51
|
Novel Nickel(II), Palladium(II), and Platinum(II) Complexes with O, S Bidendate Cinnamic Acid Ester Derivatives: An In Vitro Cytotoxic Comparison to Ruthenium(II) and Osmium(II) Analogues. Int J Mol Sci 2022; 23:ijms23126669. [PMID: 35743112 PMCID: PMC9224311 DOI: 10.3390/ijms23126669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Since the discovery of cisplatin’s cytotoxic properties, platinum(II) compounds have attracted much interest in the field of anticancer drug development. Over the last few years, classical structure−activity relationships (SAR) have been broken by some promising new compounds based on platinum or other metals. We focus on the synthesis and characterization of 17 different complexes with β-hydroxydithiocinnamic acid esters as O,S bidendate ligands for nickel(II), palladium(II), and platinum(II) complexes. (2) Methods: The bidendate compounds were synthesized and characterized using classical methods including NMR spectroscopy, MS spectrometry, elemental analysis, and X-ray crystallography, and their cytotoxic potential was assessed using in vitro cell culture assays. Data were compared with other recently reported platinum(II), ruthenium(II), and osmium(II) complexes based on the same main ligand system. (3) Results: SAR analyses regarding the metal ion (M), and the alkyl-chain position (P) and length (L), revealed the following order of the effect strength for in vitro activity: M > P > L. The highest activities have Pd complexes and ortho-substituted compounds. Specific palladium(II) complexes show lower IC50 values compared to cisplatin, are able to elude cisplatin resistance mechanisms, and show a higher cancer cell specificity. (4) Conclusion: A promising new palladium(II) candidate (Pd3) should be evaluated in further studies using in vivo model systems, and the identified SARs may help to target platinum-resistant tumors.
Collapse
|
52
|
Li X, Zhang L, Li T, Li S, Wu W, Zhao L, Xie P, Yang J, Li P, Zhang Y, Xiao H, Yu Y, Zhao Z. Abplatin (IV) inhibited tumor growth on a patient derived cancer model of hepatocellular carcinoma and its comparative multi-omics study with cisplatin. J Nanobiotechnology 2022; 20:258. [PMID: 35659243 PMCID: PMC9164404 DOI: 10.1186/s12951-022-01465-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/18/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cisplatin, the alkylating agent of platinum(II) (Pt(II)), is the most common antitumor drug in clinic; however, it has many side effects, therefore it is higly desired to develop low toxicity platinum(IV) (Pt(IV)) drugs. Multi-omics analysis, as a powerful tool, has been frequently employed for the mechanism study of a certain therapy at the molecular level, which might be helpful for elucidating the mechanism of platinum drugs and facilitating their clinical application. METHODS Strating form cisplatin, a hydrophobic Pt(IV) prodrug (CisPt(IV)) with two hydrophobic aliphatic chains was synthesized, and further encapsulated with a drug carrier, human serum albumin (HSA), to form nanoparticles, namely AbPlatin(IV). The anticancer effect of AbPlatin(IV) was investigated in vitro and in vivo. Moreover, transcriptomics, metabolomics and lipidomics were performed to explore the mechanism of AbPlatin(IV). RESULTS Compared with cisplatin, Abplatin(IV) exhibited better tumor-targeting effect and greater tumor inhibition rate. Lipidomics study showed that Abplatin(IV) might induce the changes of BEL-7404 cell membrane, and cause the disorder of glycerophospholipids and sphingolipids. In addition, transcriptomics and metabolomics study showed that Abplatin(IV) significantly disturbed the purine metabolism pathway. CONCLUSIONS This research highlighted the development of Abplatin(IV) and the use of multi-omics for the mechanism elucidation of prodrug, which is the key to the clinical translation of prodrug.
