51
|
The fabrication of supramolecular assembly with quadruple switchable fluorescence by ionic self-assembly strategy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
52
|
Panja S, Boháčová K, Dietrich B, Adams DJ. Programming properties of transient hydrogels by an enzymatic reaction. NANOSCALE 2020; 12:12840-12848. [PMID: 32515773 DOI: 10.1039/d0nr03012k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular gels are usually stable in time as they are formed under thermodynamic equilibrium or at least in a deep well of a kinetically trapped state. However, artificial construction of kinetically controlled transient supramolecular gels is an interesting challenge. In these systems, usually a kinetically trapped transient aggregate is formed by active building blocks that leads to gelation; the gel then typically returns to the solution state. In this work, we show that such transient aggregation can occur by successive formation of two distinctly different kinetically controlled metastable states. Control over the first metastable state allows us to achieve significant control over the stability and properties of the second metastable state.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | | | | | |
Collapse
|
53
|
Panja S, Fuentes-Caparrós AM, Cross ER, Cavalcanti L, Adams DJ. Annealing Supramolecular Gels by a Reaction Relay. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:5264-5271. [PMID: 32595268 PMCID: PMC7315816 DOI: 10.1021/acs.chemmater.0c01483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Indexed: 05/09/2023]
Abstract
Supramolecular gels have potential in many areas. In many cases, a major drawback is that the gels are formed at a high rate. As a result, nonoptimal, kinetically trapped self-assembled structures are often formed, leading to gels that can be hard to reproduce and control. One method to get around kinetic trapping is annealing. Thermal annealing is one possibility, but it is not always desirable to heat the gels. Here, we describe a method to anneal pH-triggered gels after they are formed. We employ a reaction relay in a peptide-based hydrogel system to anneal the structures by a controlled and uniform pH change. Our method allows us to prepare gels with more controlled properties. We show that this can be used to enable homogeneous "molding and casting" of the hydrogels. This method of annealing is more effective in improving gel robustness than a conventional heat-cool cycle.
Collapse
Affiliation(s)
- Santanu Panja
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | | | - Emily R. Cross
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Leide Cavalcanti
- ISIS
Pulsed Neutron Source, Rutherford Appleton
Laboratory, Didcot OX11 0QX, U.K.
| | - Dave J. Adams
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
54
|
Hansen WA, Khare SD. Recent progress in designing protein-based supramolecular assemblies. Curr Opin Struct Biol 2020; 63:106-114. [PMID: 32569994 DOI: 10.1016/j.sbi.2020.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
The design of protein-based assemblies is an emerging area in bionanotechnology with wide ranging applications, from vaccines to smart biomaterials. Design approaches have sought to mimic both the topologies of assemblies observed in nature, as well as their functionally relevant properties, such as being responsive to external cues. In the last few years, diverse design approaches have been used to construct assemblies with integer-dimensional (e.g. filaments, layers, lattices and polyhedra) and non-integer-dimensional (fractal) topologies. Supramolecular structures that assemble/disassemble in response to chemical and physical stimuli have also been built. Hybrid protein-DNA assemblies have expanded the set of building blocks used for generating supramolecular architectures. While still far from reproducing the sophistication of natural assemblies, these exciting results represent important steps towards the design of responsive and functional biomaterials built from the bottom up. As the complexity of topologies and diversity of building blocks increases, considerations of both thermodynamics and kinetics of assembly formation will play crucial roles in making the design of protein-based assemblies robust and useful.
Collapse
Affiliation(s)
- William A Hansen
- Institute for Quantitative Biomedicine, Rutgers - The State University of New Jersey, NJ, USA
| | - Sagar D Khare
- Institute for Quantitative Biomedicine, Rutgers - The State University of New Jersey, NJ, USA; Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, NJ, USA.
| |
Collapse
|
55
|
Wu H, Friedrich H, Patterson JP, Sommerdijk NAJM, de Jonge N. Liquid-Phase Electron Microscopy for Soft Matter Science and Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001582. [PMID: 32419161 DOI: 10.1002/adma.202001582] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Innovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology. Both experimental design and applications of LP-EM for soft matter materials science and biological research are reviewed, and a perspective of possible future directions is given.
Collapse
Affiliation(s)
- Hanglong Wu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Nico A J M Sommerdijk
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Saarbrücken, 66123, Germany
- Department of Physics, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
56
|
Hua M, Hao J, Gong Y, Zhang F, Wei J, Yang Z, Pileni MP. Discrete Supracrystalline Heterostructures from Integrative Assembly of Nanocrystals and Porous Organic Cages. ACS NANO 2020; 14:5517-5528. [PMID: 32374985 DOI: 10.1021/acsnano.9b09686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although self-assembly across multiple length scales has been well recognized and intensively investigated in natural biological system, the design of artificial heterostructures enabled by integrative self-assembly is still in its infancy. Here we report a strategy toward the growth of discrete supracrystalline heterostructures from inorganic nanocrystals and porous organic cages (CC3-R), which in principle relies on the host-guest interactions between alkyl chains coated on nanocrystals and the cavity of cage molecules. Density functional theory calculation indicates that an attractive energy of ∼-2 kBT is present between an alkyl chain and the cavity of a CC3-R molecule, which is responsible for the assembly of nanocrystal superlattices on the CC3-R octahedral crystals. Of particular interest is that, determined by the shape of the nanocrystals, two distinct assembly modes can be controlled at the mesoscale level, which eventually produce either a core/shell or heterodimer supracrystalline structure. Our results highlight opportunities for the development of such a noncovalent integrative self-assembly not limited to a particular length scale and that could be generally applicable for flexible integration of supramolecular systems.
