51
|
Tikhonov S, Morozova N, Plutinskaya A, Plotnikova E, Pankratov A, Abramova O, Diachkova E, Vasil’ev Y, Grin M. N-Heterocyclic Carbenes and Their Metal Complexes Based on Histidine and Histamine Derivatives of Bacteriopurpurinimide for the Combined Chemo- and Photodynamic Therapy of Cancer. Int J Mol Sci 2022; 23:ijms232415776. [PMID: 36555417 PMCID: PMC9779690 DOI: 10.3390/ijms232415776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is currently regarded as a promising method for the treatment of oncological diseases. However, it involves a number of limitations related to the specific features of the method and the specific characteristics of photosensitizer molecules, including tumor hypoxia, small depth of light penetration into the tumor tissue, and low accumulation sensitivity. These drawbacks can be overcome by combining PDT with other treatment methods, for example, chemotherapy. In this work, we were the first to obtain agents that contain bacteriopurpurinimide as a photodynamic subunit and complexes of gold(I) that implement the chemotherapy effect. To bind the latter agents, N-heterocyclic carbenes (NHC) based on histidine and histamine were obtained. We considered alternative techniques for synthesizing the target conjugates and selected an optimal one that enabled the production of preparative amounts for biological assays. In vitro studies showed that all the compounds obtained exhibited high photoinduced activity. The C-donor Au(I) complexes exhibited the maximum specific activity at longer incubation times compared to the other derivatives, both under exposure to light and without irradiation. In in vivo studies, the presence of histamine in the NHC-derivative of dipropoxy-BPI (7b) had no significant effect on its antitumor action, whereas the Au(I) metal complex of histamine NHC-derivative with BPI (8b) resulted in enhanced antitumor activity and in an increased number of remissions after photodynamic treatment.
Collapse
Affiliation(s)
- Sergey Tikhonov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Natalia Morozova
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Anna Plutinskaya
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Ekaterina Plotnikova
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Andrey Pankratov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Olga Abramova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 249031 Obninsk, Russia
| | - Ekaterina Diachkova
- Department of Oral Surgery of Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. Bldg. 8\2, 119435 Moscow, Russia
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. Bldg. 8\2, 119435 Moscow, Russia
| | - Yuriy Vasil’ev
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. Bldg. 8\2, 119435 Moscow, Russia
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- Correspondence:
| |
Collapse
|
52
|
Wolfram A, Fuentes-Soriano P, Herold-Mende C, Romero-Nieto C. Boron- and phosphorus-containing molecular/nano platforms: exploiting pathological redox imbalance to fight cancer. NANOSCALE 2022; 14:17500-17513. [PMID: 36326151 DOI: 10.1039/d2nr03126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer is currently the second leading cause of death globally. Despite multidisciplinary efforts, therapies to fight various types of cancer still remain inefficient. Reducing high recurrence rates and mortality is thus a major challenge to tackle. In this context, redox imbalance is an undervalued characteristic of cancer. However, it may be targeted by boron- and phosphorus-containing materials to selectively or systemically fight cancer. In particular, boron and phosphorus derivatives are attractive building blocks for rational drug discovery due to their unique and wide regioselective chemistry, high degree of tuneability and chemical stability. Thus, they can be meticulously employed to access tunable molecular platforms to selectively exploit the redox imbalance of cancer cells towards necrosis/apoptosis. This field of research holds a remarkable potential; nevertheless, it is still in its infancy. In this mini-review, we underline recent advances in the development of boron- or phosphorus-derivatives as molecular/nano platforms for rational anticancer drug design. Our goal is to provide comprehensive information on different methodologies that bear an outstanding potential to further develop this very promising field of research.
Collapse
Affiliation(s)
- Anna Wolfram
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Pablo Fuentes-Soriano
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Carlos Romero-Nieto
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
53
|
Ma L, Wang Y, Wang X, Zhu Q, Wang Y, Li L, Cheng HB, Zhang J, Liang XJ. Transition metal complex-based smart AIEgens explored for cancer diagnosis and theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
54
|
Milutinović MG, Milivojević NN, Đorđević NM, Nikodijević DD, Radisavljević SR, Đeković Kesić AS, Marković SD. Gold(III) Complexes with Phenanthroline-derivatives Ligands Induce Apoptosis in Human Colorectal and Breast Cancer Cell Lines. J Pharm Sci 2022; 111:3215-3223. [PMID: 36162493 DOI: 10.1016/j.xphs.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023]
Abstract
Due to their promising effects, gold(III) complexes recently drew increasing attention in the design of new metal-based anticancer therapeutics. Two gold(III) complexes, square-planar [Au(DPP)Cl2]+ - Complex 1 and distorted square-pyramidal [Au(DMP)Cl3] - Complex 2 (where DPP=4,7-diphenyl-1,10-phenanthroline and DMP=2,9-dimethyl-1,10-phenanthroline) were previously synthetized, described and approved as complexes with pronounced cytotoxic effects on colorectal HCT-116 and breast MDA-MB-231 cancer cells. This study investigated the type of cell death by AO/EB double staining, and identification of possible targets responsible for their cytotoxicity, monitored by immunofluorescence and qPCR methods. Both complexes induced apoptosis in all applied concentrations. In the HCT-116 cells apoptosis was activated by external apoptotic pathway, via increase of Fas receptor protein expression and Caspase 8 gene expression. Also, the mitochondrial pathway was triggered by affecting the Bcl-2 members of regulatory proteins and increased caspase 9 protein expression. In MDA-MB-231 cells, apoptosis was initiated from the mitochondria, due to disbalance between expressions of pro- and anti-apoptotic Bcl-2 family members and caspase 9 activation. Complex 1 shows better activity compared to Complex 2, which is in accordance with its structural characteristics. The results deal weighty data about proapoptotic activity of gold(III) complexes and highlighted potential targets for cancer therapy.