Collapse
Affiliation(s)
- Xing Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
- College of Life Science and Technology; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tuo Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Shumu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Wenjing Wu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingyu Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Xie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jinqi Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peipei Li
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Haihua Xiao
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjie Yu
- College of Life Science and Technology; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
53
|
Gabano E, Gariboldi MB, Caron G, Ermondi G, Marras E, Vallaro M, Ravera M. Application of the anthraquinone drug rhein as an axial ligand in bifunctional Pt(IV) complexes to obtain antiproliferative agents against human glioblastoma cells. Dalton Trans 2022; 51:6014-6026. [PMID: 35352739 DOI: 10.1039/d2dt00235c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octahedral Pt(IV) prodrugs are an effective way to combine cisplatin-like moieties and a second drug to obtain selective and stimuli responsive bifunctional antiproliferative compounds. Recently, two bifunctional Pt(IV) complexes have shown interesting in vitro and in vivo effects in glioblastoma, the most aggressive primary brain tumor. An interesting observation indicates that 4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (rhein) can inhibit in vivo glioma tumor progression. Furthermore, a prodrug in which cisplatin was combined with two molecules of rhein showed a potency higher than that of cisplatin toward cisplatin-resistant lung carcinoma cells. However, the high lipophilicity of this type of complex affects their solubility and bioavailability. To overcome these limits, in the present work, three Pt(IV) derivatives were obtained by differently linking one molecule of rhein and one acetato ligand at the axial position to a cisplatin core. The complexes proved to be similar to or more potent than the parent cisplatin and rhein, and the reference drug temozolomide on two human glioblastoma cell lines (U87-MG and T98G). They retained their activity under hypoxia and caused a significant reduction in the motility of both cell lines, which can be related to their ability to inhibit MMP2 and MMP9 matrix metalloproteinases. Finally, physicochemical and computational studies indicated that these Pt(IV) derivatives are more prone than rhein to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | - Marzia Bruna Gariboldi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Giulia Caron
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Emanuela Marras
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Maura Vallaro
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
54
|
Tsvetkova D, Ivanova S. Application of Approved Cisplatin Derivatives in Combination Therapy against Different Cancer Diseases. Molecules 2022; 27:2466. [PMID: 35458666 PMCID: PMC9031877 DOI: 10.3390/molecules27082466] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/03/2023] Open
Abstract
The problems with anticancer therapy are resistance and toxicity. From 3000 Cisplatin derivatives tested as antitumor agents, most of them have been rejected, due to toxicity. The aim of current study is the comparison of therapeutic combinations of the currently applied in clinical practice: Cisplatin, Carboplatin, Oxaliplatin, Nedaplatin, Lobaplatin, Heptaplatin, and Satraplatin. The literature data show that the strategies for the development of platinum anticancer agents and bypassing of resistance to Cisplatin derivatives and their toxicity are: combination therapy, Pt IV prodrugs, the targeted nanocarriers. The very important strategy for the improvement of the antitumor effect against different cancers is synergistic combination of Cisplatin derivatives with: (1) anticancer agents-Fluorouracil, Gemcitabine, Cytarabine, Fludarabine, Pemetrexed, Ifosfamide, Irinotecan, Topotecan, Etoposide, Amrubicin, Doxorubicin, Epirubicin, Vinorelbine, Docetaxel, Paclitaxel, Nab-Paclitaxel; (2) modulators of resistant mechanisms; (3) signaling protein inhibitors-Erlotinib; Bortezomib; Everolimus; (4) and immunotherapeutic drugs-Atezolizumab, Avelumab, Bevacizumab, Cemiplimab, Cetuximab, Durvalumab, Erlotinib, Imatinib, Necitumumab, Nimotuzumab, Nivolumab, Onartuzumab, Panitumumab, Pembrolizumab, Rilotumumab, Trastuzumab, Tremelimumab, and Sintilimab. An important approach for overcoming the drug resistance and reduction of toxicity of Cisplatin derivatives is the application of nanocarriers (polymers and liposomes), which provide improved targeted delivery, increased intracellular penetration, selective accumulation in tumor tissue, and enhanced therapeutic efficacy. The advantages of combination therapy are maximum removal of tumor cells in different phases; prevention of resistance; inhibition of the adaptation of tumor cells and their mutations; and reduction of toxicity.
