51
|
Velasco E, Wang S, Sanet M, Fernández-Vázquez J, Jové D, Glaría E, Valledor AF, O'Halloran TV, Balsalobre C. A new role for Zinc limitation in bacterial pathogenicity: modulation of α-hemolysin from uropathogenic Escherichia coli. Sci Rep 2018; 8:6535. [PMID: 29695842 PMCID: PMC5916954 DOI: 10.1038/s41598-018-24964-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/09/2018] [Indexed: 11/30/2022] Open
Abstract
Metal limitation is a common situation during infection and can have profound effects on the pathogen’s success. In this report, we examine the role of zinc limitation in the expression of a virulence factor in uropathogenic Escherichia coli. The pyelonephritis isolate J96 carries two hlyCABD operons that encode the RTX toxin α-hemolysin. While the coding regions of both operons are largely conserved, the upstream sequences, including the promoters, are unrelated. We show here that the two hlyCABD operons are differently regulated. The hlyII operon is efficiently silenced in the presence of zinc and highly expressed when zinc is limited. In contrast, the hlyI operon does not respond to zinc limitation. Genetic studies reveal that zinc-responsive regulation of the hlyII operon is controlled by the Zur metalloregulatory protein. A Zur binding site was identified in the promoter sequence of the hlyII operon, and we observe direct binding of Zur to this promoter region. Moreover, we find that Zur regulation of the hlyII operon modulates the ability of E. coli J96 to induce a cytotoxic response in host cell lines in culture. Our report constitutes the first description of the involvement of the zinc-sensing protein Zur in directly modulating the expression of a virulence factor in bacteria.
Collapse
Affiliation(s)
- Elsa Velasco
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Suning Wang
- Chemistry of Life Process Institute, and Department of Chemistry, Northwestern University, Evanston, Illinois, 60208-3113, United States of America
| | - Marianna Sanet
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Jorge Fernández-Vázquez
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Daniel Jové
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Estibaliz Glaría
- Nuclear Receptor Group, Department of Cell Biology, Physiology and Immunology, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Annabel F Valledor
- Nuclear Receptor Group, Department of Cell Biology, Physiology and Immunology, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Thomas V O'Halloran
- Chemistry of Life Process Institute, and Department of Chemistry, Northwestern University, Evanston, Illinois, 60208-3113, United States of America
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain.
| |
Collapse
|
52
|
Cao K, Li N, Wang H, Cao X, He J, Zhang B, He QY, Zhang G, Sun X. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc. J Biol Chem 2018; 293:6075-6089. [PMID: 29491141 DOI: 10.1074/jbc.m117.818997] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/25/2018] [Indexed: 11/06/2022] Open
Abstract
Zinc is an essential metal in bacteria. One important bacterial zinc transporter is AdcA, and most bacteria possess AdcA homologs that are single-domain small proteins due to better efficiency of protein biogenesis. However, a double-domain AdcA with two zinc-binding sites is significantly overrepresented in Streptococcus species, many of which are major human pathogens. Using molecular simulation and experimental validations of AdcA from Streptococcus pyogenes, we found here that the two AdcA domains sequentially stabilize the structure upon zinc binding, indicating an organization required for both increased zinc affinity and transfer speed. This structural organization appears to endow Streptococcus species with distinct advantages in zinc-depleted environments, which would not be achieved by each single AdcA domain alone. This enhanced zinc transport mechanism sheds light on the significance of the evolution of the AdcA domain fusion, provides new insights into double-domain transporter proteins with two binding sites for the same ion, and indicates a potential target of antimicrobial drugs against pathogenic Streptococcus species.
Collapse
Affiliation(s)
- Kun Cao
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Nan Li
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Hongcui Wang
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Xin Cao
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Jiaojiao He
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Bing Zhang
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Qing-Yu He
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Gong Zhang
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Xuesong Sun
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| |
Collapse
|
53
|
Ma L, Green SI, Trautner BW, Ramig RF, Maresso AW. Metals Enhance the Killing of Bacteria by Bacteriophage in Human Blood. Sci Rep 2018; 8:2326. [PMID: 29396496 PMCID: PMC5797145 DOI: 10.1038/s41598-018-20698-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Multidrug-resistant bacterial pathogens are a major medical concern. E. coli, particularly the pathotype extraintestinal pathogenic E. coli (ExPEC), is a leading cause of bloodstream infections. As natural parasites of bacteria, bacteriophages are considered a possible solution to treat patients infected with antibiotic resistant strains of bacteria. However, the development of phage as an anti-infective therapeutic is hampered by limited knowledge of the physiologic factors that influence their properties in complex mammalian environments such as blood. To address this barrier, we tested the ability of phage to kill ExPEC in human blood. Phages are effective at killing ExPEC in conventional media but are substantially restricted in this ability in blood. This phage killing effect is dependent on the levels of free metals and is inhibited by the anticoagulant EDTA. The EDTA-dependent inhibition of ExPEC killing is overcome by exogenous iron, magnesium, and calcium. Metal-enhanced killing of ExPEC by phage was observed for several strains of ExPEC, suggesting a common mechanism. The addition of metals to a murine host infected with ExPEC stimulated a phage-dependent reduction in ExPEC levels. This work defines a role for circulating metals as a major factor that is essential for the phage-based killing of bacteria in blood.
