten Hopf
- />Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- />HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Guillaume Médard
- />Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| |
Collapse
|
61
|
Wang DZ, Fan JZ, Jia D, Du CC. Zinc and cadmium complexes based on bis-(1H-tetrazol-5-ylmethyl/ylethyl)-amine ligands: structures and photoluminescence properties. CrystEngComm 2016. [DOI: 10.1039/c6ce01311b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nine zinc and cadmium coordination compounds with bis-(1H-tetrazol-5-ylmethyl/ylethyl)-amine were synthesized and structurally characterized, and the fluorescent emission and fluorescence lifetime of complexes 1–9 have been investigated and discussed.
Collapse
Affiliation(s)
- Duo-Zhi Wang
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Institute of Applied Chemistry
- Xinjiang University
- Urumqi, PR China
| | - Jian-Zhong Fan
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046, PR China
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Institute of Applied Chemistry
- Xinjiang University
- Urumqi, PR China
| | - Ceng-Ceng Du
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046, PR China
| |
Collapse
|