Collapse
Affiliation(s)
- Dobrina Tsvetkova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, Dunav Str. 2, 1000 Sofia, Bulgaria
| | - Stefka Ivanova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Medical University-Pleven, Kliment Ohridski Str. 1, 5800 Pleven, Bulgaria;
| |
Collapse
|
55
|
Yao H, Zhu G. A platinum-based fluorescent "turn on" sensor to decipher the reduction of platinum(IV) prodrugs. Dalton Trans 2022; 51:5394-5398. [PMID: 35244663 DOI: 10.1039/d2dt00124a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a strategy to use a fluorescence "turn on" sensor to quantify the reduction of platinum(IV) prodrugs in a real-time mode by simply and conveniently monitoring the fluorescence intensity. Proteins with high molecular weights, especially those between 10 and 100 kDa, contribute more to the reduction of the platinum(IV) complex in cell extracts.
Collapse
Affiliation(s)
- Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| |
Collapse
|
56
|
Barth MC, Lange S, Häfner N, Ueberschaar N, Görls H, Runnebaum IB, Weigand W. Synthesis and characterization of thiocarbonato-linked platinum(IV) complexes. Dalton Trans 2022; 51:5567-5576. [PMID: 35311885 DOI: 10.1039/d2dt00318j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we show the formation of new oxaliplatin-based platinum(IV) complexes by reaction with DSC-activated thiols via thiocarbonate linkage. Three model complexes based on aliphatic and aromatic thiols, as well as one complex with N-acetylcysteine as biologically active thiol were synthesized. This synthetic strategy affords the expansion of biologically active compounds other than those containing carboxylic, amine or hydroxy groups for coupling to the platinum(IV) center. The complexes were characterized by high-resolution mass spectrometry, NMR spectroscopy (1H, 13C, 195Pt) and elemental analysis. Their biological behavior was evaluated against two ovarian carcinoma cell lines and their cisplatin-resistant analogues. Remarkably, the platinum(IV) samples show modest in vitro cytotoxicity against A2780 cells and comparable effects against A2780cis cells. Two complexes in particular demonstrate improved activity against SKOV3cis cells. The reduction experiment of complex 8, investigated by UHPLC-HRMS, provides evidence of interesting platinum-species formed during reaction with ascorbic acid.
Collapse
Affiliation(s)
- Marie-Christin Barth
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| | - Stefanie Lange
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Norman Häfner
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany
| | - Helmar Görls
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| | - Ingo B Runnebaum
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Wolfgang Weigand
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| |
Collapse
|
57
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
58
|
Scoditti S, Dabbish E, Pieslinger GE, Rezabal E, Lopez X, Sicilia E, Salassa L. Flavin-mediated photoactivation of Pt(IV) anticancer complexes: computational insights on the catalytic mechanism. Phys Chem Chem Phys 2022; 24:5323-5329. [PMID: 35188500 DOI: 10.1039/d1cp05507k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism for the photocatalytic activation of Pt(IV) anticancer prodrugs by riboflavin in the presence of NADH has been investigated by DFT. In the first step of the reaction, the oxidation kinetics of NADH to afford the catalytically active riboflavin hydroquinone is dramatically favoured by generation of the flavin triplet excited state. In the triplet, formation of a π-π stacked adduct promotes the hydride transfer from NADH to riboflavin with an almost barrierless pathway (2.7 kcal mol-1). In the singlet channel, conversely, the process is endergonic and requires overcoming a higher activation energy (19.2 kcal mol-1). In the second half of the reaction, the reduction of the studied Pt(IV) complexes by riboflavin hydroquinone occurs via an inner sphere mechanism, displaying free energy barriers smaller than 10 kcal mol-1. Pt reduction by bioreductants such as NADH and ascorbate involve instead less stabilized transition states (22.2-38.3 kcal mol-1), suggesting that riboflavin hydroquinone is an efficient reducing agent for Pt(IV) derivatives in biological settings.
Collapse
Affiliation(s)
- Stefano Scoditti
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende (CS), 87036, Italy.
| | - Eslam Dabbish
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende (CS), 87036, Italy.
| | - German E Pieslinger
- CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Elixabete Rezabal
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain. .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia, 20018, Spain
| | - Xabier Lopez
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain. .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia, 20018, Spain
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende (CS), 87036, Italy.
