51
|
Zhang Y, Li X, Zhang Y, Wei J, Wang W, Dong C, Xue Y, Liu M, Pei R. Engineered Fe 3O 4-based nanomaterials for diagnosis and therapy of cancer. NEW J CHEM 2021. [DOI: 10.1039/d1nj00419k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent developments of Fe3O4 NP-based theranostic nanoplatforms and their applications in tumor-targeted imaging and therapy.
Collapse
Affiliation(s)
- Yiwei Zhang
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Xinxin Li
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Yajie Zhang
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Jun Wei
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Wei Wang
- Department of Anesthesiology
- Xinqiao Hospital
- Third Military Medical University
- Chongqing
- China
| | - Changzhi Dong
- University Paris Diderot
- Sorbonne Paris Cité
- ITODYS
- UMR CNRS 7086
- 75205 Paris Cedex 13
| | - Yanan Xue
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Min Liu
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan 430056
- China
- CAS Key Laboratory of Nano-Bio Interface
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| |
Collapse
|
52
|
Ojha SK, Pattnaik R, Singh PK, Dixit S, Mishra S, Pal S, Kumar S. Virus as nanocarrier for drug delivery redefining medical therapeutics - A status report. Comb Chem High Throughput Screen 2020; 25:1619-1629. [PMID: 33342404 DOI: 10.2174/1386207323666201218115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022]
Abstract
Over the last two decades, drug delivery systems have evolved at a tremendous rate. Synthetic nanoparticles have played an important role in the design of vaccine and their delivery as many of them have shown improved safety and efficacy over conventional formulations. Nanocarriers formulated by natural, biological building blocks have become an important tool in the field biomedicine. A successful nanocarrier must have certain properties like evading the host immune system, target specificity, cellular entry, escape from endosomes, and ability to release material into the cytoplasm. Some or all of these functions can be performed by viruses making them a suitable candidate for naturally occurring nanocarriers. Moreover, viruses can be made non-infectious and non-replicative without compromising their ability to penetrate cells thus making them useful for a vast spectrum of applications. Currently, various carrier molecules are under different stages of development to become bio-nano capsules. This review covers the advances made in the field of viruses as potential nanocarriers and discusses the related technologies and strategies to target specific cells by using virus inspired nanocarriers. In future, these virus-based nano-formulations will be able to provide solutions towards pressing and emerging infectious diseases.
Collapse
Affiliation(s)
- Sanjay Kumar Ojha
- Pandorum Technologies Pvt. Ltd., Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City Phase 1, Bengaluru - 560 100. India
| | - Ritesh Pattnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| | - Puneet Kumar Singh
- Bioenergy Lab and BDTC, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar 751 024. India
| | - Shubha Dixit
- School of Pharmacy, Lloyd Institute of Management and Technology, PlotNo.11, Knowledge Park II Greater Noida- 201310. India
| | - Snehasish Mishra
- Bioenergy Lab and BDTC, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar 751 024. India
| | - Sreyasi Pal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| | - Subrat Kumar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| |
Collapse
|
53
|
Cai Y, Huang J, Xu H, Zhang T, Cao C, Pan Y. Synthesis, characterization and application of magnetoferritin nanoparticle by using human H chain ferritin expressed by Pichia pastoris. NANOTECHNOLOGY 2020; 31:485709. [PMID: 32931463 DOI: 10.1088/1361-6528/abb15d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein-based nanoparticles have developed rapidly in areas such as drug delivery, biomedical imaging and biocatalysis. Ferritin possesses unique properties that make it attractive as a potential platform for a variety of nanobiotechnological applications. Here we synthesized magnetoferritin (P-MHFn) nanoparticles for the first time by using the human H chain of ferritin that was expressed by Pichia pastoris (P-HFn). Western blot results showed that recombinant P-HFn was successfully expressed after methanol induction. Transmission electron microscopy (TEM) showed the spherical cage-like shape and monodispersion of P-HFn. The synthesized magnetoferritin (P-MHFn) retained the properties of magnetoferritin nanoparticles synthesized using HFn expressed by E. coli (E-MHFn): superparamagnetism under ambient conditions and peroxidase-like activity. It is stable under a wider range of pH values (from 5.0 to 11.0), likely due to post-translational modifications such as N-glycosylation on P-HFn. In vivo near-infrared fluorescence imaging experiments revealed that P-MHFn nanoparticles can accumulate in tumors, which suggests that P-MHFn could be used in tumor imaging and therapy. An acute toxicity study of P-MHFn in Sprague Dawley rats showed no abnormalities at a dose up to 20 mg Fe Kg-1 body weight. Therefore, this study shed light on the development of magnetoferritin nanoparticles using therapeutic HFn expressed by Pichia pastoris for biomedical applications.
Collapse
Affiliation(s)
- Yao Cai
- Biogeomagnetism Group, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China. France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, People's Republic of China. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
54
|
Edwardson TGW, Tetter S, Hilvert D. Two-tier supramolecular encapsulation of small molecules in a protein cage. Nat Commun 2020; 11:5410. [PMID: 33106476 PMCID: PMC7588467 DOI: 10.1038/s41467-020-19112-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Expanding protein design to include other molecular building blocks has the potential to increase structural complexity and practical utility. Nature often employs hybrid systems, such as clathrin-coated vesicles, lipid droplets, and lipoproteins, which combine biopolymers and lipids to transport a broader range of cargo molecules. To recapitulate the structure and function of such composite compartments, we devised a supramolecular strategy that enables porous protein cages to encapsulate poorly water-soluble small molecule cargo through templated formation of a hydrophobic surfactant-based core. These lipoprotein-like complexes protect their cargo from sequestration by serum proteins and enhance the cellular uptake of fluorescent probes and cytotoxic drugs. This design concept could be applied to other protein cages, surfactant mixtures, and cargo molecules to generate unique hybrid architectures and functional capabilities.
Collapse
Affiliation(s)
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
55
|
Cisternas MA, Palacios-Coddou F, Molina S, Retamal MJ, Gomez-Vierling N, Moraga N, Zelada H, Soto-Arriaza MA, Corrales TP, Volkmann UG. Dry Two-Step Self-Assembly of Stable Supported Lipid Bilayers on Silicon Substrates. Int J Mol Sci 2020; 21:E6819. [PMID: 32957654 PMCID: PMC7555443 DOI: 10.3390/ijms21186819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single- and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.