Collapse
Affiliation(s)
- Mingming Hua
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Jinjie Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yanjun Gong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Fenghua Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Marie-Paule Pileni
- Chemistry Department, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
57
|
Wang J, Wang T, Liu X, Lu Y, Geng J. Multiple-responsive supramolecular vesicle based on azobenzene-cyclodextrin host-guest interaction. RSC Adv 2020; 10:18572-18580. [PMID: 35518297 PMCID: PMC9053703 DOI: 10.1039/d0ra02123g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple-responsive supramolecular vesicles have been successfully fabricated by the complexation between β-cyclodextrin (β-CD) and a pH/photo dual-responsive amphiphile 4-(4-(hexyloxy)phenylazo)benzoate sodium (HPB) with azobenzene and carboxylate groups. When mixing β-CD with HPB to reach a host/guest molar ratio of 1 : 1, the azobenzene group of HPB could be spontaneously included by β-CD molecules. Then, the formed inclusion complexes (HPB@β-CD) could self-assemble into vesicles, which was driven by the hydrophobic interaction of the alkyl chain of HPB and the hydrogen bonds between neighboring β-CDs. The reversible assembly/disassembly of the vesicles could be simply regulated under UV or visible light irradiation. The reversible phase transformation between vesicles and microbelts could also be realized by adjusting the pH values of the sample. Adding both competitive guest molecules (1-adamantane carboxylic acid sodium (ADA)) and α-amylase would result in the phase transformation from vesicles to micelles. Moreover, the vesicles would be destroyed when β-CD was continuously added until the ratio of host/guest reached 2 : 1. Such an interesting quintuple-responsive vesicle system reported here not only has potential applications in various fields such as controlled release or drug delivery, but also provides a reference for the design and construction of multiple responsive systems. A quintuple-responsive vesicle system was successfully fabricated by simply mixing HPB with an equal amount of β-CD.![]()
Collapse
Affiliation(s)
- Jiao Wang
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Ting Wang
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Xiaohui Liu
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Yan Lu
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Jingjing Geng
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| |
Collapse
|
58
|
Rizzuto F, Nitschke JR. Narcissistic, Integrative, and Kinetic Self-Sorting within a System of Coordination Cages. J Am Chem Soc 2020; 142:7749-7753. [PMID: 32275828 PMCID: PMC7304868 DOI: 10.1021/jacs.0c02444] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Many useful principles of self-assembly have been elucidated through studies of systems where multiple components combine to create a single structure. More complex systems, where multiple product structures self-assemble in parallel from a shared set of precursors, are also of great interest, as biological systems exhibit this behavior. The greater complexity of such systems leads to an increased likelihood that discrete species will not be formed, however. Here we show how the kinetics of self-assembly govern the formation of multiple metal-organic architectures from a mixture of five building blocks, preventing the formation of a discrete structure of intermediate size. By varying ligand symmetry, denticity, and orientation, we explore how five distinct polyhedra-a tetrahedron, an octahedron, a cube, a cuboctahedron, and a triangular prism-assemble in concert around CoII template ions. The underlying rules dictating the organization of assemblies into specific shapes are deciphered, explaining the formation of only three discrete entities when five could form in principle.
Collapse
Affiliation(s)
- Felix.
J. Rizzuto
- University of Cambridge, Department of Chemistry, Cambridge, CB2 1EW, U.K.
| | | |
Collapse
|
59
|
Tuning the gelation behavior of short laminin derived peptides via solvent mediated self-assembly. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110483. [DOI: 10.1016/j.msec.2019.110483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
|
60
|
Li J, Wang J, Li H, Song N, Wang D, Tang BZ. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chem Soc Rev 2020; 49:1144-1172. [PMID: 31971181 DOI: 10.1039/c9cs00495e] [Citation(s) in RCA: 360] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of aggregation-induced emission luminogens (AIEgens) has significantly stimulated the development of luminescent supramolecular materials because their strong emissions in the aggregated state have resolved the notorious obstacle of the aggregation-caused quenching (ACQ) effect, thereby enabling AIEgen-based supramolecular materials to have a promising prospect in the fields of luminescent materials, sensors, bioimaging, drug delivery, and theranostics. Moreover, in contrast to conventional fluorescent molecules, the configuration of AIEgens is highly twisted in space. Investigating AIEgens and the corresponding supramolecular materials provides fundamental insights into the self-assembly of nonplanar molecules, drastically expands the building blocks of supramolecular materials, and pushes forward the frontiers of supramolecular chemistry. In this review, we will summarize the basic concepts, seminal studies, recent trends, and perspectives in the construction and applications of AIEgen-based supramolecular materials with the hope to inspire more interest and additional ideas from researchers and further advance the development of supramolecular chemistry.