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain. .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia, 20018, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain
| |
Collapse
|
59
|
Ravera M, Gabano E, McGlinchey MJ, Osella D. Pt(IV) antitumor prodrugs: dogmas, paradigms, and realities. Dalton Trans 2022; 51:2121-2134. [PMID: 35015025 DOI: 10.1039/d1dt03886a] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platinum(II)-based drugs are widely used for the treatment of solid tumors, especially in combination protocols. Severe side effects and occurrence of resistance are the major limitations to their clinical use. To overcome these drawbacks, a plethora of Pt(IV) derivatives, acting as anticancer prodrugs, have been designed, synthesized and preclinically (often only in vitro) tested. Here, we summarize the recent progress in the development and understanding of the chemical properties and biochemical features of these Pt(IV) prodrugs, especially those containing bioactive molecules as axial ligands, acting as multi-functional agents. Even though no such prodrugs have been yet approved for clinical use, many show encouraging pharmacological profiles. Thus, a better understanding of their features is a promising approach towards improving the available Pt-based anticancer agents.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, Alessandria, Italy.
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, Alessandria, Italy.
| | | | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, Alessandria, Italy.
| |
Collapse
|
60
|
Gabano E, Ferraris C, Osella D, Battaglia LS, Ravera M. Formulations of highly antiproliferative hydrophobic Pt(IV) complexes into lipidic nanoemulsions as delivery vehicles. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
61
|
Jayawardhana AMDS, Zheng YR. Interactions between mitochondria-damaging platinum(IV) prodrugs and cytochrome c. Dalton Trans 2022; 51:2012-2018. [PMID: 35029256 PMCID: PMC8838881 DOI: 10.1039/d1dt03875c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, we present the first study about the interactions of mitochondria-damaging Pt(IV) prodrugs with cytochrome c. We synthesized a cisplatin-based Pt(IV) prodrug bearing a lipophilic hydrocarbon tail and anionic dansyl head group. The amphiphilic structure facilitates its accumulation in the mitochondria of cancer cells, which was validated using graphite furnace atomic absorption spectroscopy (GFAAS) and fluorescence imaging. Accordingly, this Pt(IV) prodrug is able to trigger mitochondrial damage and apoptosis. Overall, the Pt(IV) prodrug exhibits superior therapeutic effects against a panel of human cancer cells compared to cisplatin. It also overcomes drug resistance in ovarian cancer. Notably, HPLC analysis indicates that cytochrome c accelerates reduction (or activation) of the Pt(IV) prodrug in the presence of the electron donor nicotinamide adenine dinucleotide (NADH). More interestingly, additional studies indicate that cytochrome c was platinated by the reduced product of Pt(IV) prodrugs, and that empowers the proapoptotic peroxidase activity.
Collapse
Affiliation(s)
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, Ohio 44242, USA
| |
Collapse
|
62
|
Yuan S, Zhu Y, Dai Y, Wang Y, Jin D, Liu M, Tang L, Arnesano F, Natile G, Liu Y. 19
F NMR Allows the Investigation of the Fate of Platinum(IV) Prodrugs in Physiological Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siming Yuan
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Yang Zhu
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Yi Dai
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Yu Wang
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Duo Jin
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Manman Liu
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Fabio Arnesano
- Dipartimento di Chimica Università di Bari “A. Moro” via E. Orabona 4 70125 Bari Italy
| | - Giovanni Natile
- Dipartimento di Chimica Università di Bari “A. Moro” via E. Orabona 4 70125 Bari Italy
| | - Yangzhong Liu
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| |
Collapse
|
63
|
Moynihan E, Bassi G, Ruffini A, Panseri S, Montesi M, Velasco-Torrijos T, Montagner D. Click Pt(IV)-Carbohydrates Pro-Drugs for Treatment of Osteosarcoma. Front Chem 2021; 9:795997. [PMID: 34950638 PMCID: PMC8688915 DOI: 10.3389/fchem.2021.795997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The selectivity vs. cancer cells has always been a major challenge for chemotherapeutic agents and in particular for cisplatin, one of the most important anticancer drugs for the treatment of several types of tumors. One strategy to overtake this challenge is to modify the coordination sphere of the metallic center with specific vectors whose receptors are overexpressed in the tumoral cell membrane, such as monosaccharides. In this paper, we report the synthesis of four novel glyco-modified Pt(IV) pro-drugs, based on cisplatin scaffold, and their biological activity against osteosarcoma (OS), a malignant tumor affecting in particular adolescents and young adults. The sugar moiety and the Pt scaffold are linked exploiting the Copper Azide Alkyne Cycloaddition (CUAAC) reaction, which has become the flagship of click chemistry due to its versatility and mild conditions. Cytotoxicity and drug uptake on three different OS cell lines as well as CSCs (Cancer Stem Cell) are described.