Collapse
Affiliation(s)
- Marcelo A. Cisternas
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Francisca Palacios-Coddou
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Sebastian Molina
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Maria Jose Retamal
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
- Departamento de Química-Física, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| | - Nancy Gomez-Vierling
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Nicolas Moraga
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Hugo Zelada
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Marco A. Soto-Arriaza
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
- Departamento de Química-Física, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| | - Tomas P. Corrales
- Departamento de Fisica, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Ulrich G. Volkmann
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| |
Collapse
|
56
|
Obuobi S, Mayandi V, Nor NAM, Lee BJ, Lakshminarayanan R, Ee PLR. Nucleic acid peptide nanogels for the treatment of bacterial keratitis. NANOSCALE 2020; 12:17411-17425. [PMID: 32794541 DOI: 10.1039/d0nr03095c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cage-shaped nucleic acid nanocarriers are promising molecular scaffolds for the organization of polypeptides. However, there is an unmet need for facile loading strategies that truly emulate nature's host-guest systems to drive encapsulation of antimicrobial peptides (AMPs) without loss of biological activity. Herein, we develop DNA nanogels with rapid in situ loading of L12 peptide during the thermal annealing process. By leveraging the binding affinity of L12 to the polyanionic core, we successfully confine the AMPs within the DNA nanogel. We report that the thermostability of L12 in parallel with the high encapsulation efficiency, low toxicity and sustained drug release of the pre-loaded L12 nanogels can be translated into significant antimicrobial activity. Using an S. aureus model of infectious bacterial keratitis, we observe fast resolution of clinical symptoms and significant reduction of bacterial bioburden. Collectively, this study paves the way for the development of DNA nanocarriers for caging AMPs with immense significance to address the rise of resistance.
Collapse
Affiliation(s)
- Sybil Obuobi
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543.
| | | | | | | | | | | |
Collapse
|
57
|
Varava A, Carvalho JF, Kragic D, Pokorny FT. Free space of rigid objects: caging, path non-existence, and narrow passage detection. Int J Rob Res 2020. [DOI: 10.1177/0278364920932996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this work, we propose algorithms to explicitly construct a conservative estimate of the configuration spaces of rigid objects in two and three dimensions. Our approach is able to detect compact path components and narrow passages in configuration space which are important for applications in robotic manipulation and path planning. Moreover, as we demonstrate, they are also applicable to identification of molecular cages in chemistry. Our algorithms are based on a decomposition of the resulting three- and six-dimensional configuration spaces into slices corresponding to a finite sample of fixed orientations in configuration space. We utilize dual diagrams of unions of balls and uniform grids of orientations to approximate the configuration space. Furthermore, we carry out experiments to evaluate the computational efficiency on a set of objects with different geometric features thus demonstrating that our approach is applicable to different object shapes. We investigate the performance of our algorithm by computing increasingly fine-grained approximations of the object’s configuration space. A multithreaded implementation of our approach is shown to result in significant speed improvements.
Collapse
Affiliation(s)
- Anastasiia Varava
- Robotics, Perception, and Learning, KTH Royal Institute of Technology, Stockholm, Sweden
| | - J. Frederico Carvalho
- Robotics, Perception, and Learning, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Danica Kragic
- Robotics, Perception, and Learning, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Florian T. Pokorny
- Robotics, Perception, and Learning, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
58
|
Jiang H, Liang G, Dai M, Dong Y, Wu Y, Zhang L, Xi Q, Qi L. Preparation of doxorubicin-loaded collagen-PAPBA nanoparticles and their anticancer efficacy in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:880. [PMID: 32793724 DOI: 10.21037/atm-20-5028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The aims of this study were to prepare the collagen-poly (3-acrylamidophenylboronic acid) nanoparticles (collagen-PAPBA NPs) encapsulating doxorubicin (DOX) and research their anticancer efficacy in ovarian cancer. Methods Collagen-PAPBA NPs were prepared, and their morphology and stability morphology were observed by transmission electron microscopy (TEM) and dynamic light scattering system (DLS). Preparation of doxorubicin-loaded Collagen-PAPBA NPs (DOX-loaded NPs) were then prepared, and the drug-loading content, encapsulation efficiency, and in vitro drug-release profiles were calculated. The morphology of DOX-loaded NPs was also observed by DLS, in vitro cytotoxicity to A2780 cells was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, in vitro antitumor activity on A2780 cells was observed by immunofluorescence, and in vivo antitumor activity was assessed using an experimental BALB/c mice tumor model. Results DOX-encapsulating collagen-PAPBA NPs were successfully prepared with mediation by biomolecule. The average hydrodynamic diameter of collagen-PAPBA NPs as measured by DLS was about 79 nm, with a homogeneous distribution of size. TEM revealed that nanoparticles were well-dispersed, spherical, and a roughly uniform 75 nm in size. Collagen-PAPBA NPs were quite stable in a wide range of pH and temperature conditions and associated with the concentration of glucose. DLS revealed that the average hydrodynamic diameter of DOX-loaded NPs was about 81.3 nm, with homogeneous distribution of size. TEM revealed that drug-loaded nanoparticles were spherical, well-dispersed, and gad a roughly uniform size of 79 nm. The proportion of DOX loaded into the nanoparticles was 10%, while the encapsulating efficiency was 97%. The result of the releasing test showed that the drug-loaded nanoparticles, as carriers for DOX, had a good sustained-release effect. The cell toxicity experiment showed that the blank NPs had no cytotoxicity to A2780 cells, and that the drug-loaded NPS had good a sustained-release function. They may thus have potential toxic-reducing side effects. Conclusions Under the same doses, the drug-loaded NP had a superior inhibitory effect to free DOX on the growth of human ovarian cancer.