Collapse
Affiliation(s)
- Milena G Milutinović
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nevena N Milivojević
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena M Đorđević
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Danijela D Nikodijević
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Snežana R Radisavljević
- University of Kragujevac, Department of Chemistry, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ana S Đeković Kesić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Snežana D Marković
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
55
|
Rosero-Mafla MA, Zapata-Rivera J, Gimeno MC, Visbal R. Steric and Electronic Effects in N-Heterocyclic Carbene Gold(III) Complexes: An Experimental and Computational Study. Molecules 2022; 27:molecules27238289. [PMID: 36500397 PMCID: PMC9740751 DOI: 10.3390/molecules27238289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A series of neutral acridine-based gold(III)-NHC complexes containing the pentafluorophenyl (-C6F5) group were synthesized. All of the complexes were fully characterized by analytical techniques. The square planar geometry around the gold center was confirmed by X-ray diffraction analysis for complexes 1 (Trichloro [1-methyl-3-(9-acridine)imidazol-2-ylidene]gold(III)) and 2 (Chloro-bis(pentafluorophenyl)[1-methyl-3-(9-acridine)imidazol-2-ylidene]gold(III)). In both cases, the acridine rings play a key role in the crystal packing of the solid structures by mean of π-π stacking interactions, with centroid-centroid and interplanar distances being similar to those found in other previously reported acridine-based Au(I)-NHC complexes. A different reactivity when using a bulkier N-heterocyclic carbene ligand such as 1,3-bis-(2,6-diisopropylphenyl)-2-imidazolidinylidene (SIPr) was observed. While the use of the acridine-based NHC ligand led to the expected organometallic gold(III) species, the steric hindrance of the bulky SIPr ligand led to the formation of the corresponding imidazolinium cation stabilized by the tetrakis(pentafluorophenyl)aurate(III) [Au(C6F5)4]- anion. Computational experiments were carried out in order to figure out the ground state electronic structure and the binding formation energy of the complexes and, therefore, to explain the observed reactivity.
Collapse
Affiliation(s)
- Miguel A. Rosero-Mafla
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, A.A. 25360, Cali 760042, Colombia
| | - Jhon Zapata-Rivera
- Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Cra 1 No 18A—12, Bogotá 111711, Colombia
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (M.C.G.); (R.V.)
| | - Renso Visbal
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, A.A. 25360, Cali 760042, Colombia
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, A.A. 25360, Cali 760031, Colombia
- Correspondence: (M.C.G.); (R.V.)
| |
Collapse
|
56
|
Luo Y, Cao B, Zhong M, Liu M, Xiong X, Zou T. Organogold(III) Complexes Display Conditional Photoactivities: Evolving From Photodynamic into Photoactivated Chemotherapy in Response to O 2 Consumption for Robust Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202212689. [PMID: 36109339 DOI: 10.1002/anie.202212689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 11/09/2022]
Abstract
Photodynamic therapy (PDT) is a spatiotemporally controllable, powerful approach in combating cancers but suffers from low activity under hypoxia, whereas photoactivated chemotherapy (PACT) operates in an O2 -independent manner but compromises the ability to harness O2 for potent photosensitization. Herein we report that cyclometalated gold(III)-alkyne complexes display a PDT-to-PACT evolving photoactivity for efficient cancer treatment. On the one hand, the gold(III) complexes can act as dual photosensitizers and substrates, leading to conditional PDT activity in oxygenated condition that progresses to highly efficient PACT (ϕ up to 0.63) when O2 is depleted in solution and under cellular environment. On the other hand, the conditional PDT-to-PACT reactivity can be triggered by external photosensitizers in a similar manner in vitro and in vivo, giving additional tumor-selectivity and/or deep tissue penetration by red-light irradiation that leads to robust anticancer efficacy.
Collapse
Affiliation(s)
- Yunli Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Mingjie Zhong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Moyi Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
57
|
The role of tridentate ligands on the redox stability of anticancer gold(III) complexes. J Inorg Biochem 2022; 236:111970. [PMID: 36049259 DOI: 10.1016/j.jinorgbio.2022.111970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/15/2022]
Abstract
Gold(III) complexes are promising compounds for cancer chemotherapy, whose action depends on their redox stability. In this context, the choice of ligands is crucial to adjust their reactivity and biological response. The present study addressed the effect of the gold coordination sphere on the reduction potential (Eo) for ten gold(III) complexes containing five or six-membered rings tridentate ligands - [AuIII(trident)Cl]3+n (trident = N^N^N, C^N^N, C^C^N, C^N^C, and N^C^N). The calculated Eo covered a broad range of 2500 mV with the most stable complexes containing two AuC bonds (Eo = -1.85 V for [AuIII(C^C^N)Cl] - f). For complexes with one AuC bond, the N^C^N ligands stabilize the gold(III) complex more efficiently than N^N^C; however, the inclusion of the non-innocent ligand bipy (2,2'-bipyridine) in N^N portion provides an extra stabilization effect. Among the derivatives with one AuC bond, [AuIII(N^N^C)Cl]+ (N^N = bipy) (a) showed Eo = -1.20 V. For the complexes with N^N^N ligands, Eo was positive and almost constant (+0.60 V). Furthermore, the kinetics for ligand exchange reactions (Cl-/H2O, H2O/Cys and Cl-/Cys) were monitored for the most stable compounds and the energy profiles compared to the reduction pathways.
Collapse
|
58
|
S-phase arrest and apoptosis in human breast adenocarcinoma MCF-7 cells via mitochondrial dependent pathway induced by tricyclohexylphosphine gold (I) n-mercaptobenzoate complexes. Life Sci 2022; 311:121161. [DOI: 10.1016/j.lfs.2022.121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
|
59
|
Cui Q, Ding W, Liu P, Luo B, Yang J, Lu W, Hu Y, Huang P, Wen S. Developing Bi-Gold Compound BGC2a to Target Mitochondria for the Elimination of Cancer Cells. Int J Mol Sci 2022; 23:ijms232012169. [PMID: 36293028 PMCID: PMC9602679 DOI: 10.3390/ijms232012169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 12/04/2022] Open
Abstract
Reactive oxygen species (ROS) homeostasis and mitochondrial metabolism are critical for the survival of cancer cells, including cancer stem cells (CSCs), which often cause drug resistance and cancer relapse. Auranofin is a mono-gold anti-rheumatic drug, and it has been repurposed as an anticancer agent working by the induction of both ROS increase and mitochondrial dysfunction. Hypothetically, increasing auranofin’s positive charges via incorporating more gold atoms to enhance its mitochondria-targeting capacity could enhance its anti-cancer efficacy. Hence, in this work, both mono-gold and bi-gold compounds were designed and evaluated to test our hypothesis. The results showed that bi-gold compounds generally suppressed cancer cells proliferation better than their mono-gold counterparts. The most potent compound, BGC2a, substantially inhibited the antioxidant enzyme TrxR and increased the cellular ROS. BGC2a induced cell apoptosis, which could not be reversed by the antioxidant agent vitamin C, implying that the ROS induced by TrxR inhibition might not be the decisive cause of cell death. As expected, a significant proportion of BGC2a accumulated within mitochondria, likely contributing to mitochondrial dysfunction, which was further confirmed by measuring oxygen consumption rate, mitochondrial membrane potential, and ATP production. Moreover, BGC2a inhibited colony formation and reduced stem-like side population (SP) cells of A549. Finally, the compound effectively suppressed the tumor growth of both A549 and PANC-1 xenografts. Our study showed that mitochondrial disturbance may be gold-based compounds’ major lethal factor in eradicating cancer cells, providing a new approach to developing potent gold-based anti-cancer drugs by increasing mitochondria-targeting capacity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Huang
- Correspondence: (P.H.); (S.W.); Tel.: +86-20-87343511 (P.H.); +86-20-87342283 (S.W.)