Collapse
Affiliation(s)
- Jie Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianxing Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haoxuan Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nan Song
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
61
|
van Rijt MMJ, Ciaffoni A, Ianiro A, Moradi MA, Boyle AL, Kros A, Friedrich H, Sommerdijk NAJM, Patterson JP. Designing stable, hierarchical peptide fibers from block co-polypeptide sequences. Chem Sci 2019; 10:9001-9008. [PMID: 32874486 PMCID: PMC7449534 DOI: 10.1039/c9sc00800d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
Here we report the pH induced self-assembly of equilibrium zwitterionically charged block co-polypeptide nanotubes into hierarchical nanotube fibers.
Natural materials, such as collagen, can assemble with multiple levels of organization in solution. Achieving a similar degree of control over morphology, stability and hierarchical organization with equilibrium synthetic materials remains elusive. For the assembly of peptidic materials the process is controlled by a complex interplay between hydrophobic interactions, electrostatics and secondary structure formation. Consequently, fine tuning the thermodynamics and kinetics of assembly remains extremely challenging. Here, we synthesized a set of block co polypeptides with varying hydrophobicity and ability to form secondary structure. From this set we select a sequence with balanced interactions that results in the formation of high-aspect ratio thermodynamically favored nanotubes, stable between pH 2 and 12 and up to 80 °C. This stability permits their hierarchical assembly into bundled nanotube fibers by directing the pH and inducing complementary zwitterionic charge behavior. This block co-polypeptide design strategy, using defined sequences, provides a straightforward approach to creating complex hierarchical peptide-based assemblies with tunable interactions.
Collapse
Affiliation(s)
- Mark M J van Rijt
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Adriano Ciaffoni
- Department of Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P. O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Alessandro Ianiro
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands.,Laboratory of Physical Chemistry , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Mohammad-Amin Moradi
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Aimee L Boyle
- Department of Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P. O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P. O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Heiner Friedrich
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Nico A J M Sommerdijk
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Joseph P Patterson
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| |
Collapse
|
62
|
Engilberge S, Rennie ML, Dumont E, Crowley PB. Tuning Protein Frameworks via Auxiliary Supramolecular Interactions. ACS NANO 2019; 13:10343-10350. [PMID: 31490058 DOI: 10.1021/acsnano.9b04115] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein crystals with their precise, periodic array of functional building blocks have potential applications in biomaterials, sensing, and catalysis. This paper describes how a highly porous crystalline framework of a cationic redox protein and an anionic macrocycle can be modulated by a small cationic effector. Ternary composites of protein (∼13 kDa), calix[8]arene (∼1.5 kDa), and effector (∼0.2 kDa) formed distinct crystalline architectures, dependent on the effector concentration and the crystallization technique. A combination of X-ray crystallography and density functional theory (DFT) calculations was used to decipher the framework variations, which appear to be dependent on a calixarene conformation change mediated by the effector. This "switch" calixarene was observed in three states, each of which is associated with a different interaction network. Two structures obtained by co-crystallization with the effector contained an additional protein "pillar", resulting in framework duplication and decreased porosity. These results suggest how protein assembly can be engineered by supramolecular host-guest interactions.
Collapse
Affiliation(s)
- Sylvain Engilberge
- School of Chemistry , National University of Ireland Galway , University Road , Galway H91 TK33 , Ireland
| | - Martin L Rennie
- School of Chemistry , National University of Ireland Galway , University Road , Galway H91 TK33 , Ireland
| | - Elise Dumont
- Université de Lyon, ENS de Lyon, CNRS UMR 5182 , Université Claude Bernard Lyon 1, Laboratoire de Chimie , 69342 Lyon , France
| | - Peter B Crowley
- School of Chemistry , National University of Ireland Galway , University Road , Galway H91 TK33 , Ireland
| |
Collapse
|
63
|
Buckinx A, Verstraete K, Baeten E, Tabor RF, Sokolova A, Zaquen N, Junkers T. Kinetic Control of Aggregation Shape in Micellar Self‐Assembly. Angew Chem Int Ed Engl 2019; 58:13799-13802. [DOI: 10.1002/anie.201907371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/04/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Axel‐Laurenz Buckinx
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk, Building 23 Clayton Vic 3800 Australia
| | | | - Evelien Baeten
- Hasselt University Materlarenlaan 42 3500 Hasselt Belgium
| | - Rico F. Tabor
- School of ChemistryMonash University 19 Rainforest Walk, Building 23 Clayton Vic 3800 Australia
| | - Anna Sokolova
- Australian Center for Neutron ScatteringAustralian Nuclear Science and Technology Organisation Lucas Heights NSW 2234 Australia
| | - Neomy Zaquen
- Hasselt University Materlarenlaan 42 3500 Hasselt Belgium
| | - Tanja Junkers
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk, Building 23 Clayton Vic 3800 Australia
- Hasselt University Materlarenlaan 42 3500 Hasselt Belgium
| |
Collapse
|
64
|
|
65
|
Ayzac V, Sallembien Q, Raynal M, Isare B, Jestin J, Bouteiller L. A Competing Hydrogen Bonding Pattern to Yield a Thermo-Thickening Supramolecular Polymer. Angew Chem Int Ed Engl 2019; 58:13849-13853. [PMID: 31380603 DOI: 10.1002/anie.201908954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 01/06/2023]
Abstract
Introduction of competing interactions in the design of a supramolecular polymer (SP) creates pathway complexity. Ester-bis-ureas contain both a strong bis-urea sticker that is responsible for the build-up of long rod-like objects by hydrogen bonding and ester groups that can interfere with this main pattern in a subtle way. Spectroscopic (FTIR and CD), calorimetric (DSC), and scattering (SANS) techniques show that such ester-bis-ureas self-assemble into three competing rod-like SPs. The previously unreported low-temperature SP is stabilized by hydrogen bonds between the interfering ester groups and the urea moieties. It also features a weak macroscopic alignment of the rods. The other structures form isotropic dispersions of rods stabilized by the more classical urea-urea hydrogen bonding pattern. The transition from the low-temperature structure to the next occurs reversibly by heating and is accompanied by an increase in viscosity, a rare feature for solutions in hydrocarbons.