Collapse
Affiliation(s)
- Haiyan Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guiwen Liang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Dai
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yansong Dong
- School of Medicine, Nantong University, Nantong, China
| | - Yao Wu
- School of Medicine, Nantong University, Nantong, China
| | - Luzhong Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Qinghua Xi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lei Qi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
59
|
Ravishankar S, Suzuki S, Sawada T, Lim S, Serizawa T. Preparation and Dynamic Behavior of Protein-Polymer Complexes Formed with Polymer-Binding Peptides. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Samyukta Ravishankar
- School of Chemical & Biomedical Engineering, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457
| | - Seigo Suzuki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-17 Honcho, Kawaguchi, Saitama 332-0012
| | - Sierin Lim
- School of Chemical & Biomedical Engineering, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550
| |
Collapse
|
60
|
|
61
|
Van Den Broeck E, Verbraeken B, Dedecker K, Cnudde P, Vanduyfhuys L, Verstraelen T, Van Hecke K, Jerca VV, Catak S, Hoogenboom R, Van Speybroeck V. Cation−π Interactions Accelerate the Living Cationic Ring-Opening Polymerization of Unsaturated 2-Alkyl-2-oxazolines. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elias Van Den Broeck
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Bart Verbraeken
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
| | - Karen Dedecker
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Toon Verstraelen
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| | - Valentin Victor Jerca
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
- Centre for Organic Chemistry “Costin D. Nenitzescu”, Romanian Academy, 202B Spl. Independentei CP 35-108, Bucharest 060023, Romania
| | - Saron Catak
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
| | | |
Collapse
|
62
|
Su M, Dai Q, Chen C, Zeng Y, Chu C, Liu G. Nano-Medicine for Thrombosis: A Precise Diagnosis and Treatment Strategy. NANO-MICRO LETTERS 2020; 12:96. [PMID: 34138079 PMCID: PMC7770919 DOI: 10.1007/s40820-020-00434-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/13/2020] [Indexed: 05/11/2023]
Abstract
Thrombosis is a global health issue and one of the leading factors of death. However, its diagnosis has been limited to the late stages, and its therapeutic window is too narrow to provide reasonable and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, allergic reactions, inactivation, and unwanted tissue hemorrhage. Nano-medicines have gained extensive attention in diagnosis, drug delivery, and photo/sound/magnetic-theranostics due to their convertible properties. Furthermore, diagnosis and treatment of thrombosis using nano-medicines have also been widely studied. This review summarizes the recent advances in this area, which revealed six types of nanoparticle approaches: (1) in vitro diagnostic kits using "synthetic biomarkers"; (2) in vivo imaging using nano-contrast agents; (3) targeted drug delivery systems using artificial nanoparticles; (4) microenvironment responsive drug delivery systems; (5) drug delivery systems using biological nanostructures; and (6) treatments with external irradiation. The investigations of nano-medicines are believed to be of great significance, and some of the advanced drug delivery systems show potential applications in clinical theranotics.
Collapse
Affiliation(s)
- Min Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
63
|
Alvarez-Rivera F, Rey-Rico A, Venkatesan JK, Diaz-Gomez L, Cucchiarini M, Concheiro A, Alvarez-Lorenzo C. Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics 2020; 12:pharmaceutics12040335. [PMID: 32283694 PMCID: PMC7238179 DOI: 10.3390/pharmaceutics12040335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
As an alternative to eye drops and ocular injections for gene therapy, the aim of this work was to design for the first time hydrogel contact lenses that can act as platforms for the controlled delivery of viral vectors (recombinant adeno-associated virus, rAAV) to the eye in an effective way with improved patient compliance. Hydrogels of hydroxyethyl methacrylate (HEMA) with aminopropyl methacrylamide (APMA) (H1: 40, and H2: 80 mM) or without (Hc: 0 mM) were synthesized, sterilized by steam heat (121 °C, 20 min), and then tested for gene therapy using rAAV vectors to deliver the genes to the cornea. The hydrogels showed adequate light transparency, oxygen permeability, and swelling for use as contact lenses. Loading of viral vectors (rAAV-lacZ, rAAV-RFP, or rAAV-hIGF-I) was carried out at 4 °C to maintain viral vector titer. Release in culture medium was monitored by fluorescence with Cy3-rAAV-lacZ and AAV Titration ELISA. Transduction efficacy was tested through reporter genes lacZ and RFP in human bone marrow derived mesenchymal stem cells (hMSCs). lacZ was detected with X-Gal staining and quantified with Beta-Glo®, and RFP was monitored by fluorescence. The ability of rAAV-hIGF-I-loaded hydrogels to trigger cell proliferation in hMSCs was evaluated by immunohistochemistry. Finally, the ability of rAAV-lacZ-loaded hydrogels to transduce bovine cornea was confirmed through detection with X-Gal staining of β-galactosidase expressed within the tissue.
Collapse
Affiliation(s)
- Fernando Alvarez-Rivera
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain;
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany; (J.K.V.); (M.C.)
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany; (J.K.V.); (M.C.)
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
- Correspondence: ; Tel.: +34-881815239
| |
Collapse
|
64
|
Mesoporous polydopamine with built-in plasmonic core: Traceable and NIR triggered delivery of functional proteins. Biomaterials 2020; 238:119847. [DOI: 10.1016/j.biomaterials.2020.119847] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
|
65
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
66
|
Molecular insight into silk fibroin based delivery vehicle for amphiphilic drugs: Synthesis, characterization and molecular dynamics studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
67
|
Liang K, Chen H. Protein-based nanoplatforms for tumor imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1616. [PMID: 31999083 DOI: 10.1002/wnan.1616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
Cancer is one of the leading causes of death all over the world. The development of nanoplatform provides a promising strategy for the diagnosis and treatment of cancer. As the foundation of the nanoplatform, the composition of nanocarrier decides the basic properties. Protein exists in all kinds of life and participates in any life activities, having great potentials to serve as a nanocarrier because of its excellent biocompatibility, abundance of functional groups, and inherent biological activity. As a result, protein-based nanoplatforms have evoked extensive interests for tumor imaging and therapy. This review presents the latest progresses on the advancement of protein-based nanoplatforms, introducing the most common protein nanocarriers (such as human/bovine serum albumin, ferritin, human transferrin) thoroughly including their physiochemical properties and specific applications. Also, other kinds of protein are briefly involved. Finally, the prospects and challenges of the development of protein-based nanoplatforms are summarized. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Kaicheng Liang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
68
|
Pacheco MR, Jacinto JP, Penas D, Calmeiro T, Almeida AV, Colaço M, Fortunato E, Jones NC, Hoffmann SV, Pereira MMA, Tavares P, Pereira AS. Supramolecular protein polymers using mini-ferritin Dps as the building block. Org Biomol Chem 2020; 18:9300-9307. [DOI: 10.1039/d0ob01702g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Production of long polymer chains with iron oxidation and storage activity, built from protein nanocages using a click chemistry approach.
Collapse
|
69
|
Maity B, Li Z, Niwase K, Ganser C, Furuta T, Uchihashi T, Lu D, Ueno T. Single-molecule level dynamic observation of disassembly of the apo-ferritin cage in solution. Phys Chem Chem Phys 2020; 22:18562-18572. [DOI: 10.1039/d0cp02069a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 24-mer iron-storage protein, ferritin cage assembly plays important role in nanomaterials synthesis and drug delivery. Herein we explored the disassembly process of the cage by high-speed AFM in combination with all-atom MD simulations.
Collapse
Affiliation(s)
- Basudev Maity
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Zhipeng Li
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
- Ministry of Education Key Laboratory of Industrial Biocatalysis
| | - Kento Niwase
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Christian Ganser
- Exploratory Research Center on Life and Living Systems (ExCELLS)
- National Institutes of Natural Sciences
- Okazaki
- Japan
| | - Tadaomi Furuta
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS)
- National Institutes of Natural Sciences
- Okazaki
- Japan
- Department of Physics
| | - Diannan Lu
- Ministry of Education Key Laboratory of Industrial Biocatalysis
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Takafumi Ueno
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| |
Collapse
|
70
|
Bao C, Chen J, Li D, Zhang A, Zhang Q. Synthesis of lipase–polymer conjugates by Cu(0)-mediated reversible deactivation radical polymerization: polymerization vs. degradation. Polym Chem 2020. [DOI: 10.1039/c9py01462d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cu(0)-RDRP was first used for the polymerization-induced self-assembly of lipase–polymer conjugates, inducing the formation of nanospheres with preserved activity and degradability.