| | - Shijun Wen
- Correspondence: (P.H.); (S.W.); Tel.: +86-20-87343511 (P.H.); +86-20-87342283 (S.W.)
| |
Collapse
|
60
|
Arojojoye AS, Kim JH, Olelewe C, Parkin S, Awuah SG. Chiral gold(III) complexes: speciation, in vitro, and in vivo anticancer profile. Chem Commun (Camb) 2022; 58:10237-10240. [PMID: 36004570 PMCID: PMC10317552 DOI: 10.1039/d2cc03081k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emerging synthetic development of chiral gold(III) complexes has prompted new opportunities in catalysis and material science with limited utility in biomedicine. Here, we demonstrate potential chemotherapeutic capability of [C^N]Au(III)Cl(R-DuPhos) (1-7) complexes, containing 1,2-bis[(2R,5R)-2,5-dialkylphospholano]benzene, which shows good stabilty, potent anticancer activity, and tolerability in mice.
Collapse
Affiliation(s)
| | - Jong H Kim
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
61
|
Mucke HA. Patent Highlights April - May 2022. Pharm Pat Anal 2022; 11:139-145. [PMID: 36052651 DOI: 10.4155/ppa-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
62
|
Pro-oxidant response and accelerated ferroptosis caused by synergetic Au(I) release in hypercarbon-centered gold(I) cluster prodrugs. Nat Commun 2022; 13:4669. [PMID: 35945240 PMCID: PMC9363434 DOI: 10.1038/s41467-022-32474-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
Medicinal applications of gold complexes have recently attracted attention due to their innovative antitumor mechanisms. In this work, two hypercoordinated carbon-centered gold clusters PAA4 and PAA5 are quantitatively synthesized by an intramolecular 6-exo-dig cyclization of polymetalated precursors. The on-bench and in vitro experimental studies demonstrate that the characteristic hypercarbon-tetragold(I) multi-center bonding in PAA4 and PAA5 not only guarantees their stability under common physiological conditions, but also facilitates a glutathione (GSH)-triggered prompt and synergetic release of active Au(I) ions in the GSH-overexpressed and acidic microenvironment of human bladder cancer EJ cells. The instantly massive release of coordination unsaturated Au(I) ions causes the efficient inhibition of thioredoxin reductases and then induces a rapid pro-oxidant response, consequently causing the occurrence of accelerated ferroptosis of EJ cells. As a result, these hypercarbon-centered gold(I) cluster prodrugs show high cytotoxicity to bladder cancer cell lines and thus exhibit a significant inhibition effect towards bladder tumors in vivo. Correlation of the synergetic domino dissociation of carbon-polymetal multi-center bonding in metal clusters with the accelerated ferroptosis of cancer cells provides a strategy for metallo-prodrugs and opens a broader prospect for the biological application of metal cluster compounds.
Collapse
|
63
|
Maity L, Barik S, Biswas R, Natarajan R, Dinda J. N‐Heterocyclic Carbene (NHC) Boosted Photoluminescence; Synthesis, Structures and Photophysical Properties of bpy/phen‐Au (III)‐NHC Complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI Bhubaneswar Odisha India
| | - Raju Biswas
- CSIR Indian Institute of Chemical Biology Kolkata West Bengal India
| | | | - Joydev Dinda
- Department of Chemistry Utkal University Bhubaneswar Odisha India
| |
Collapse
|
64
|
Quintana M, Rodriguez-Rius A, Vellé A, Vives S, Sanz Miguel PJ, Triola G. Dinuclear silver and gold bisNHC complexes as drug candidates for cancer therapy. Bioorg Med Chem 2022; 67:116814. [PMID: 35598528 DOI: 10.1016/j.bmc.2022.116814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
Abstract
We report four dinuclear silver(I) and gold(I) complexes containing two different bidentate N-heterocyclic carbene ligands (bisNHC). One of these complexes 4, shows strong and selective anticancer activity against the human ovarian cancer cell line A2780. Mechanistically, 4 enhances the oxidative stress by stimulating reactive oxygen species production and inhibiting the scavenging activity of thioredoxin reductase. Our findings provide evidence that tuning ligand and electronic properties of metal-NHC complexes can modulate their reactivity and selectivity and it may result in potential novel anticancer drugs.