Collapse
Affiliation(s)
- Virgile Ayzac
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 75005, Paris, France
| | - Quentin Sallembien
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 75005, Paris, France
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 75005, Paris, France
| | - Benjamin Isare
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 75005, Paris, France
| | - Jacques Jestin
- Laboratoire Léon Brillouin, UMR 12 CNRS-CEA, 91191, Gif-sur-Yvette Cedex, France
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 75005, Paris, France
| |
Collapse
|
66
|
Ayzac V, Sallembien Q, Raynal M, Isare B, Jestin J, Bouteiller L. A Competing Hydrogen Bonding Pattern to Yield a Thermo‐Thickening Supramolecular Polymer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Virgile Ayzac
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireEquipe Chimie des Polymères 75005 Paris France
| | - Quentin Sallembien
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireEquipe Chimie des Polymères 75005 Paris France
| | - Matthieu Raynal
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireEquipe Chimie des Polymères 75005 Paris France
| | - Benjamin Isare
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireEquipe Chimie des Polymères 75005 Paris France
| | - Jacques Jestin
- Laboratoire Léon BrillouinUMR 12 CNRS-CEA 91191 Gif-sur-Yvette Cedex France
| | - Laurent Bouteiller
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireEquipe Chimie des Polymères 75005 Paris France
| |
Collapse
|
67
|
Zhong Q, Li S, Chen J, Xie K, Pan S, Richardson JJ, Caruso F. Oxidation‐Mediated Kinetic Strategies for Engineering Metal–Phenolic Networks. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qi‐Zhi Zhong
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shiyao Li
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jingqu Chen
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Ke Xie
- Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shuaijun Pan
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
68
|
Zhong Q, Li S, Chen J, Xie K, Pan S, Richardson JJ, Caruso F. Oxidation‐Mediated Kinetic Strategies for Engineering Metal–Phenolic Networks. Angew Chem Int Ed Engl 2019; 58:12563-12568. [DOI: 10.1002/anie.201907666] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Qi‐Zhi Zhong
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shiyao Li
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jingqu Chen
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Ke Xie
- Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shuaijun Pan
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
69
|
Kwiatkowski A, Kolehmainen E, Ośmiałowski B. Conformational and Tautomeric Control by Supramolecular Approach in Ureido- N- iso-propyl, N'-4-(3-pyridin-2-one) pyrimidine. Molecules 2019; 24:molecules24132491. [PMID: 31288375 PMCID: PMC6651695 DOI: 10.3390/molecules24132491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 11/17/2022] Open
Abstract
Ureido-N-iso-propyl,N’-4-(3-pyridin-2-one)pyrimidine (1) and its 2-methoxy pyridine derivative (1Me) has been designed and prepared. The conformational equilibrium in urea moiety and tautomerism in the pyrimidine part have been investigated by variable temperature and 1H NMR titrations as well as DFT quantum chemical calculations. The studied compounds readily associate by triple hydrogen bonding with 2-aminonaphthyridine (A) and/or 2,6-bis(acetylamino)pyridine (B). In 1, the proton is forced to 1,3-tautomeric shift upon stimuli and keeps it position, even when one of the partners in the complex was replaced by another molecule. The observed tautomerism controlled by conformational state (kinetic trapping effect) opens new possibilities in molecular sensing that are based on the fact that reverse reaction is not preferred.