Collapse
Affiliation(s)
- Chunyang Bao
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Jing Chen
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Die Li
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Aotian Zhang
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| |
Collapse
|
71
|
Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902791. [PMID: 31496027 DOI: 10.1002/adma.201902791] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protein/antibody therapeutics have exhibited the advantages of high specificity and activity even at an extremely low concentration compared to small molecule drugs. However, they are accompanied by unfavorable physicochemical properties such as fragile tertiary structure, large molecular size, and poor penetration of the membrane, and thus the clinical use of protein drugs is hindered by inefficient delivery of proteins into the host cells. To overcome the challenges associated with protein therapeutics and enhance their biopharmaceutical applications, various protein-loaded nanocarriers with desired functions, such as lipid nanocapsules, polymeric nanoparticles, inorganic nanoparticles, and peptides, are developed. In this review, the different strategies for intracellular delivery of proteins are comprehensively summarized. Their designed routes, mechanisms of action, and potential therapeutics in live cells or in vivo are discussed in detail. Furthermore, the perspective on the new generation of delivery systems toward the emerging area of protein-based therapeutics is presented as well.
Collapse
Affiliation(s)
- Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
72
|
Palombarini F, Ghirga F, Boffi A, Macone A, Bonamore A. Application of crossflow ultrafiltration for scaling up the purification of a recombinant ferritin. Protein Expr Purif 2019; 163:105451. [PMID: 31301427 DOI: 10.1016/j.pep.2019.105451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023]
Abstract
Ferritin proteins are taking center stage as smart nanocarriers for drug delivery due to their hollow cage-like structures and their unique 24-meric assembly. Among all ferritins, the chimeric Archaeoglobus ferritin (HumFt) is able assemble/disassemble varying the ionic strength of the medium while recognizing human TfR1 receptor overexpressed in cancer cells. In this paper we present a highly efficient, large scale purification protocol mainly based on crossflow ultrafiltration, starting from fermented bacterial paste. This procedure allows one to obtain about 2 g of purified protein starting from 100 g of fermented bacterial paste. The current procedure can easily remove contaminant proteins as well as DNA molecules in the absence of expensive and time consuming chromatographic steps.
Collapse
Affiliation(s)
- Federica Palombarini
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Alessandra Bonamore
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
73
|
Edwardson TGW, Hilvert D. Virus-Inspired Function in Engineered Protein Cages. J Am Chem Soc 2019; 141:9432-9443. [PMID: 31117660 DOI: 10.1021/jacs.9b03705] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural and functional diversity of proteins combined with their genetic programmability has made them indispensable modern materials. Well-defined, hollow protein capsules have proven to be particularly useful due to their ability to compartmentalize macromolecules and chemical processes. To this end, viral capsids are common scaffolds and have been successfully repurposed to produce a suite of practical protein-based nanotechnologies. Recently, the recapitulation of viromimetic function in protein cages of nonviral origin has emerged as a strategy to both complement physical studies of natural viruses and produce useful scaffolds for diverse applications. In this perspective, we review recent progress toward generation of virus-like behavior in nonviral protein cages through rational engineering and directed evolution. These artificial systems can aid our understanding of the emergence of viruses from existing cellular components, as well as provide alternative approaches to tackle current problems, and open up new opportunities, in medicine and biotechnology.
Collapse
Affiliation(s)
| | - Donald Hilvert
- Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
74
|
Kim G, Lau VM, Halmes AJ, Oelze ML, Moore JS, Li KC. High-intensity focused ultrasound-induced mechanochemical transduction in synthetic elastomers. Proc Natl Acad Sci U S A 2019; 116:10214-10222. [PMID: 31076556 PMCID: PMC6534979 DOI: 10.1073/pnas.1901047116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While study in the field of polymer mechanochemistry has yielded mechanophores that perform various chemical reactions in response to mechanical stimuli, there is not yet a triggering method compatible with biological systems. Applications such as using mechanoluminescence to generate localized photon flux in vivo for optogenetics would greatly benefit from such an approach. Here we introduce a method of triggering mechanophores by using high-intensity focused ultrasound (HIFU) as a remote energy source to drive the spatially and temporally resolved mechanical-to-chemical transduction of mechanoresponsive polymers. A HIFU setup capable of controlling the excitation pressure, spatial location, and duration of exposure is employed to activate mechanochemical reactions in a cross-linked elastomeric polymer in a noninvasive fashion. One reaction is the chromogenic isomerization of a naphthopyran mechanophore embedded in a polydimethylsiloxane (PDMS) network. Under HIFU irradiation evidence of the mechanochemical transduction is the observation of a reversible color change as expected for the isomerization. The elastomer exhibits this distinguishable color change at the focal spot, depending on ultrasonic exposure conditions. A second reaction is the demonstration that HIFU irradiation successfully triggers a luminescent dioxetane, resulting in localized generation of visible blue light at the focal spot. In contrast to conventional stimuli such as UV light, heat, and uniaxial compression/tension testing, HIFU irradiation provides spatiotemporal control of the mechanochemical activation through targeted but noninvasive ultrasonic energy deposition. Targeted, remote light generation is potentially useful in biomedical applications such as optogenetics where a light source is used to trigger a cellular response.
Collapse
Affiliation(s)
- Gun Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana, Urbana-Champaign, Urbana, IL 61820
| | - Vivian M Lau
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Abigail J Halmes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Michael L Oelze
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana, Urbana-Champaign, Urbana, IL 61820
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Carle Illinois College of Medicine, University of Illinois at Urbana, Urbana-Champaign, Urbana, IL 61820
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - King C Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Carle Illinois College of Medicine, University of Illinois at Urbana, Urbana-Champaign, Urbana, IL 61820
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
75
|
Wang N, Cheng X, Li N, Wang H, Chen H. Nanocarriers and Their Loading Strategies. Adv Healthc Mater 2019; 8:e1801002. [PMID: 30450761 DOI: 10.1002/adhm.201801002] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/19/2018] [Indexed: 12/17/2022]
Abstract
Nanocarriers are of paramount significance for drug delivery and nanomedicine technology. Given the imperfect systems and nonideal therapeutic effects, there are works to be done in synthesis as much as in biological studies, if not more so. Building the foundation of synthesis would offer more tools and deeper insights for exploring the biological systems with extreme complexity. This review aims at a broad-scope summary and classification of nanocarriers for drug delivery, with focus on the synthetic strategy and structural implications. The nanocarriers are divided into four categories according to the loading principle: molecular-level loading, surface loading, matrix loading, and cavity loading systems. Making comparisons across diverse nanocarrier systems would make it easier to see the fundamental characteristics, from where the weakness can be addressed and the strengths combined. The systematic comparisons may also inspire new ideas and methods.