Collapse
Affiliation(s)
- Mireia Quintana
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Alba Rodriguez-Rius
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Alba Vellé
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Sonia Vives
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Pablo J Sanz Miguel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
| | - Gemma Triola
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
65
|
Ekinci O, Akkoç M, Khan S, Yasar S, Gürses C, Noma S, Balcıoğlu S, Sen B, Aygün M, Yılmaz İ. Synthesis and biological evaluation of Au‐NHC complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Orhan Ekinci
- Faculty of Arts and Science, Department of Chemistry İnönü University Malatya Turkey
| | - Mitat Akkoç
- Hekimhan Vocational College, Department of Property Protection and Security, Hekimhan Malatya Turgut Özal University Malatya Turkey
| | - Siraj Khan
- Quaid‐i‐Azam University, Faculty of Biological Sciences, Department of Pharmacy Islamabad Pakistan
| | - Sedat Yasar
- Faculty of Arts and Science, Department of Chemistry İnönü University Malatya Turkey
| | - Canbolat Gürses
- Faculty of Arts and Science, Department of Molecular Biology and Genetics İnönü University Malatya Turkey
| | - Samir Noma
- Faculty of Arts and Science, Department of Chemistry İnönü University Malatya Turkey
- Faculty of Arts and Science, Department of Chemistry Bursa Uludağ University Bursa Turkey
| | - Sevgi Balcıoğlu
- Faculty of Arts and Science, Department of Chemistry İnönü University Malatya Turkey
- Vocational School of Health Services at Akyazı, Department of Medical Laboratory Techniques Sakarya University of Applied Sciences Sakarya Turkey
| | - Betül Sen
- Faculty of Science, Department of Physics Dokuz Eylül University İzmir Turkey
| | - Muhittin Aygün
- Faculty of Science, Department of Physics Dokuz Eylül University İzmir Turkey
| | - İsmet Yılmaz
- Faculty of Arts and Science, Department of Chemistry İnönü University Malatya Turkey
| |
Collapse
|
66
|
|
67
|
Yang Z, Huang S, Liu Y, Chang X, Liang Y, Li X, Xu Z, Wang S, Lu Y, Liu Y, Liu W. Biotin-Targeted Au(I) Radiosensitizer for Cancer Synergistic Therapy by Intervening with Redox Homeostasis and Inducing Ferroptosis. J Med Chem 2022; 65:8401-8415. [PMID: 35687871 DOI: 10.1021/acs.jmedchem.2c00300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The search for highly selective sensitizers with a novel mechanism for tumor targeting therapy is of considerable interest. In this work, we have developed a series of new biotin-targeted Au(I) complexes. Through systematic biological evaluation and comparison, biotinylated Au(I) complex 3a containing a triphenylphosphine ligand was screened, as it realized both prominent efficient inhibition and selective cytotoxicity to cancer cells, and the effect was better than that of popularly used auranofin. Meanwhile, complex 3a, as a potent radiosensitizer, enhances anticancer effects in vitro and in vivo and has sensitization selectivity. From the action mechanism study, we provide evidence that complex 3a could intervene in redox homeostasis through targeted binding and strong suppression of thioredoxin reductase (TrxR) and induce the ferroptosis death process, enabling it to sensitize tumor cells to radiotherapy. Thus, complex 3a has enormous potential as an efficient and specific radiosensitizing agent in cancer therapy.
Collapse
Affiliation(s)
- Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, P. R. China
| | - Sheng Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yanshan Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xi Li
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhongren Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shiyu Wang
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yuan Liu
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
68
|
Tialiou A, Chin J, Keppler BK, Reithofer MR. Current Developments of N-Heterocyclic Carbene Au(I)/Au(III) Complexes toward Cancer Treatment. Biomedicines 2022; 10:biomedicines10061417. [PMID: 35740438 PMCID: PMC9219884 DOI: 10.3390/biomedicines10061417] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Since their first discovery, N-heterocyclic carbenes have had a significant impact on organometallic chemistry. Due to their nature as strong σ-donor and π-acceptor ligands, they are exceptionally well suited to stabilize Au(I) and Au(III) complexes in biological environments. Over the last decade, the development of rationally designed NHCAu(I/III) complexes to specifically target DNA has led to a new “gold rush” in bioinorganic chemistry. This review aims to summarize the latest advances of NHCAu(I/III) complexes that are able to interact with DNA. Furthermore, the latest advancements on acyclic diamino carbene gold complexes with anticancer activity are presented as these typically overlooked NHC alternatives offer great additional design possibilities in the toolbox of carbene-stabilized gold complexes for targeted therapy.
Collapse
Affiliation(s)
- Alexia Tialiou
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; (A.T.); (B.K.K.)
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jiamin Chin
- Institute of Inorganic Chemistry—Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Correspondence: (J.C.); (M.R.R.)
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; (A.T.); (B.K.K.)
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Michael R. Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; (A.T.); (B.K.K.)
- Correspondence: (J.C.); (M.R.R.)
| |
Collapse
|
69
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
70
|
A Hybrid of Amodiaquine and Primaquine Linked by Gold(I) Is a Multistage Antimalarial Agent Targeting Heme Detoxification and Thiol Redox Homeostasis. Pharmaceutics 2022; 14:pharmaceutics14061251. [PMID: 35745823 PMCID: PMC9229949 DOI: 10.3390/pharmaceutics14061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Hybrid-based drugs linked through a transition metal constitute an emerging concept for Plasmodium intervention. To advance the drug design concept and enhance the therapeutic potential of this class of drugs, we developed a novel hybrid composed of quinolinic ligands amodiaquine (AQ) and primaquine (PQ) linked by gold(I), named [AuAQPQ]PF6. This compound demonstrated potent and efficacious antiplasmodial activity against multiple stages of the Plasmodium life cycle. The source of this activity was thoroughly investigated by comparing parasite susceptibility to the hybrid's components, the annotation of structure-activity relationships and studies of the mechanism of action. The activity of [AuAQPQ]PF6 for the parasite's asexual blood stages was influenced by the presence of AQ, while its activity against gametocytes and pre-erythrocytic parasites was influenced by both quinolinic components. Moreover, the coordination of ligands to gold(I) was found to be essential for the enhancement of potency, as suggested by the observation that a combination of quinolinic ligands does not reproduce the antimalarial potency and efficacy as observed for the metallic hybrid. Our results indicate that this gold(I) hybrid compound presents a dual mechanism of action by inhibiting the beta-hematin formation and enzymatic activity of thioredoxin reductases. Overall, our findings support the potential of transition metals as a dual chemical linker and an antiplasmodial payload for the development of hybrid-based drugs.