Collapse
Affiliation(s)
- Adam Kwiatkowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, 87-100 Toruń, Poland
| | - Erkki Kolehmainen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, 87-100 Toruń, Poland.
| |
Collapse
|
70
|
Stimulus-responsive self-assembly of protein-based fractals by computational design. Nat Chem 2019; 11:605-614. [DOI: 10.1038/s41557-019-0277-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
|
71
|
Zangoli M, Gazzano M, Monti F, Maini L, Gentili D, Liscio A, Zanelli A, Salatelli E, Gigli G, Baroncini M, Di Maria F. Thermodynamically versus Kinetically Controlled Self-Assembly of a Naphthalenediimide-Thiophene Derivative: From Crystalline, Fluorescent, n-Type Semiconducting 1D Needles to Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16864-16871. [PMID: 30993968 DOI: 10.1021/acsami.9b02404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The control over aggregation pathways is a key requirement for present and future technologies, as it can provide access to a variety of sophisticated structures with unique functional properties. In this work, we demonstrate an unprecedented control over the supramolecular self-assembly of a semiconductive material, based on a naphthalenediimide core functionalized with phenyl-thiophene moieties at the imide termini, by trapping the molecules into different arrangements depending on the crystallization conditions. The control of the solvent evaporation rate enables the growth of highly elaborated hierarchical self-assembled structures: either in an energy-minimum thermodynamic state when the solvent is slowly evaporated forming needle-shaped crystals (polymorph α) or in a local energy-minimum state when the solvent is rapidly evaporated leading to the formation of nanofibers (polymorph β). The exceptional persistence of the kinetically trapped β form allowed the study and comparison of its characteristics with that of the stable α form, revealing the importance of molecular aggregation geometry in functional properties. Intriguingly, we found that compared to the thermodynamically stable α phase, characterized by a J-type aggregation, the β phase exhibits (i) an unusual strong blue shift of the emission from the charge-transfer state responsible for the solid-state luminescent enhancement, (ii) a higher work function with a "rigid shift" of the electronic levels, as shown by Kelvin probe force microscopy and cyclic voltammetry measurements, and (iii) a superior field-effect transistor mobility in agreement with an H-type aggregation as indicated by X-ray analysis and theoretical calculations.
Collapse
Affiliation(s)
- Mattia Zangoli
- CNR-ISOF , Via P. Gobetti 101 , I-40129 Bologna , Italy
- Mediteknology srl , Via P. Gobetti 101 , I-40129 Bologna , Italy
| | | | - Filippo Monti
- CNR-ISOF , Via P. Gobetti 101 , I-40129 Bologna , Italy
| | - Lucia Maini
- Department of Chemistry Giacomo Ciamician , University of Bologna , Via Selmi 2 , I-40126 Bologna , Italy
| | - Denis Gentili
- CNR-ISMN , Via P. Gobetti 101 , I-40129 Bologna , Italy
| | - Andrea Liscio
- CNR-IMM , Via del Fosso del Cavaliere 100 , I-00133 Roma , Italy
| | | | - Elisabetta Salatelli
- Department of Industrial Chemistry Toso Montanari , University of Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Giuseppe Gigli
- CNR-NANOTEC, c/o Campus Ecotekne, University of Salento , via Monteroni , I-73100 Lecce , Italy
| | - Massimo Baroncini
- CNR-ISOF , Via P. Gobetti 101 , I-40129 Bologna , Italy
- Department of Agricultural and Food Sciences-DISTAL , University of Bologna , Viale Fanin 44 , I-40126 Bologna , Italy
| | - Francesca Di Maria
- CNR-NANOTEC, c/o Campus Ecotekne, University of Salento , via Monteroni , I-73100 Lecce , Italy
- CNR-ISOF , Via P. Gobetti 101 , I-40129 Bologna , Italy
| |
Collapse
|
72
|
Wu T, Huang J, Yan Y. Self-Assembly of Aggregation-Induced-Emission Molecules. Chem Asian J 2019; 14:730-750. [PMID: 30839162 DOI: 10.1002/asia.201801884] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/30/2019] [Indexed: 12/16/2022]
Abstract
The last decade has witnessed rapid developments in aggregation-induced emission (AIE). In contrast to traditional aggregation, which causes luminescence quenching (ACQ), AIE is a reverse phenomenon that allows robust luminescence to be retained in aggregated and solid states. This makes it possible to fabricate various highly efficient luminescent materials, which opens new paradigms in a number of fields, such as imaging, sensing, medical therapy, light harvesting, light-emitting devices, and organic electronic devices. Of the various important features of AIE molecules, their self-assembly behavior is very attractive because the formation of a well-defined emissive nanostructure may lead to advanced applications in diverse fields. However, due to the nonplanar topology of AIEgens, it is not easy for them to self-assemble into well-defined structures. To date, some strategies have been proposed to achieve the self-assembly of AIEgens. Herein, we summarize the most recent approaches for the self-assembly of AIE molecules. These approaches can be sorted into two classes: 1) covalent molecular design and 2) noncovalent supramolecular interactions. We hope this will inspire more excellent work in the field of AIE.