Collapse
Affiliation(s)
- Neng Wang
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Xuejun Cheng
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Nan Li
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Hong Wang
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Hongyu Chen
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| |
Collapse
|
76
|
Ohmura JF, Burpo FJ, Lescott CJ, Ransil A, Yoon Y, Records WC, Belcher AM. Highly adjustable 3D nano-architectures and chemistries via assembled 1D biological templates. NANOSCALE 2019; 11:1091-1102. [PMID: 30574649 DOI: 10.1039/c8nr04864a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Porous metal nanofoams have made significant contributions to a diverse set of technologies from separation and filtration to aerospace. Nonetheless, finer control over nano and microscale features must be gained to reach the full potential of these materials in energy storage, catalytic, and sensing applications. As biologics naturally occur and assemble into nano and micro architectures, templating on assembled biological materials enables nanoscale architectural control without the limited chemical scope or specialized equipment inherent to alternative synthetic techniques. Here, we rationally assemble 1D biological templates into scalable, 3D structures to fabricate metal nanofoams with a variety of genetically programmable architectures and material chemistries. We demonstrate that nanofoam architecture can be modulated by manipulating viral assembly, specifically by editing the viral surface coat protein, as well as altering templating density. These architectures were retained over a broad range of compositions including monometallic and bi-metallic combinations of noble and transition metals of copper, nickel, cobalt, and gold. Phosphorous and boron incorporation was also explored. In addition to increasing the surface area over a factor of 50, as compared to the nanofoam's geometric footprint, this process also resulted in a decreased average crystal size and altered phase composition as compared to non-templated controls. Finally, templated hydrogels were deposited on the centimeter scale into an array of substrates as well as free standing foams, demonstrating the scalability and flexibility of this synthetic method towards device integration. As such, we anticipate that this method will provide a platform to better study the synergistic and de-coupled effects between nano-structure and composition for a variety of applications including energy storage, catalysis, and sensing.
Collapse
Affiliation(s)
- Jacqueline F Ohmura
- Departments of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 76-561, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Zhang X, Zang J, Chen H, Zhou K, Zhang T, Lv C, Zhao G. Thermostability of protein nanocages: the effect of natural extra peptide on the exterior surface. RSC Adv 2019; 9:24777-24782. [PMID: 35528680 PMCID: PMC9069879 DOI: 10.1039/c9ra04785a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023] Open
Abstract
Protein nanocages have been used as functional bio-templates for the synthesis or organization of nanomaterials. However, the stability of these protein nanocages is nonideal, which limits their applications. Herein, we characterized the high thermal stability of plant ferritin, soybean seed H-2 ferritin (SSFH-2), the melting point (Tm) of which is 106 °C. We demonstrated that the hyperthermostability of SSFH-2 is derived from extra peptides (EP) located on its outer surface. Indeed, removal of the EP domains resulted in a dramatic decrease in Tm to 88 °C. Similar to EP-deleted plant ferritin, human H-chain ferritin (HuHF) has a Tm of 82 °C. Excitingly, the graft of the EP domain on the exterior surface of HuHF pronouncedly improved its Tm to 103 °C, which represents a simple, efficient approach to the construction of protein architectures with high stability. The remarkable stability of protein nanocages will greatly facilitate their application as robust biotemplates in the field of nanoscience. Ferritin nanocage exhibits hyperthermostability with EP domain located on its outer surface.![]()
Collapse
Affiliation(s)
- Xiaorong Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Key Laboratory of Functional Dairy
- Ministry of Education
| | - Jiachen Zang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Key Laboratory of Functional Dairy
- Ministry of Education
| | - Hai Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Key Laboratory of Functional Dairy
- Ministry of Education
| | - Kai Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Key Laboratory of Functional Dairy
- Ministry of Education
| | - Tuo Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Key Laboratory of Functional Dairy
- Ministry of Education
| | - Chenyan Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Key Laboratory of Functional Dairy
- Ministry of Education
| | - Guanghua Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Key Laboratory of Functional Dairy
- Ministry of Education
| |
Collapse
|
78
|
Chakraborti S, Chakrabarti P. Self-Assembly of Ferritin: Structure, Biological Function and Potential Applications in Nanotechnology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:313-329. [PMID: 31713204 DOI: 10.1007/978-981-13-9791-2_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein cages are normally formed by the self-assembly of multiple protein subunits and ferritin is a typical example of a protein cage structure. Ferritin is a ubiquitous multi-subunit iron storage protein formed by 24 polypeptide chains that self-assemble into a hollow, roughly spherical protein cage. Ferritin has external and internal diameters of approximately 12 nm and 8 nm, respectively. Functionally, ferritin performs iron sequestration and is highly conserved in evolution. The interior cavity of ferritin provides a unique reaction vessel to carry out reactions separated from the exterior environment. In nature, the cavity is utilized for sequestration of iron and bio-mineralization as a mechanism to render iron inert and safe from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate different carrier molecules ranging from cancer drugs to therapeutic proteins, in addition to using ferritin proteins as well-defined building blocks for fabrication. Besides the interior cavity, the exterior surface and sub-unit interface of ferritin can be modified without affecting ferritin assembly.
Collapse
Affiliation(s)
- Soumyananda Chakraborti
- Department of Biochemistry, Bose Institute, Kolkata, India. .,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | | |
Collapse
|
79
|
Crooke SN, Zheng J, Ganewatta MS, Guldberg SM, Reineke TM, Finn M. Immunological Properties of Protein–Polymer Nanoparticles. ACS APPLIED BIO MATERIALS 2018; 2:93-103. [DOI: 10.1021/acsabm.8b00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jukuan Zheng
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Mitra S. Ganewatta
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
80
|
Ryu Y, Kang JA, Kim D, Kim SR, Kim S, Park SJ, Kwon SH, Kim KN, Lee DE, Lee JJ, Kim HS. Programed Assembly of Nucleoprotein Nanoparticles Using DNA and Zinc Fingers for Targeted Protein Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802618. [PMID: 30398698 DOI: 10.1002/smll.201802618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/29/2018] [Indexed: 06/08/2023]
Abstract
With a growing number of intracellular drug targets and the high efficacy of protein therapeutics, the targeted delivery of active proteins with negligible toxicity is a challenging issue in the field of precision medicine. Herein, a programed assembly of nucleoprotein nanoparticles (NNPs) using DNA and zinc fingers (ZnFs) for targeted protein delivery is presented. Two types of ZnFs with different sequence specificities are genetically fused to a targeting moiety and a protein cargo, respectively. Double-stranded DNA with multiple ZnF-binding sequences is grafted onto inorganic nanoparticles, followed by conjugation with the ZnF-fused proteins, generating the assembly of NNPs with a uniform size distribution and high stability. The approach enables controlled loading of a protein cargo on the NNPs, offering a high cytosolic delivery efficiency and target specificity. The utility and potential of the assembly as a versatile protein delivery vehicle is demonstrated based on their remarkable antitumor activity and target specificity with negligible toxicity in a xenograft mice model.