Collapse
Affiliation(s)
- Eoin Moynihan
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Giada Bassi
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Andrea Ruffini
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Trinidad Velasco-Torrijos
- Department of Chemistry, Maynooth University, Maynooth, Ireland.,Kathleen Londsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth, Ireland.,Kathleen Londsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
64
|
Chen S, Ng KY, Zhou Q, Yao H, Deng Z, Tse MK, Zhu G. The influence of different carbonate ligands on the hydrolytic stability and reduction of platinum(IV) prodrugs. Dalton Trans 2021; 51:885-897. [PMID: 34927657 DOI: 10.1039/d1dt03959h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pt(IV) complexes bearing axial carbonate linkages have drawn much attention recently. A synthetic method behind this allows the hydroxyl group of bioactive ligands to be attached to the available hydroxyl group of Pt(IV) complexes, and the rapid release of free drugs is achieved after the reduction of carbonate-linked Pt(IV) complexes. Further understanding on the properties of Pt(IV) carbonates such as hydrolytic stability and reduction profiles, however, is hindered by limited research. Herein, six mono-carbonated Pt(IV) complexes in which the carbonate axial ligands possess various electron-withdrawing powers were synthesized, and the corresponding mono-carboxylated analogues were also prepared as references to highlight the different properties. The influence of the coordination environment towards the hydrolysis and reduction rate of Pt(IV) carbonates and carboxylates was explored. The mono-carbonated Pt(IV) complexes are both less stable and reduced faster than the corresponding mono-carboxylated ones. Moreover, the hydrolysis and reduction profiles are dependent not only on the electron-withdrawing ability of the carbonates but also on the nature of the opposite axial ligands. Besides, the exploration of the hydrolytic pathway for Pt(IV) carbonates suggests that the process proceeds by an attack of OH- on the carbonyl carbon, followed by elimination, which is different from that of Pt(IV) carboxylates. This study provides some information on the influence of axial carbonate ligands with different electron-withdrawing abilities on the properties of the Pt(IV) center, which may inspire new thoughts on the design of "multi-action" Pt(IV) prodrugs.
Collapse
Affiliation(s)
- Shu Chen
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Ka-Yan Ng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
| | - Qiyuan Zhou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| |
Collapse
|
65
|
Predarska I, Saoud M, Morgan I, Eichhorn T, Kaluđerović GN, Hey-Hawkins E. Cisplatin-cyclooxygenase inhibitor conjugates, free and immobilised in mesoporous silica SBA-15, prove highly potent against triple-negative MDA-MB-468 breast cancer cell line. Dalton Trans 2021; 51:857-869. [PMID: 34877948 DOI: 10.1039/d1dt03265h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For the development of anticancer drugs with higher activity and reduced toxicity, two approaches were combined: preparation of platinum(IV) complexes exhibiting higher stability compared to their platinum(II) counterparts and loading them into mesoporous silica SBA-15 with the aim to utilise the passive enhanced permeability and retention (EPR) effect of nanoparticles for accumulation in tumour tissues. Three conjugates based on a cisplatin scaffold bearing the anti-inflammatory drugs naproxen, ibuprofen or flurbiprofen in the axial positions (1, 2 and 3, respectively) were synthesised and loaded into SBA-15 to afford the mesoporous silica nanoparticles (MSNs) SBA-15|1, SBA-15|2 and SBA-15|3. Superior antiproliferative activity of both free and immobilised conjugates in a panel of four breast cancer cell lines (MDA-MB-468, HCC1937, MCF-7 and BT-474) with markedly increased cytotoxicity with respect to cisplatin was demonstrated. All compounds exhibit highest activity against the triple-negative cell line MDA-MB-468, with conjugate 1 being the most potent. However, against MCF-7 and BT-474 cell lines, the most notable improvement was found, with IC50 values up to 240-fold lower than cisplatin. Flow cytometry assays clearly show that all compounds induce apoptotic cell death elevating the levels of both early and late apoptotic cells. Furthermore, autophagy as well as formation of reactive oxygen species (ROS) and nitric oxide (NO) were elevated to a similar or greater extent than with cisplatin.