Collapse
Affiliation(s)
- Tongyue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
73
|
Fuentes-Caparrós AM, de Paula Gómez-Franco F, Dietrich B, Wilson C, Brasnett C, Seddon A, Adams DJ. Annealing multicomponent supramolecular gels. NANOSCALE 2019; 11:3275-3280. [PMID: 30720823 DOI: 10.1039/c8nr09423c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Annealing is widely used as a means of changing the physical properties of a material. The rate of heating and cooling used in the annealing process controls the final properties. Annealing can be used as a means of driving towards the, or at least a, thermodynamic minimum. There is surprisingly little information on annealing kinetically-trapped supramolecular gels. Here, we show that annealing multicomponent gels can be used to prepare materials with tunable mechanical properties. We show that annealing in a two-component gel leads to a self-sorted network, which has significantly different mechanical properties to the as-prepared gels. Whilst the fibres are self-sorted, we show that the annealing of this system leads to significant change in the network level of assembly, and it is this that leads to the increase in storage modulus. We also show that it is possible to selectively anneal only a single component in the mixture.
Collapse
|
74
|
Chen L, Yang D, Feng J, Zhang M, Qian Q, Zhou Y. Switchable modulation of bacterial growth and biofilm formation based on supramolecular tripeptide amphiphiles. J Mater Chem B 2019; 7:6420-6427. [DOI: 10.1039/c9tb00973f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A minimalistic dual-responsive supramolecular tripeptide system was developed for switchable control of bacterial growth and biofilm formation.
Collapse
Affiliation(s)
- Limin Chen
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Dan Yang
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Jie Feng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325000
- P. R. China
| | - Min Zhang
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Qiuping Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325000
- P. R. China
| | - Yunlong Zhou
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| |
Collapse
|
75
|
Saez Talens V, Makurat DMM, Liu T, Dai W, Guibert C, Noteborn WEM, Voets IK, Kieltyka RE. Shape modulation of squaramide-based supramolecular polymer nanoparticles. Polym Chem 2019. [DOI: 10.1039/c9py00310j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the synthesis and self-assembly of a library of squaramide-based bolaamphiphiles with variable hydrophobic and hydrophilic domain sizes to understand their effect on the formation of supramolecular polymer nanoparticles.
Collapse
Affiliation(s)
- Victorio Saez Talens
- Department of Supramolecular and Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - D. M. M. Makurat
- Department of Supramolecular and Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Tingxian Liu
- Department of Supramolecular and Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Wei Dai
- Department of Supramolecular and Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Clément Guibert
- Laboratory of Physical Chemistry
- Laboratory of Macromolecular and Organic Chemistry
- and Institute of Complex Molecular Systems
- Eindhoven University of Technology
- Eindhoven
| | - Willem E. M. Noteborn
- Department of Supramolecular and Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Ilja K. Voets
- Laboratory of Physical Chemistry
- Laboratory of Macromolecular and Organic Chemistry
- and Institute of Complex Molecular Systems
- Eindhoven University of Technology
- Eindhoven
| | - Roxanne E. Kieltyka
- Department of Supramolecular and Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| |
Collapse
|
76
|
Wu H, Ting JM, Werba O, Meng S, Tirrell MV. Non-equilibrium phenomena and kinetic pathways in self-assembled polyelectrolyte complexes. J Chem Phys 2018; 149:163330. [DOI: 10.1063/1.5039621] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Hao Wu
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Argonne National Laboratory, Lemont, Illinois 606439, USA
| | - Jeffrey M. Ting
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Argonne National Laboratory, Lemont, Illinois 606439, USA
| | - Olivia Werba
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Siqi Meng
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Matthew V. Tirrell
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Argonne National Laboratory, Lemont, Illinois 606439, USA
| |
Collapse
|
77
|
Mansbach RA, Ferguson AL. Patchy Particle Model of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides. J Phys Chem B 2018; 122:10219-10236. [DOI: 10.1021/acs.jpcb.8b05781] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rachael A. Mansbach
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Andrew L. Ferguson
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, 1304 W Green Street, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
78
|
Zhang C, Li M, Lu HY, Chen CF. Synthesis, chiroptical properties, and self-assembled nanoparticles of chiral conjugated polymers based on optically stable helical aromatic esters. RSC Adv 2018; 8:1014-1021. [PMID: 35538983 PMCID: PMC9076947 DOI: 10.1039/c7ra12652b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/12/2017] [Indexed: 01/21/2023] Open
Abstract
By Suzuki coupling reaction, three pairs of chiral conjugated polymers with optically stable helical aromatic ester subunits as the main-chain were designed and synthesized. Polymers (+)-P-P1 and (-)-M-P1, (+)-P-P2 and (-)-M-P2 showed strong fluorescence emission, strong mirror image CD and circularly polarized luminescence (CPL) signals in THF. For polymers (+)-P-P3 and (-)-M-P3, containing the tetraphenylethene (TPE) moiety, they not only showed obvious aggregation induced enhancement emission (AIEE), but also exhibited mirror image CD signals and aggregation-induced enhancement CPL signals in THF-water mixtures. Moreover, (+)-P-P3 and (-)-M-P3 could also form chiral nanoparticles by solvent evaporation induced self-assembly. Interestingly, it was further found that the size of the nanoparticles could be controlled by the changing of THF/water ratio, and their CPL properties were also shown.