Collapse
Affiliation(s)
- Yiseul Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jung Ae Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongup, 56212, South Korea
| | - Dasom Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Song-Rae Kim
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Seungmin Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seong Ji Park
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seung-Hae Kwon
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Kil-Nam Kim
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongup, 56212, South Korea
| | - Joong-Jae Lee
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
- Institute of Life Sciences (ILS), Kangwon National University, Chuncheon, 24341, South Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
81
|
Lee C, Hwang A, Jose L, Park JH, Song JK, Shim K, An SSA, Paik HJ. Orientation Controlled Protein Nanocapsules by Enzymatic Removal of a Polymer Template. Biomacromolecules 2018; 19:4219-4227. [PMID: 30265806 DOI: 10.1021/acs.biomac.8b00965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein nanocapsules are potentially useful as functional nanocarriers because of their hollow structure and high biocompatibility and the intrinsic activity of their protein constituents. However, the development of a facile method for the preparation of oriented nanocapsules that retain their protein activity has been challenging. Here we describe the preparation of protein nanocapsules through the enzymatic removal of polymer templates. Nickel(II) nitrilotriacetic acid-end-functionalized poly(lactic acid) (Ni2+-NTA-PLA) was introduced as a polymeric template to immobilize hexa-histidine-tagged green fluorescence protein (His6-GFP) with consistent orientation. Following protein cross-linking and core-degradation, various measurements as a function of degradation time indicated the formation of hollow structures. We also demonstrated orientational control and activity preservation of the protein after capsule preparation. Protein nanocapsules prepared by this method can act as functional containers, taking advantage of the intrinsic function of their constituent proteins without additional modification.
Collapse
Affiliation(s)
- Chaeyeon Lee
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| | - Aran Hwang
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| | - Leeja Jose
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| | - Ji Hyun Park
- Research Center for Bio-Based Chemistry , Korea Research Institute of Chemical Technology (KRICT) , Daejeon , Korea 34114
| | - Jae Kwang Song
- Research Center for Bio-Based Chemistry , Korea Research Institute of Chemical Technology (KRICT) , Daejeon , Korea 34114
| | - KyuHwan Shim
- Department of Bionano Technology , Gachon University , Sungnam , Korea 13120
| | - Seong Soo A An
- Department of Bionano Technology , Gachon University , Sungnam , Korea 13120
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| |
Collapse
|
82
|
Wang W, Wang L, Chen H, Zang J, Zhao X, Zhao G, Wang H. Selective Elimination of the Key Subunit Interfaces Facilitates Conversion of Native 24-mer Protein Nanocage into 8-mer Nanorings. J Am Chem Soc 2018; 140:14078-14081. [DOI: 10.1021/jacs.8b09760] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Lele Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hai Chen
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xuan Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
83
|
Tian Y, Polzer FB, Zhang HV, Kiick KL, Saven JG, Pochan DJ. Nanotubes, Plates, and Needles: Pathway-Dependent Self-Assembly of Computationally Designed Peptides. Biomacromolecules 2018; 19:4286-4298. [DOI: 10.1021/acs.biomac.8b01163] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yu Tian
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| | - Frank B. Polzer
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| | - Huixi Violet Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kristi L. Kiick
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Darrin J. Pochan
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
84
|
Bruun TJ, Andersson AMC, Draper SJ, Howarth M. Engineering a Rugged Nanoscaffold To Enhance Plug-and-Display Vaccination. ACS NANO 2018; 12:8855-8866. [PMID: 30028591 PMCID: PMC6158681 DOI: 10.1021/acsnano.8b02805] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
Nanoscale organization is crucial to stimulating an immune response. Using self-assembling proteins as multimerization platforms provides a safe and immunogenic system to vaccinate against otherwise weakly immunogenic antigens. Such multimerization platforms are generally based on icosahedral viruses and have led to vaccines given to millions of people. It is unclear whether synthetic protein nanoassemblies would show similar potency. Here we take the computationally designed porous dodecahedral i301 60-mer and rationally engineer this particle, giving a mutated i301 (mi3) with improved particle uniformity and stability. To simplify the conjugation of this nanoparticle, we employ a SpyCatcher fusion of mi3, such that an antigen of interest linked to the SpyTag peptide can spontaneously couple through isopeptide bond formation (Plug-and-Display). SpyCatcher-mi3 expressed solubly to high yields in Escherichia coli, giving more than 10-fold greater yield than a comparable phage-derived icosahedral nanoparticle, SpyCatcher-AP205. SpyCatcher-mi3 nanoparticles showed high stability to temperature, freeze-thaw, lyophilization, and storage over time. We demonstrate approximately 95% efficiency coupling to different transmission-blocking and blood-stage malaria antigens. Plasmodium falciparum CyRPA was conjugated to SpyCatcher-mi3 nanoparticles and elicited a high avidity antibody response, comparable to phage-derived virus-like particles despite their higher valency and RNA cargo. The simple production, precise derivatization, and exceptional ruggedness of this nanoscaffold should facilitate broad application for nanobiotechnology and vaccine development.
Collapse
Affiliation(s)
- Theodora
U. J. Bruun
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Anne-Marie C. Andersson
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Simon J. Draper
- Jenner
Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Mark Howarth
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
85
|
Rodriguez KJ, Gajewska B, Pollard J, Pellizzoni MM, Fodor C, Bruns N. Repurposing Biocatalysts to Control Radical Polymerizations. ACS Macro Lett 2018; 7:1111-1119. [PMID: 35632946 DOI: 10.1021/acsmacrolett.8b00561] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reversible-deactivation radical polymerizations (controlled radical polymerizations) have revolutionized and revitalized the field of polymer synthesis. While enzymes and other biologically derived catalysts have long been known to initiate free radical polymerizations, the ability of peroxidases, hemoglobin, laccases, enzyme-mimetics, chlorophylls, heme, red blood cells, bacteria, and other biocatalysts to control or initiate reversible-deactivation radical polymerizations has only been described recently. Here, the scope of biocatalytic atom transfer radical polymerizations (bioATRP), enzyme-initiated reversible addition-fragmentation chain transfer radical polymerizations (bioRAFT), biocatalytic organometallic-mediated radical polymerizations (bioOMRP), and biocatalytic reversible complexation mediated polymerizations (bioRCMP) is critically reviewed, and the potential of these reactions for the environmentally friendly synthesis of precision polymers, for the preparation of functional nanostructures, for the modification of surfaces, and for biosensing is discussed.