Collapse
Affiliation(s)
- Ivana Predarska
- Universität Leipzig, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany. .,Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany
| | - Mohamad Saoud
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany.
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany.
| | - Thomas Eichhorn
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany
| | - Goran N Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany.,Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany.
| | - Evamarie Hey-Hawkins
- Universität Leipzig, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
66
|
Peng K, Liang BB, Liu W, Mao ZW. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214210] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
67
|
Yuan S, Zhu Y, Dai Y, Wang Y, Jin D, Liu M, Tang L, Arnesano F, Liu Y, Natile G. 19F NMR Allows to Investigate the Fate of Platinum(IV) Prodrugs in Physiological Conditions. Angew Chem Int Ed Engl 2021; 61:e202114250. [PMID: 34800083 DOI: 10.1002/anie.202114250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/11/2022]
Abstract
Pt(IV) prodrugs can overcome resistance and side effects of conventional Pt(II) anticancer therapies. By 19 F-labeling of a Pt(IV) prodrug (Pt-FBA, FBA = p -fluorobenzoate), the activation under physiological conditions could be investigated. It is found that, unlike single-electron reductants, multi-electron agents can efficiently promote the two electrons reduction of Pt(IV) to Pt(II). Moreover, the activation of Pt-FBA in cell lysate is highly dependent upon the type of cancer cells. When administered to E. coli , Pt-FBA is reduced intracellularly and free FBA can shuttle out of the cell. Interestingly, the reduction rate greatly increases by inducing metallothionein overexpression and is lowered by addition of Zn(II) ions. Finally, when injected into mice, Pt-FBA undergoes fast reduction in the bloodstream accompanied by metabolic degradation of FBA; nevertheless, unreduced Pt-FBA can accumulate to detectable levels in liver and kidneys. The proposed 19 F-NMR approach has the advantage of avoiding the interference of all background signals.
Collapse
Affiliation(s)
- Siming Yuan
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Yang Zhu
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Yi Dai
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Yu Wang
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Duo Jin
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Manman Liu
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Liqin Tang
- University of Science and Technology of China, The First Affiliated Hospital of USTC, CHINA
| | - Fabio Arnesano
- University of Bari: Universita degli Studi di Bari Aldo Moro, Department of Chemistry, ITALY
| | - Yangzhong Liu
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Giovanni Natile
- University of Bari, Department of Chemistry, Via E. Orabona 4, 70125, Bari, ITALY
| |
Collapse
|
68
|
Wang N, Deng Z, Zhu Q, Zhao J, Xie K, Shi P, Wang Z, Chen X, Wang F, Shi J, Zhu G. An erythrocyte-delivered photoactivatable oxaliplatin nanoprodrug for enhanced antitumor efficacy and immune response. Chem Sci 2021; 12:14353-14362. [PMID: 34880985 PMCID: PMC8580000 DOI: 10.1039/d1sc02941j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
The outcome of conventional platinum (Pt)-based chemotherapy is limited by reduced circulation, failure to accumulate in the tumor, and dose-limiting toxicity arising from non-controllable activation. To address these limitations, we present an erythrocyte-delivered and near-infrared (NIR) photoactivatable PtIV nanoprodrug for advanced cancer treatment. Compared with small molecule PtIV prodrugs, this nanoprodrug exhibits significantly enhanced stability, prolonged circulation in the blood, and minimized side effects. The hitchhiking of the nanoprodrug on erythrocytes dramatically increases Pt accumulation in the tumor. Upon irradiation, the nanoprodrug releases oxaliplatin in a controllable manner, resulting in significant antitumor activity against breast tumors in vivo, as evidenced by the complete elimination of tumors from a single-dose injection. Additionally, this nanoprodrug is associated with remarkably enhanced immunopotentiation. Our study highlights an efficient strategy to overcome the shortcomings of traditional Pt-based chemotherapy via the erythrocyte-mediated delivery of an NIR-activatable nanoprodrug of oxaliplatin, a clinically used anticancer drug. Strategic illustration of an erythrocyte-delivered and near-infrared photoactivatable oxaliplatin nanoprodrug for enhanced antitumor efficacy and immune response.![]()