Collapse
Affiliation(s)
- Chao Zhang
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences Beijing 100090 China +86-10-62554449
| | - Hai-Yan Lu
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chuan-Feng Chen
- University of Chinese Academy of Sciences Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences Beijing 100090 China +86-10-62554449
| |
Collapse
|
79
|
Tang X, Feula A, Baker BC, Melia K, Hermida Merino D, Hamley IW, Buckley CP, Hayes W, Siviour CR. A dynamic supramolecular polyurethane network whose mechanical properties are kinetically controlled. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
80
|
Abstract
Covalent modification of therapeutic compounds is a clinically proven strategy to devise prodrugs with enhanced treatment efficacies. This prodrug strategy relies on the modified drugs that possess advantageous pharmacokinetic properties and administration routes over their parent drug. Self-assembling prodrugs represent an emerging class of therapeutic agents capable of spontaneously associating into well-defined supramolecular nanostructures in aqueous solutions. The self-assembly of prodrugs expands the functional space of conventional prodrug design, affording a possible pathway to more effective therapies as the assembled nanostructure possesses distinct physicochemical properties and interaction potentials that can be tailored to specific administration routes and disease treatment. In this review, we will discuss the various types of self-assembling prodrugs in development, providing an overview of the methods used to control their structure and function and, ultimately, our perspective on their current and future potential.
Collapse
Affiliation(s)
- Andrew G Cheetham
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
| | | | | | | |
Collapse
|
81
|
Abstract
Kinetic assembly is an important method for obtaining desired materials in chemical synthesis and materials science. We highlight the kinetic assembly of porous coordination networks, which promote the production of interactive pore sites. The interactive pore sites can activate or stabilize guest molecules. The properties of interactive pores are typified by iodine chemisorption and small sulfur encapsulation. Using interactive pores, we trapped small sulfur allotropes, such as S2, cyclo-S3, bent-S3, and S6, demonstrating the importance of interactive pore sites. Here, we address the important aspects of interactive pore sites created by kinetic assembly of porous coordination networks.
Collapse
Affiliation(s)
- Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | | |
Collapse
|
82
|
Anion-capped metallohost allows extremely slow guest uptake and on-demand acceleration of guest exchange. Nat Commun 2017; 8:16005. [PMID: 28699635 PMCID: PMC5510176 DOI: 10.1038/ncomms16005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
The switching of molecular recognition selectivity is important for tuning molecular functions based on host–guest binding. While the switching processes in artificial functional molecules are usually driven by changes of the thermodynamic stabilities, non-equilibrium phenomena also play an important role in biological systems. Thus, here we designed a host–guest system utilizing a non-equilibrium kinetically trapped state for on-demand and time-programmable control of molecular functions. We synthesized a bis(saloph) macrocyclic cobalt(III) metallohost 1(OTf)2, which has anion caps at both sides of the cation-binding site. The anion caps effectively retard the guest uptake/release so that we can easily make a non-equilibrium kinetically trapped state. Indeed, we can obtain a long-lived kinetically trapped state {[1·K]3++La3+} prior to the formation of the thermodynamically more stable state {[1·La]5++K+}. The guest exchange to the more stable state from this kinetically trapped state is significantly accelerated by exchange of TfO− anion caps by AcO− in an on-demand manner. Host—guest assemblies can exploit stimuli-responsive guest binding and release for molecular recognition, but are typically governed by thermodynamics alone. Here, the authors design macrocycles with removable and exchangeable anion caps, allowing for the kinetic trapping and on-demand exchange of guest ions.
Collapse
|
83
|
Sharma S, Conover GM, Elliott JL, Der Perng M, Herrmann H, Quinlan RA. αB-crystallin is a sensor for assembly intermediates and for the subunit topology of desmin intermediate filaments. Cell Stress Chaperones 2017; 22:613-626. [PMID: 28470624 PMCID: PMC5465037 DOI: 10.1007/s12192-017-0788-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 12/04/2022] Open
Abstract
Mutations in the small heat shock protein chaperone CRYAB (αB-crystallin/HSPB5) and the intermediate filament protein desmin, phenocopy each other causing cardiomyopathies. Whilst the binding sites for desmin on CRYAB have been determined, desmin epitopes responsible for CRYAB binding and also the parameters that determine CRYAB binding to desmin filaments are unknown. Using a combination of co-sedimentation centrifugation, viscometric assays and electron microscopy of negatively stained filaments to analyse the in vitro assembly of desmin filaments, we show that the binding of CRYAB to desmin is subject to its assembly status, to the subunit organization within filaments formed and to the integrity of the C-terminal tail domain of desmin. Our in vitro studies using a rapid assembly protocol, C-terminally truncated desmin and two disease-causing mutants (I451M and R454W) suggest that CRYAB is a sensor for the surface topology of the desmin filament. Our data also suggest that CRYAB performs an assembly chaperone role because the assembling filaments have different CRYAB-binding properties during the maturation process. We suggest that the capability of CRYAB to distinguish between filaments with different surface topologies due either to mutation (R454W) or assembly protocol is important to understanding the pathomechanism(s) of desmin-CRYAB myopathies.