Collapse
Affiliation(s)
- Kyle J. Rodriguez
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bernadetta Gajewska
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jonas Pollard
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Csaba Fodor
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
86
|
Kong J, Wang Y, Zhang J, Qi W, Su R, He Z. Rationally Designed Peptidyl Virus-Like Particles Enable Targeted Delivery of Genetic Cargo. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jia Kong
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| |
Collapse
|
87
|
Kong J, Wang Y, Zhang J, Qi W, Su R, He Z. Rationally Designed Peptidyl Virus-Like Particles Enable Targeted Delivery of Genetic Cargo. Angew Chem Int Ed Engl 2018; 57:14032-14036. [DOI: 10.1002/anie.201805868] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/06/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Jia Kong
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| |
Collapse
|
88
|
Diaz D, Care A, Sunna A. Bioengineering Strategies for Protein-Based Nanoparticles. Genes (Basel) 2018; 9:E370. [PMID: 30041491 PMCID: PMC6071185 DOI: 10.3390/genes9070370] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, the practical application of protein-based nanoparticles (PNPs) has expanded rapidly into areas like drug delivery, vaccine development, and biocatalysis. PNPs possess unique features that make them attractive as potential platforms for a variety of nanobiotechnological applications. They self-assemble from multiple protein subunits into hollow monodisperse structures; they are highly stable, biocompatible, and biodegradable; and their external components and encapsulation properties can be readily manipulated by chemical or genetic strategies. Moreover, their complex and perfect symmetry have motivated researchers to mimic their properties in order to create de novo protein assemblies. This review focuses on recent advances in the bioengineering and bioconjugation of PNPs and the implementation of synthetic biology concepts to exploit and enhance PNP's intrinsic properties and to impart them with novel functionalities.
Collapse
Affiliation(s)
- Dennis Diaz
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
89
|
|
90
|
Liu X, Astruc D. Development of the Applications of Palladium on Charcoal in Organic Synthesis. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800343] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials; China Three Gorges University, Yichang; Hubei 443002 People's Republic of China
| | - Didier Astruc
- ISM, UMR CNRS 5255; Université de Bordeaux; 351 Cours de la Libération 33405 Talence Cedex France
| |
Collapse
|
91
|
Blackman L, Varlas S, Arno MC, Houston ZH, Fletcher NL, Thurecht KJ, Hasan M, Gibson MI, O’Reilly RK. Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility. ACS CENTRAL SCIENCE 2018; 4:718-723. [PMID: 29974067 PMCID: PMC6026775 DOI: 10.1021/acscentsci.8b00168] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 05/17/2023]
Abstract
Covalent PEGylation of biologics has been widely employed to reduce immunogenicity, while improving stability and half-life in vivo. This approach requires covalent protein modification, creating a new entity. An alternative approach is stabilization by encapsulation into polymersomes; however this typically requires multiple steps, and the segregation requires the vesicles to be permeable to retain function. Herein, we demonstrate the one-pot synthesis of therapeutic enzyme-loaded vesicles with size-selective permeability using polymerization-induced self-assembly (PISA) enabling the encapsulated enzyme to function from within a confined domain. This strategy increased the proteolytic stability and reduced antibody recognition compared to the free protein or a PEGylated conjugate, thereby reducing potential dose frequency and the risk of immune response. Finally, the efficacy of encapsulated l-asparaginase (clinically used for leukemia treatment) against a cancer line was demonstrated, and its biodistribution and circulation behavior in vivo was compared to the free enzyme, highlighting this methodology as an attractive alternative to the covalent PEGylation of enzymes.
Collapse
Affiliation(s)
- Lewis
D. Blackman
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
| | - Spyridon Varlas
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Maria C. Arno
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zachary H. Houston
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre
for Advanced Imaging, The University of
Queensland, St. Lucia, Queensland 4072, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nicholas L. Fletcher
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre
for Advanced Imaging, The University of
Queensland, St. Lucia, Queensland 4072, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristofer J. Thurecht
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre
for Advanced Imaging, The University of
Queensland, St. Lucia, Queensland 4072, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Muhammad Hasan
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
- Warwick Medical
School, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
- Warwick Medical
School, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
| | - Rachel K. O’Reilly
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
92
|
Zeng C, Rodriguez Lázaro G, Tsvetkova IB, Hagan MF, Dragnea B. Defects and Chirality in the Nanoparticle-Directed Assembly of Spherocylindrical Shells of Virus Coat Proteins. ACS NANO 2018; 12:5323-5332. [PMID: 29694012 PMCID: PMC6202266 DOI: 10.1021/acsnano.8b00069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Virus coat proteins of small isometric plant viruses readily assemble into symmetric, icosahedral cages encapsulating noncognate cargo, provided the cargo meets a minimal set of chemical and physical requirements. While this capability has been intensely explored for certain virus-enabled nanotechnologies, additional applications require lower symmetry than that of an icosahedron. Here, we show that the coat proteins of an icosahedral virus can efficiently assemble around metal nanorods into spherocylindrical closed shells with hexagonally close-packed bodies and icosahedral caps. Comparison of chiral angles and packing defects observed by in situ atomic force microscopy with those obtained from molecular dynamics models offers insight into the mechanism of growth, and the influence of stresses associated with intrinsic curvature and assembly pathways.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | | | - Irina B Tsvetkova
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Michael F Hagan
- Department of Physics , Brandeis University , Waltham , Massachusetts 02453 , United States
| | - Bogdan Dragnea
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
93
|
Choi JM, Bourassa V, Hong K, Shoga M, Lim EY, Park A, Apaydin K, Udit AK. Polyvalent Hybrid Virus-Like Nanoparticles with Displayed Heparin Antagonist Peptides. Mol Pharm 2018; 15:2997-3004. [DOI: 10.1021/acs.molpharmaceut.8b00135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justin M. Choi
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Valerie Bourassa
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Kevin Hong
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Michael Shoga
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Elizabeth Y. Lim
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Andrew Park
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Kazim Apaydin
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Andrew K. Udit
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| |
Collapse
|
94
|
Dostalova S, Polanska H, Svobodova M, Balvan J, Krystofova O, Haddad Y, Krizkova S, Masarik M, Eckschlager T, Stiborova M, Heger Z, Adam V. Prostate-Specific Membrane Antigen-Targeted Site-Directed Antibody-Conjugated Apoferritin Nanovehicle Favorably Influences In Vivo Side Effects of Doxorubicin. Sci Rep 2018; 8:8867. [PMID: 29891921 PMCID: PMC5995913 DOI: 10.1038/s41598-018-26772-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/11/2018] [Indexed: 01/02/2023] Open
Abstract
Herein, we describe the in vivo effects of doxorubicin (DOX) encapsulated in ubiquitous protein apoferritin (APO) and its efficiency and safety in anti-tumor treatment. APODOX is both passively (through Enhanced Permeability and Retention effect) and actively targeted to tumors through prostate-specific membrane antigen (PSMA) via mouse antibodies conjugated to the surface of horse spleen APO. To achieve site-directed conjugation of the antibodies, a HWRGWVC heptapeptide linker was used. The prostate cancer-targeted and non-targeted nanocarriers were tested using subcutaneously implanted LNCaP cells in athymic mice models, and compared to free DOX. Prostate cancer-targeted APODOX retained the high potency of DOX in attenuation of tumors (with 55% decrease in tumor volume after 3 weeks of treatment). DOX and non-targeted APODOX treatment caused damage to liver, kidney and heart tissues. In contrast, no elevation in liver or kidney enzymes and negligible changes were revealed by histological assessment in prostate cancer-targeted APODOX-treated mice. Overall, we show that the APO nanocarrier provides an easy encapsulation protocol, reliable targeting, high therapeutic efficiency and very low off-target toxicity, and is thus a promising delivery system for translation into clinical use.