Collapse
Affiliation(s)
- Na Wang
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China .,City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China .,City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Qi Zhu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR P. R. China
| | - Jianxiong Zhao
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong Hong Kong SAR P. R. China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong Hong Kong SAR P. R. China
| | - Zhigang Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University Shenzhen 518060 P. R. China
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh Mayfield Road Edinburgh EH9 3JL UK
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR P. R. China.,City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong Hong Kong SAR P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China .,City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| |
Collapse
|
69
|
Papadia P, Barbanente A, Ditaranto N, Hoeschele JD, Natile G, Marzano C, Gandin V, Margiotta N. Effect of chirality on the anticancer activity of Pt(II) and Pt(IV) complexes containing 1 R,2 R and 1 S,2 S enantiomers of the trans-1,2-diamino-4-cyclohexene ligand (DACHEX), an analogue of diaminocyclohexane used in oxaliplatin. Dalton Trans 2021; 50:15655-15668. [PMID: 34673864 DOI: 10.1039/d1dt02255e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six enantiomerically pure, oxaliplatin-like, platinum compounds (two platinum(II) and four platinum(IV)), all containing unsaturated cyclic diamine trans-1,2-diamino-4-cyclohexene (DACHEX) as a substitute for the trans-1,2-diaminocyclohexane used in oxaliplatin, were investigated. The complexes were characterized by elemental analyses, ESI-MS, and 1H-NMR spectroscopy. For the four Pt(IV) complexes the electrochemical redox behaviour, investigated by cyclic voltammetry, showed that all complexes possess reduction potentials suitable for activation in vivo. The antiproliferative activity was assessed in vitro on human cancer cell lines, also selected for resistance to platinum-based drugs or belonging to the MultiDrug-Resistant (MDR) phenotype. All complexes exhibited antiproliferative activity superior to that of cisplatin and almost equivalent to or better than that of oxaliplatin; moreover, most complexes were also capable of overcoming both the cisplatin- and the oxaliplatin-resistance. By comparing the effectiveness of the enantiomerically pure compounds with the racemic one, the R,R enantiomer emerged as the most effective in the case of Pt(II) complexes whereas the S,S enantiomer was the most effective in the case of the Pt(IV) derivatives. From the results obtained also against 3D spheroid tumor models, cis,trans,cis-[Pt(OXA)(OBz)2(1S,2S-DACHEX)] (OBz = benzoate) emerged as the most promising candidate for further preclinical investigation.
Collapse
Affiliation(s)
- Paride Papadia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Alessandra Barbanente
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
| | - Nicoletta Ditaranto
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
- CSGI (Consorzio per lo Sviluppo dei sistemi a Grande Interfase) - Bari Unit, c/o Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - James D Hoeschele
- Department of Chemistry, Eastern Michigan University, 48197 Ypsilanti, MI, USA
| | - Giovanni Natile
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
| | - Cristina Marzano
- Dipartimento di Scienze del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Nicola Margiotta
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
70
|
Svoboda J, Zolal A, Králík F, Eigner V, Ruml T, Zelenka J, Syslová K. Trans-palladium complexes with 1-adamantanamine and various halide ions: Synthesis, characterization, DNA and protein binding and in vitro cytotoxicity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
71
|
Huang Z, King AP, Lovett J, Lai B, Woods JJ, Harris HH, Wilson JJ. Photochemistry and in vitro anticancer activity of Pt(IV)Re(I) conjugates. Chem Commun (Camb) 2021; 57:11189-11192. [PMID: 34622255 DOI: 10.1039/d1cc04669a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The photophysical and photochemical properties of two Pt(IV)Re(I) conjugates were studied via both experimental and computational methods. Both conjugates exhibit modest photocytotoxicity against ovarian cancer cells. X-ray fluorescence microscopy showed that Pt and Re colocalize in cells whether they had been irradiated or not. This work demonstrates the potential of photoactivated multilimetallic agents for combating cancer.