Collapse
|
71
|
Qi Y, Yuan Y, Qian Z, Ma X, Yuan W, Song Y. Injectable and Self-Healing Polysaccharide Hydrogel Loading Molybdenum Disulfide Nanoflakes for Synergistic Photothermal-Photodynamic Therapy of Breast Cancer. Macromol Biosci 2022; 22:e2200161. [PMID: 35676757 DOI: 10.1002/mabi.202200161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Indexed: 11/08/2022]
Abstract
In order to overcome the limitation of traditional therapies for cancer and improve the accuracy of treatment, more advantageous cancer treatment methods need to be explored and studied. As a result, photothermal photodynamic therapy of breast cancer using bovine serum albumin (BSA) modifies molybdenum disulfide nanoflakes. Then the well-dispersed BSA-MoS2 NFs are loaded in the injectable and self-healing polysaccharide hydrogel which is prepared by the reaction of oxidized sodium alginate (OSA) and hydroxypropyl chitosan (HPCS) through the formation of Schiff base bonds. The injection and self-healing properties of the nanocomposite hydrogel are investigated. In vitro photothermal and photodynamic investigations demonstrate that BSA-MoS2 NFs possess obvious photothermal conversion and production of reactive oxygen species (ROS) under the irradiation of near infrared (NIR) laser (808 nm). In vivo anticancer investigation indicates that the nanocomposite hydrogel can be directly injected and remain in the tumor sites and achieve the synergistic photothermal-photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Yujie Qi
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yifeng Yuan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhiyi Qian
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xiaodie Ma
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Weizhong Yuan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ye Song
- Department of Ultrasongraphy, The affiliated Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China
| |
Collapse
|
72
|
Massai L, Messori L, Carpentieri A, Amoresano A, Melchiorre C, Fiaschi T, Modesti A, Gamberi T, Magherini F. The effects of two gold-N-heterocyclic carbene (NHC) complexes in ovarian cancer cells: a redox proteomic study. Cancer Chemother Pharmacol 2022; 89:809-823. [PMID: 35543764 PMCID: PMC9135895 DOI: 10.1007/s00280-022-04438-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Standard treatment consists of tumor debulking surgery followed by platinum and paclitaxel chemotherapy; yet, despite the initial response, about 70-75% of patients develop resistance to chemotherapy. Gold compounds represent a family of very promising anticancer drugs. Among them, we previously investigated the cytotoxic and pro-apoptotic properties of Au(NHC) and Au(NHC)2PF6, i.e., a monocarbene gold(I) complex and the corresponding bis(carbene) complex. Gold compounds are known to alter the redox state of cells interacting with free cysteine and selenocysteine residues of several proteins. Herein, a redox proteomic study has been carried out to elucidate the mechanisms of cytotoxicity in A2780 human ovarian cancer cells. METHODS A biotinylated iodoacetamide labeling method coupled with mass spectrometry was used to identify oxidation-sensitive protein cysteines. RESULTS Gold carbene complexes cause extensive oxidation of several cellular proteins; many affected proteins belong to two major functional classes: carbohydrate metabolism, and cytoskeleton organization/cell adhesion. Among the affected proteins, Glyceraldehyde-3-phosphate dehydrogenase inhibition was proved by enzymatic assays and by ESI-MS studies. We also found that Au(NHC)2PF6 inhibits mitochondrial respiration impairing complex I function. Concerning the oxidized cytoskeletal proteins, gold binding to the free cysteines of actin was demonstrated by ESI-MS analysis. Notably, both gold compounds affected cell migration and invasion. CONCLUSIONS In this study, we deepened the mode of action of Au(NHC) and Au(NHC)2PF6, identifying common cellular targets but confirming their different influence on the mitochondrial function.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Firenze, Italy
| | - Luigi Messori
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Firenze, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Tania Fiaschi
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy.
| | - Francesca Magherini
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
73
|
Kinetics and mechanism of gold anode corrosion in a weakly basic aqueous solution of triethylenetetramine. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
74
|
Almeida CM, S. Marcon PH, Nascimento ÉCM, Martins JBL, Chagas MAS, Fujimori M, De Marchi PGF, França EL, Honorio‐França AC, Gatto CC. Organometallic Gold (III) and Platinum (II) Complexes with Thiosemicarbazone: structural behavior, anticancer activity, and molecular docking. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carolane M. Almeida
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Pedro H. S. Marcon
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Érica C. M. Nascimento
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - João B. L. Martins
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Marcio A. S. Chagas
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Mahmi Fujimori
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Patrícia G. F. De Marchi
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Eduardo L. França
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | | | - Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| |
Collapse
|
75
|
Olelewe C, Kim JH, Ofori S, Mertens RT, Gukathasan S, Awuah SG. Gold(III)-P-chirogenic complex induces mitochondrial dysfunction in triple-negative breast cancer. iScience 2022; 25:104340. [PMID: 35602949 PMCID: PMC9117869 DOI: 10.1016/j.isci.2022.104340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Chemical agents that specifically exploit metabolic vulnerabilities of cancer cells will be beneficial but are rare. The role of oxidative phosphorylation (OXPHOS) in promoting and maintaining triple-negative breast cancer (TNBC) growth provides new treatment opportunity. In this work, we describe AuPhos-19, a small-molecule gold(III)-based agent bearing a chiral phosphine ligand that selectively disrupts mitochondrial metabolism in murine and human TNBC cells but not normal epithelial cells. AuPhos-19 induces potent cytotoxic effect with half maximal inhibitory concentration (IC50) in the nanomolar range (220-650 nM) across different TNBC cell lines. The lipophilic cationic character of AuPhos-19 facilitates interaction with mitochondrial OXPHOS. AuPhos-19 inhibits mitochondria respiration and induces significant AMPK activation. Depolarization of the mitochondria membrane, mitochondria ROS accumulation, and mitochondria DNA depletion provided further indication that AuPhos-19 perturbs mitochondria function. AuPhos-19 inhibits tumor growth in tumor-bearing mice. This study highlights the development of gold-based compounds targeting mitochondrial pathways for efficacious cancer treatment.
Collapse
Affiliation(s)
- Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jong Hyun Kim
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Randall T. Mertens
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
76
|
Martín J, Gómez‐Bengoa E, Genoux A, Nevado C. Synthesis of Cyclometalated Gold(III) Complexes via Catalytic Rhodium to Gold(III) Transmetalation. Angew Chem Int Ed Engl 2022; 61:e202116755. [DOI: 10.1002/anie.202116755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Jaime Martín
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Enrique Gómez‐Bengoa
- Department of Organic Chemistry I University of the Basque Country UPV/EHU Manuel Lardizabal 3 Donostia-San Sebastián Spain
| | - Alexandre Genoux
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Cristina Nevado
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
77
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
78
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202201103. [PMID: 35165986 DOI: 10.1002/anie.202201103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/07/2022]
Abstract
Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced β-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.