Collapse
Affiliation(s)
- Li Ma
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX, USA
| | - Sabrina I Green
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX, USA
| | - Barbara W Trautner
- Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert F Ramig
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX, USA
| | - Anthony W Maresso
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
54
|
Yang P, Hong W, Zhou P, Chen B, Xu H. Nano and bulk ZnO trigger diverse Zn-transport-related gene transcription in distinct regions of the small intestine in mice after oral exposure. Biochem Biophys Res Commun 2017; 493:1364-1369. [DOI: 10.1016/j.bbrc.2017.09.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 12/30/2022]
|
55
|
Du J, Deng T, Ma Q. Crystal structures of the isochorismatase domains from Vibrio anguillarum. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
56
|
Bradley PH, Pollard KS. Proteobacteria explain significant functional variability in the human gut microbiome. MICROBIOME 2017; 5:36. [PMID: 28330508 PMCID: PMC5363007 DOI: 10.1186/s40168-017-0244-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/13/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND While human gut microbiomes vary significantly in taxonomic composition, biological pathway abundance is surprisingly invariable across hosts. We hypothesized that healthy microbiomes appear functionally redundant due to factors that obscure differences in gene abundance between individuals. RESULTS To account for these biases, we developed a powerful test of gene variability called CCoDA, which is applicable to shotgun metagenomes from any environment and can integrate data from multiple studies. Our analysis of healthy human fecal metagenomes from three separate cohorts revealed thousands of genes whose abundance differs significantly and consistently between people, including glycolytic enzymes, lipopolysaccharide biosynthetic genes, and secretion systems. Even housekeeping pathways contain a mix of variable and invariable genes, though most highly conserved genes are significantly invariable. Variable genes tend to be associated with Proteobacteria, as opposed to taxa used to define enterotypes or the dominant phyla Bacteroidetes and Firmicutes. CONCLUSIONS These results establish limits on functional redundancy and predict specific genes and taxa that may explain physiological differences between gut microbiomes.
Collapse
Affiliation(s)
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, CA USA
- Division of Biostatistics, Institute for Human Genetics, and Institute for Computational Health Sciences, University of California, San Francisco, CA USA
| |
Collapse
|
57
|
Turner AG, Ong CLY, Walker MJ, Djoko KY, McEwan AG. Transition Metal Homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. Adv Microb Physiol 2017; 70:123-191. [PMID: 28528647 DOI: 10.1016/bs.ampbs.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trace metals such as Fe, Mn, Zn and Cu are essential for various biological functions including proper innate immune function. The host immune system has complicated and coordinated mechanisms in place to either starve and/or overload invading pathogens with various metals to combat the infection. Here, we discuss the roles of Fe, Mn and Zn in terms of nutritional immunity, and also the roles of Cu and Zn in metal overload in relation to the physiology and pathogenesis of two human streptococcal species, Streptococcus pneumoniae and Streptococcus pyogenes. S. pneumoniae is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the population; however, transition to internal sites can cause a range of diseases such as pneumonia, otitis media, meningitis and bacteraemia. S. pyogenes is a human pathogen responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Both species have overlapping capacity with respect to metal acquisition, export and regulation and how metal homeostasis relates to their virulence and ability to invade and survive within the host. It is becoming more apparent that metals have an important role to play in the control of infection, and with further investigations, it could lead to the potential use of metals in novel antimicrobial therapies.
Collapse
Affiliation(s)
- Andrew G Turner
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
58
|
Chi X, Guo N, Yao W, Jin Y, Gao W, Cai J, Hei Z. Induction of heme oxygenase-1 by hemin protects lung against orthotopic autologous liver transplantation-induced acute lung injury in rats. J Transl Med 2016; 14:35. [PMID: 26838179 PMCID: PMC4736160 DOI: 10.1186/s12967-016-0793-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Post-liver transplantation acute lung injury (ALI) severely affects patients' survival, whereas the mechanism is unclear and effective therapy is lacking. The authors postulated that reperfusion-induced increased oxidative stress plays a critical role in mediating post-liver transplantation ALI and that induction of heme oxgenase-1 (HO-1), an enzyme with anti-oxidative stress properties, can confer effective protection of lung against ALI. METHODS Male Sprague-Dawley rats underwent autologous orthotopic liver transplantation (OALT) in the absence or presence of treatments with the selective HO-1 inducer (Hemin) or HO-1 inhibitor (ZnPP). Lung tissues were collected at 8 h after OALT, pathological scores and lung water content were evaluated; survival rate of rats was analyzed; protein expression of HO-1 was determined by western blotting, and nuclear translocation of Nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor(NF)-κB p65 were detected by Immunofluorescence staining. The inflammatory cytokines and oxidative indexes of lung tissue were determined. RESULTS In lungs harvested at the early stage i.e. 8 h after OALT, Hemin treatment significantly increased superoxide dismutase activities, and reduced malondialdehyde, hydrogen peroxide, interleukin-6, myeloperoxidase, and tumor necrosis factor-α production,which were associated with increased HO-1 protein expression and lower pathological scores and increased survival rate of rats. The underline mechanisms might associate with activation of Nrf2 and inhibition of NF-κB p65 nuclear translocation. However, these changes were aggravated by ZnPP. CONCLUSIONS Hemin pretreatment, by enhancing HO-1 induction, increased lung antioxidant capacity and reduced inflammatory stress,protected the lung from OALT-induced ALI at early stage of reperfusion.
Collapse
Affiliation(s)
- Xinjin Chi
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Na Guo
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Weifeng Yao
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Yi Jin
- Department of Pathology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Wanling Gao
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Jun Cai
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Ziqing Hei
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|