Collapse
Affiliation(s)
- Sarika Sharma
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Gloria M Conover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jayne L Elliott
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Ming Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Roy A Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK.
| |
Collapse
|
84
|
Gooneie A, Sapkota J, Shirole A, Holzer C. Length controlled kinetics of self-assembly of bidisperse nanotubes/nanorods in polymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
85
|
Zheng X, Zhu L, Zeng X, Meng L, Zhang L, Wang D, Huang X. Kinetics-Controlled Amphiphile Self-Assembly Processes. J Phys Chem Lett 2017; 8:1798-1803. [PMID: 28365997 DOI: 10.1021/acs.jpclett.7b00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amphiphile self-assembly is an essential bottom-up approach of fabricating advanced functional materials. Self-assembled materials with desired structures are often obtained through thermodynamic control. Here, we demonstrate that the selection of kinetic pathways can lead to drastically different self-assembled structures, underlining the significance of kinetic control in self-assembly. By constructing kinetic network models from large-scale molecular dynamics simulations, we show that two largely similar amphiphiles, 1-[11-oxo-11-(pyren-1-ylmethoxy)-undecyl]pyridinium bromide (PYR) and 1-(11-((5a1,8a-dihydropyren-1-yl)methylamino)-11-oxoundecyl)pyridinium bromide (PYN), prefer distinct kinetic assembly pathways. While PYR prefers an incremental growth mechanism and forms a nanotube, PYN favors a hopping growth pathway leading to a vesicle. Such preference was found to originate from the subtle difference in the distributions of hydrophobic and hydrophilic groups in their chemical structures, which leads to different rates of the adhesion process among the aggregating micelles. Our results are in good agreement with experimental results, and accentuate the role of kinetics in the rational design of amphiphile self-assembly.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
- HKUST-Shenzhen Research Institute , Nanshan, Shenzhen 518057, People's Republic of China
| | - Lizhe Zhu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
| | - Xiangze Zeng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
| | - Luming Meng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
| | - Lu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
| | - Dong Wang
- Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Repulic of China
| | - Xuhui Huang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
- HKUST-Shenzhen Research Institute , Nanshan, Shenzhen 518057, People's Republic of China
| |
Collapse
|
86
|
Arletti R, Fois E, Gigli L, Vezzalini G, Quartieri S, Tabacchi G. Irreversible Conversion of a Water-Ethanol Solution into an Organized Two-Dimensional Network of Alternating Supramolecular Units in a Hydrophobic Zeolite under Pressure. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rossella Arletti
- Dipartimento di Scienze della Terra; Università di Torino; Via Valperga Caluso 35 Torino Italy
| | - Ettore Fois
- Dipartimento di Scienza ed Alta Tecnologia; Università dell'Insubria and INSTM; Via Valleggio 9 22100 Como Italy
| | - Lara Gigli
- Elettra Sincrotrone Trieste; Strada Statale 14 34149 Basovizza, Trieste Italy
| | - Giovanna Vezzalini
- Dipartimento di Scienze Chimiche e Geologiche; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Simona Quartieri
- Dipartimento di Scienze Matematiche e Informatiche; Scienze Fisiche e Scienze della Terra; Università di Messina; Viale F. Stagno D'Alcontres 31 98166 Messina S. Agata Italy
| | - Gloria Tabacchi
- Dipartimento di Scienza ed Alta Tecnologia; Università dell'Insubria and INSTM; Via Valleggio 9 22100 Como Italy
| |
Collapse
|
87
|
Arletti R, Fois E, Gigli L, Vezzalini G, Quartieri S, Tabacchi G. Irreversible Conversion of a Water-Ethanol Solution into an Organized Two-Dimensional Network of Alternating Supramolecular Units in a Hydrophobic Zeolite under Pressure. Angew Chem Int Ed Engl 2017; 56:2105-2109. [PMID: 28067444 DOI: 10.1002/anie.201610949] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Indexed: 12/22/2022]
Abstract
Turning disorder into organization is a key issue in science. By making use of X-ray powder diffraction and modeling studies, we show herein that high pressures in combination with the shape and space constraints of the hydrophobic all-silica zeolite ferrierite separate an ethanol-water liquid mixture into ethanol dimer wires and water tetramer squares. The confined supramolecular blocks alternate in a binary two-dimensional (2D) architecture that remains stable upon complete pressure release. These results support the combined use of high pressures and porous networks as a viable strategy for driving the organization of molecules or nano-objects towards complex, pre-defined patterns relevant for the realization of novel functional nanocomposites.
Collapse
Affiliation(s)
- Rossella Arletti
- Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, Torino, Italy
| | - Ettore Fois
- Dipartimento di Scienza ed Alta Tecnologia, Università dell'Insubria and INSTM, Via Valleggio 9, 22100, Como, Italy
| | - Lara Gigli
- Elettra Sincrotrone Trieste, Strada Statale 14, 34149, Basovizza, Trieste, Italy
| | - Giovanna Vezzalini
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Simona Quartieri
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina S. Agata, Italy
| | - Gloria Tabacchi
- Dipartimento di Scienza ed Alta Tecnologia, Università dell'Insubria and INSTM, Via Valleggio 9, 22100, Como, Italy
| |
Collapse
|