Collapse
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
79
|
Rusanov DA, Zou J, Babak MV. Biological Properties of Transition Metal Complexes with Metformin and Its Analogues. Pharmaceuticals (Basel) 2022; 15:ph15040453. [PMID: 35455450 PMCID: PMC9031419 DOI: 10.3390/ph15040453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a widely prescribed medication for the treatment and management of type 2 diabetes. It belongs to a class of biguanides, which are characterized by a wide range of diverse biological properties, including anticancer, antimicrobial, antimalarial, cardioprotective and other activities. It is known that biguanides serve as excellent N-donor bidentate ligands and readily form complexes with virtually all transition metals. Recent evidence suggests that the mechanism of action of metformin and its analogues is linked to their metal-binding properties. These findings prompted us to summarize the existing data on the synthetic strategies and biological properties of various metal complexes with metformin and its analogues. We demonstrated that coordination of biologically active biguanides to various metal centers often resulted in an improved pharmacological profile, including reduced drug resistance as well as a wider spectrum of activity. In addition, coordination to the redox-active metal centers, such as Au(III), allowed for various activatable strategies, leading to the selective activation of the prodrugs and reduced off-target toxicity.
Collapse
Affiliation(s)
- Daniil A. Rusanov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Laboratory of Medicinal Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Avenue 47, 119991 Moscow, Russia
| | - Jiaying Zou
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Maria V. Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Correspondence:
| |
Collapse
|
80
|
Banerjee S, Banerjee S. Metal-Based Complexes as Potential Anti-cancer Agents. Anticancer Agents Med Chem 2022; 22:2684-2707. [PMID: 35362388 DOI: 10.2174/1871520622666220331085144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Metal based therapy is no new in biomedical research. In early days the biggest limitation was the inequality among therapeutical and toxicological dosages. Ever since, Barnett Rosenberg discovered cisplatin, a new era has begun to treat cancer with metal complexes. Platinum complexes such as oxaliplatin, cisplatin, and carboplatin, seem to be the foundation of metal/s-based components to challenge malignancies. With an advancement in the biomolemoecular mechanism, researchers have started developing non-classical platinum-based complexes, where a different mechanistic approach of the complexes is observed towards the biomolecular target. Till date, larger number of metal/s-based complexes was synthesized by overhauling the present structures chemically by substituting the ligand or preparing the whole novel component with improved cytotoxic and safety profiles. Howsoever, due to elevated accentuation upon the therapeutic importance of metal/s-based components, a couple of those agents are at present on clinical trials and several other are in anticipating regulatory endorsement to enter the trial. This literature highlights the detailed heterometallic multinuclear components, primarily focusing on platinum, ruthenium, gold and remarks on possible stability, synergism, mechanistic studies and structure activity relationships.
Collapse
Affiliation(s)
- Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol-713301, West Bengal, India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol-713301, West Bengal, India
| |
Collapse
|
81
|
Martín J, Gómez‐Bengoa E, Genoux A, Nevado C. Synthesis of Cyclometalated Gold(III) Complexes via Catalytic Rhodium to Gold(III) Transmetalation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jaime Martín
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Enrique Gómez‐Bengoa
- Department of Organic Chemistry I University of the Basque Country UPV/EHU Manuel Lardizabal 3 Donostia-San Sebastián Spain
| | - Alexandre Genoux
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Cristina Nevado
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
82
|
Luengo A, Marzo I, Fernández‐Moreira V, Gimeno MC. Synthesis and antiproliferative study of phosphorescent multimetallic Re(I)/Au(I) complexes containing fused imidazo[4,5‐f]‐1,10‐phenanthroline core. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrés Luengo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza Zaragoza Spain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología Molecular Universidad de Zaragoza Zaragoza Spain
| | - Vanesa Fernández‐Moreira
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza Zaragoza Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza Zaragoza Spain
| |
Collapse
|
83
|
Xiao Q, Liu Y, Jiang G, Liu Y, Huang Y, Liu W, Zhang Z. Heteroleptic Gold(I)-bisNHC complex with excellent activity in vitro, ex vivo and in vivo against endometrial cancer. Eur J Med Chem 2022; 236:114302. [DOI: 10.1016/j.ejmech.2022.114302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2023]
|
84
|
Potential scorpionate ligand derived from heterocyclic 2,4(1H,3H)-pyrimidinedithione: Synthesis, spectroscopic characterization and DFT studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
85
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
86
|
Al‐Buthabhak HS, Falasca V, Yu Y, Sobolev AN, Skelton BW, Moggach SA, Ferro V, Al‐Salami H, Baker MV. Au‐NHC complexes with thiocarboxylate ligands: synthesis, structure, stability, thiol exchange and
in vitro
anti‐cancer activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hawraa S. Al‐Buthabhak
- Department of Chemistry, Faculty of Science University of Kufa Najaf Iraq
- School of Molecular Sciences M310, The University of Western Australia Perth WA Australia
| | - Valerio Falasca
- School of Molecular Sciences M310, The University of Western Australia Perth WA Australia
| | - Yu Yu
- Curtin Medical School, Curtin Health Innovation Research Institute Curtin University Perth WA Australia
- Division of Obstetrics & Gynaecology The University of Western Australia Medical School Perth WA Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences M310, The University of Western Australia Perth WA Australia
| | - Brian W. Skelton
- School of Molecular Sciences M310, The University of Western Australia Perth WA Australia
| | - Stephen A. Moggach
- School of Molecular Sciences M310, The University of Western Australia Perth WA Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland Brisbane, QLD Australia
| | - Hani Al‐Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute Curtin University Perth WA Australia
- Hearing Therapeutics Ear Science Institute Australia Perth Western Australia Australia
| | - Murray V. Baker
- School of Molecular Sciences M310, The University of Western Australia Perth WA Australia
| |
Collapse
|
87
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo‐Induced β‐Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology and General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
88
|