Collapse
Affiliation(s)
- Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Hana Polanska
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
| | - Marketa Svobodova
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
- TESCAN ORSAY HOLDING a.s., Libusina trida 863/21, Brno, CZ-623 00, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84/1, Prague 5, CZ-150 06, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 2, CZ-128 43, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic.
| |
Collapse
|
95
|
Abstract
Within the materials science community, proteins with cage-like architectures are being developed as versatile nanoscale platforms for use in protein nanotechnology. Much effort has been focused on the functionalization of protein cages with biological and non-biological moieties to bring about new properties of not only individual protein cages, but collective bulk-scale assemblies of protein cages. In this review, we report on the current understanding of protein cage assembly, both of the cages themselves from individual subunits, and the assembly of the individual protein cages into higher order structures. We start by discussing the key properties of natural protein cages (for example: size, shape and structure) followed by a review of some of the mechanisms of protein cage assembly and the factors that influence it. We then explore the current approaches for functionalizing protein cages, on the interior or exterior surfaces of the capsids. Lastly, we explore the emerging area of higher order assemblies created from individual protein cages and their potential for new and exciting collective properties.
Collapse
Affiliation(s)
- William M Aumiller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
96
|
Burridge KM, Wright TA, Page RC, Konkolewicz D. Photochemistry for Well-Defined Polymers in Aqueous Media: From Fundamentals to Polymer Nanoparticles to Bioconjugates. Macromol Rapid Commun 2018; 39:e1800093. [PMID: 29774614 DOI: 10.1002/marc.201800093] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/07/2018] [Indexed: 11/09/2022]
Abstract
This review article highlights recent developments in the field of photochemistry and photochemical reversible deactivation radical polymerization applied to aqueous polymerizations. Photochemistry is a topic of significant interest in the fields of organic, polymer, and materials chemistry because it allows challenging reactions to be performed under mild conditions. Aqueous polymerization is of significant interest because water is an environmentally benign solvent, and the use of water enables complex polymer self-assembly and bioconjugation processes to occur. This review focuses on powerful new developments in photochemical aqueous polymerization reactions and their applications to the synthesis of well-defined polymer nano-objects and bioconjugates. It is anticipated that these aqueous photopolymerizations will enable the next generation of self-assembled structures and biohybrid materials to be developed under mild and environmentally friendly conditions.
Collapse
Affiliation(s)
- Kevin M Burridge
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Thaiesha A Wright
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| |
Collapse
|
97
|
Perfect union of protein and gel creates hyperexpandable crystals. Nature 2018; 557:38-39. [DOI: 10.1038/d41586-018-04956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
98
|
He B, Zhao J, Ou Y, Jiang D. Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:728-738. [PMID: 29853144 DOI: 10.1016/j.msec.2018.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/15/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Abstract
Bone tissue had moderate self-healing capabilities, but biomaterial scaffolds were required for the repair of some defects such as large bone defects. Peptide nanofiber scaffolds demonstrated important potential in regenerative medicine. Functional modification and controlled release of signal molecules were two significant approaches to increase the bioactivity of biofunctionalized peptide nanofiber scaffolds, but peptide scaffolds were limited by insufficient mechanical strength. Thus, it was necessary to combine peptide scaffolds with other materials including polymers, hydroxyapatite, demineralized bone matrix (DBM) and metal materials based on the requirement of different bone defects. As the development of peptide-based composite scaffolds continued to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes for bone repair.
Collapse
Affiliation(s)
- Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinqiu Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Dianming Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
99
|
Zeng X, Li ZW, Zheng X, Zhu L, Sun ZY, Lu ZY, Huang X. Improving the productivity of monodisperse polyhedral cages by the rational design of kinetic self-assembly pathways. Phys Chem Chem Phys 2018; 20:10030-10037. [PMID: 29620122 DOI: 10.1039/c8cp00522b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hollow polyhedral cages hold great potential for application in nanotechnological and biomedical fields. Understanding the formation mechanism of these self-assembled structures could provide guidance for the rational design of the desired polyhedral cages. Here, by constructing kinetic network models from extensive coarse-grained molecular dynamics simulations, we elucidated the formation mechanism of the dodecahedral cage, which is formed by the self-assembly of patchy particles. We found that the dodecahedral cage is formed through increasing the aggregate size followed by structure rearrangement. Based on this mechanistic understanding, we improved the productivity of the dodecahedral cage through the rational design of the patch arrangement of patchy particles, which promotes the structural rearrangement process. Our results demonstrate that it should be a feasible strategy to achieve the rational design of the desired nanostructures via the kinetic analysis. We anticipate that this methodology could be extended to other self-assembly systems for the fabrication of functional nanomaterials.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
100
|
Guan X, Chang Y, Sun J, Song J, Xie Y. Engineered Hsp Protein Nanocages for siRNA Delivery. Macromol Biosci 2018; 18:e1800013. [DOI: 10.1002/mabi.201800013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/24/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xingang Guan
- Life Science Research Center; Beihua University; Jilin 132013 P. R. China
| | - Yu Chang
- Life Science Research Center; Beihua University; Jilin 132013 P. R. China
- College of Medicine; Beihua University; Jilin 132013 P. R. China
| | - Jinghui Sun
- College of Medicine; Beihua University; Jilin 132013 P. R. China
| | - Jianxi Song
- College of Medicine; Beihua University; Jilin 132013 P. R. China
| | - Yu Xie
- Life Science Research Center; Beihua University; Jilin 132013 P. R. China
| |
Collapse
|