Vedenyapina MD, Kulaishin SA, Kuznetsov VV, Makhova NN, Kazakova MM. Kinetics and mechanism of gold anode corrosion in a weakly basic aqueous solution of hexamethylenetetramine (urotropine). Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3375-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
89
|
Liu Y, Lu Y, Xu Z, Ma X, Chen X, Liu W. Repurposing of the gold drug auranofin and a review of its derivatives as antibacterial therapeutics. Drug Discov Today 2022; 27:1961-1973. [DOI: 10.1016/j.drudis.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
|
90
|
|
91
|
Scattolin T, Lippmann P, Beliš M, Van Hecke K, Ottb I, Nolan SP. A simple synthetic entryway into (N‐heterocyclic carbene)gold‐steroidyl complexes and their anticancer activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Braunschweig Germany
| | - Marek Beliš
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Ingo Ottb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Braunschweig Germany
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| |
Collapse
|
92
|
Nahaei A, Mandegani Z, Chamyani S, Fereidoonnezhad M, Shahsavari HR, Kuznetsov NY, Nabavizadeh SM. Half-Sandwich Cyclometalated Rh III Complexes Bearing Thiolate Ligands: Biomolecular Interactions and In Vitro and In Vivo Evaluations. Inorg Chem 2022; 61:2039-2056. [PMID: 35023727 DOI: 10.1021/acs.inorgchem.1c03218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A class of cyclometalated RhIII complexes [Cp*Rh(ppy)(SR)] bearing thiolate ligands, Cp* = pentamethylcyclopentadienyl, ppy = 2-phenylpyridinate, and R = pyridyl (Spy, 2), pyrimidyl (SpyN, 3), benzimidazolyl (Sbi, 4), and benzothiazolyl (Sbt, 5), were produced and identified by means of spectroscopic methods. The in vitro cytotoxicity of the RhIII compounds in three different human mortal cancerous cell lines (ovarian, SKOV3; breast, MCF-7; lung, A549) and a normal lung (MRC-5) cell line were evaluated, indicating the selectivity of these cyclometalated RhIII complexes to cancer cells. Complex 5, selected for in vivo experiment, has shown an effective inhibition of tumor growth in SKOV3 xenograft mouse model relative to control (p-values < 0.05 and < 0.01). Importantly, the outcomes of H&E (hematoxylin and eosin) staining and hematological analysis revealed negligible toxicity of 5 compared to cisplatin on a functioning of the main organs of mouse. Molecular docking, UV-vis, and emission spectroscopies (fluorescence, 3D fluorescence, synchronous) techniques were carried out on 1-5 to peruse the mechanism of the anticancer activities of these complexes. The obtained data help to manifest the binding affinity between the rhodium compounds and calf thymus DNA (CT-DNA) through the interaction by DNA minor groove and moderate binding affinity with bovine serum albumin (BSA), particularly with the cavity in the subdomain IIA. It can be concluded that the Rh-thiolate complexes are highly promising leads for the development of novel effective DNA-targeted anticancer drugs.
Collapse
Affiliation(s)
- Asma Nahaei
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Zeinab Mandegani
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Samira Chamyani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Nikolai Yu Kuznetsov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation
| | - S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|
93
|
Goetzfried SK, Kapitza P, Gallati CM, Nindl A, Cziferszky M, Hermann M, Wurst K, Kircher B, Gust R. Investigations of the reactivity, stability and biological activity of halido (NHC)gold(I) complexes. Dalton Trans 2022; 51:1395-1406. [PMID: 34989741 DOI: 10.1039/d1dt03528b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The significance of the halido ligand (Cl-, Br-, I-) in halido[3-ethyl-4-phenyl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complexes (2-4) in terms of ligand exchange reactions, including the ligand scrambling to the bis[3-ethyl-4-phenyl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complex (5), was evaluated by HPLC in acetonitrile/water = 50:50 (v/v) mixtures. In the presence of 0.9% NaCl, the bromido (NHC)gold(I) complex 3 was immediately transformed into the chlorido (NHC)gold(I) complex 2. The iodido (NHC)gold(I) complex 4 converted under the same conditions during 0.5 h of incubation by 52.83% to 2 and by 8.77% to 5. This proportion remained nearly constant for 72 h. The halido (NHC)gold(I) complexes also reacted very rapidly with 1 eq. of model nucleophiles, e.g., iodide or selenocysteine (Sec). For instance, Sec transformed 3 in the proportion 73.03% to the (NHC)Au(I)Sec complex during 5 min of incubation. This high reactivity against this amino acid, present in the active site of the thioredoxin reductase (TrxR), correlates with the complete inhibition of the isolated TrxR enzyme at 1 μM. Interestingly, in cellular systems (A2780cis cells), even at a 5-fold higher concentration, no increased ROS levels were detected. The concentration required for ROS generation was about 20 μM. Superficially considered, the antiproliferative and antimetabolic activities of the halido (NHC)Au(I) complexes correlate with the reactivity of the Au(I)-X bond (2 < 3 < 4). However, it is very likely that degradation products formed during the incubation in cell culture medium participated in the biological activity. In particular, the high-cytotoxic [(NHC)2Au(I)]+ complex (5) distorts the results.
Collapse
Affiliation(s)
- Sina Katharina Goetzfried
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Paul Kapitza
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Caroline Marie Gallati
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Anna Nindl
- Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| | - Monika Cziferszky
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Brigitte Kircher
- Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| | - Ronald Gust
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
94
|
Di Natale C, Gros CP, Paolesse R. Corroles at work: a small macrocycle for great applications. Chem Soc Rev 2022; 51:1277-1335. [PMID: 35037929 DOI: 10.1039/d1cs00662b] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Corrole chemistry has witnessed an impressive boost in studies in the last 20 years, thanks to the possibility of preparing corrole derivatives by simple synthetic procedures. The investigation of a large number of corroles has highlighted some peculiar characteristics of these macrocycles, having features different from those of the parent porphyrins. With this progress in the elucidation of corrole properties, attention has been focused on the potential for the exploitation of corrole derivatives in different important application fields. In some areas, the potential of corroles has been studied in certain detail, for example, the use of corrole metal complexes as electrocatalysts for energy conversion. In some other areas, the field is still in its infancy, such as in the exploitation of corroles in solar cells. Herein, we report an overview of the different applications of corroles, focusing on the studies reported in the last five years.
Collapse
Affiliation(s)
- Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Viale del Politecnico, 00133 Rome, Italy.
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France.
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
95
|
Li X, Wang G, Li J, Sun Y, Deng X, Zhang K. Intense Organic Afterglow Enabled by Molecular Engineering in Dopant-Matrix Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1587-1600. [PMID: 34963292 DOI: 10.1021/acsami.1c20331] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report intense dopant-matrix afterglow systems with an afterglow efficiency (ΦAG) of 47% and an afterglow lifetime (τAG) of 1.3 s. Luminescent difluoroboron β-diketonate (BF2bdk) dopants and their deuterated counterparts are designed with naphthalene and carboxylic acid groups. After doping into benzoic acid (BA) matrices, room-temperature afterglow brightness and afterglow duration of the BF2bdk-BA materials have unexpectedly been found to reach the levels of those at 77 K, which indicates that hydrogen bonding between BF2bdk and BA, as well as the deuteration technique, can reduce knr + kq of BF2bdk triplets to very small values even at room temperature. Detailed studies reveal that the BF2bdk possesses typical 1ICT characters in the S1 state and distinct 3LE composition in the T1 state, and thus shows a high ΦISC and a small kP to obtain a high ΦAG and a long τAG. Besides, triplet-triplet annihilation has been found in the dopant-matrix system at high doping concentrations to further increase ΦAG.
Collapse
Affiliation(s)
- Xun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jiuyang Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yan Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xinjian Deng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
96
|
Gurba A, Taciak P, Sacharczuk M, Młynarczuk-Biały I, Bujalska-Zadrożny M, Fichna J. Gold (III) Derivatives in Colon Cancer Treatment. Int J Mol Sci 2022; 23:724. [PMID: 35054907 PMCID: PMC8775370 DOI: 10.3390/ijms23020724] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Colorectal cancer (CRC) is the third most frequently diagnosed cancer in men and the second in women. Standard patterns of antitumor therapy, including cisplatin, are ineffective due to their lack of specificity for tumor cells, development of drug resistance, and severe side effects. For this reason, new methods and strategies for CRC treatment are urgently needed. Current research includes novel platinum (Pt)- and other metal-based drugs such as gold (Au), silver (Ag), iridium (Ir), or ruthenium (Ru). Au(III) compounds are promising drug candidates for CRC treatment due to their structural similarity to Pt(II). Their advantage is their relatively good solubility in water, but their disadvantage is an unsatisfactory stability under physiological conditions. Due to these limitations, work is still underway to improve the formula of Au(III) complexes by combining with various types of ligands capable of stabilizing the Au(III) cation and preventing its reduction under physiological conditions. This review summarizes the achievements in the field of stable Au(III) complexes with potential cytotoxic activity restricted to cancer cells. Moreover, it has been shown that not nucleic acids but various protein structures such as thioredoxin reductase (TrxR) mediate the antitumor effects of Au derivatives. The state of the art of the in vivo studies so far conducted is also described.
Collapse
Affiliation(s)
- Agata Gurba
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Przemysław Taciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Mariusz Sacharczuk
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
- Department of Genomics, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Izabela Młynarczuk-Biały
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| |
Collapse
|
97
|
Pizzi A, Calabrese M, Daolio A, Ursini M, Frontera A, Resnati G. Expanding the toolbox of coinage bond: Adducts involving new gold(III) derivatives and bioactive molecules. CrystEngComm 2022. [DOI: 10.1039/d2ce00446a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray analyses of a small library of adducts between AuX3 (X=Cl, Br) and several pyridine derivatives indicate the systematic presence of quite short π -holes coinage bonds; computational studies reveal...
Collapse
|
98
|
Mule RD, Kumar A, Sancheti SP, Senthilkumar B, Kumar H, Patil NT. BQ-AurIPr: a redox-active anticancer Au( i) complex that induces immunogenic cell death. Chem Sci 2022; 13:10779-10785. [PMID: 36320699 PMCID: PMC9491088 DOI: 10.1039/d2sc03756d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 12/22/2022] Open
Abstract
Immunogenic Cell Death (ICD) is a unique cell death mechanism that kills cancer cells while rejuvenating the anticancer immunosurveillance, thereby benefiting the clinical outcomes of various immuno-chemotherapeutic regimens. Herein, we report development of a library of benzo[a]quinolizinium-based Au(i) complexes through an intramolecular amino-auration reaction of pyridino-alkynes. We tested 40 candidates and successfully identified BQ-AurIPr as a novel redox-active Au(i) complex with potent anticancer properties. BQ-AurIPr efficiently triggered generation of DAMPs – the hallmarks of ICD – and was superior in terms of efficiency compared to FDA-approved drugs known to induce ICD. BQ-AurIPr significantly increased immunogenicity of cancer cells enhancing their phagocytosis when co-cultured with immune cells. Our investigation reveals that BQ-AurIPr induces oxidative stress inside mitochondria leading to mitophagy, as the mechanism for immunogenic cell death in A549 cells. A redox-active anticancer Au(i) complex that induces immunogenic cell death in non-small cell lung cancer cells has been identified. Mitochondrial oxidative stress leading to mitophagy-dependent secretion of various DAMPs is implicated as the main mechanism inducing ICD.![]()
Collapse
Affiliation(s)
- Ravindra D. Mule
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune – 411008, India
- Academy of Scientific and Innovative Research, Ghaziabad – 201 002, India
| | - Akhilesh Kumar
- Laboratory of Immunology and Infectious Diseases, Department of Biological Sciences, IISER Bhopal, Bhopal – 462 066, India
| | - Shashank P. Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal – 462 066, India
| | - B. Senthilkumar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune – 411008, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Diseases, Department of Biological Sciences, IISER Bhopal, Bhopal – 462 066, India
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka – 565-0871, Japan
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal – 462 066, India
| |
Collapse
|
99
|
Cadmium(II) coordination polymer based on flexible dithiolate-polyamine binary ligands system: Crystal structure, Hirshfeld surface analysis, antimicrobial, and DNA cleavage potential. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
100
|
Ma L, Li L, Zhu G. Platinum-containing heterometallic complexes in cancer therapy: advances and perspectives. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00205a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum-based anticancer drugs are among the most widely used antineoplastics in clinical settings. Their therapeutic applications and outcomes are, however, greatly hampered by drug resistance, systemic toxicity, and the lack...
Collapse
|