Collapse
Affiliation(s)
- Zhouyang Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - A Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - James Lovett
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA. .,Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
72
|
Yousefi A, Sabounchei SJ, Moazzami Farida SH, Rahmani N. A series of nanoscaled Pt(0)‐phosphorus ylide complexes based on [60]fullerene: Synthesis, characterization, and in vitro biological assessments. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Abed Yousefi
- Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| | | | | | - Nosrat Rahmani
- Department of Biology, Faculty of Science Shahed University Tehran Iran
| |
Collapse
|
73
|
Tang J, Zhu G, Li P, Zhang P, Peng F, Meng F. Novel recognition mechanism based on oxidative addition of Pt(II) complex-based luminescent probes for hypochlorite ion detection. Analyst 2021; 146:5691-5703. [PMID: 34515701 DOI: 10.1039/d1an01048d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platinum(II) complexes are the most commonly used anticancer drugs and potential optical materials, but the detectability of Pt(II) complex-based probes is seldom reported. In our previous work, a tetradentate Pt(II) complex Pt-CHO was utilised as a 'turn-off' probe to detect ClO- and image cancer cells. However, the recognition mechanism has not been completely clarified and there are still doubts. In this work, three Pt(II) complexes, Pt-H, Pt-CHO and Pt-COOH, were developed to elucidate the mechanism of this class of complexes and refine their property studies. As a result, the UV-visible absorption and luminescence emission experiments, as well as the mass spectrum, proved that the oxidation of Pt(II) to Pt(IV) was the real reason for luminescence quenching, which has nothing to do with aldehyde groups. This first reported mechanism introduces a new type of ClO- probe based on Pt(II) complexes, thereby expanding the application fields of platinum complexes. Moreover, the quantum yield measurements, the effect of biomolecules and reversibility were studied to improve the properties of the probes. Theoretical calculations were used to gain an in-depth understanding of optical characteristics and related mechanisms. The cell imaging of RAW264.7 cells under endogenous ClO- proved the potential of the probes in bioimaging.
Collapse
Affiliation(s)
- Jingjie Tang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China. .,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou 510316, China
| | - Guoxun Zhu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Peng Li
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China. .,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou 510316, China
| | - Pingjun Zhang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China. .,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou 510316, China
| | - Fang Peng
- Guangdong Second Provincial General Hospital, Guangzhou 510316, China.
| | - Fei Meng
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China. .,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou 510316, China
| |
Collapse
|
74
|
Xu Z, Wang Z, Deng Z, Zhu G. Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
75
|
Fronik P, Poetsch I, Kastner A, Mendrina T, Hager S, Hohenwallner K, Schueffl H, Herndler-Brandstetter D, Koellensperger G, Rampler E, Kopecka J, Riganti C, Berger W, Keppler BK, Heffeter P, Kowol CR. Structure-Activity Relationships of Triple-Action Platinum(IV) Prodrugs with Albumin-Binding Properties and Immunomodulating Ligands. J Med Chem 2021; 64:12132-12151. [PMID: 34403254 PMCID: PMC8404199 DOI: 10.1021/acs.jmedchem.1c00770] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 12/27/2022]
Abstract
Chemotherapy with platinum complexes is essential for clinical anticancer therapy. However, due to side effects and drug resistance, further drug improvement is urgently needed. Herein, we report on triple-action platinum(IV) prodrugs, which, in addition to tumor targeting via maleimide-mediated albumin binding, release the immunomodulatory ligand 1-methyl-d-tryptophan (1-MDT). Unexpectedly, structure-activity relationship analysis showed that the mode of 1-MDT conjugation distinctly impacts the reducibility and thus activation of the prodrugs. This in turn affected ligand release, pharmacokinetic properties, efficiency of immunomodulation, and the anticancer activity in vitro and in a mouse model in vivo. Moreover, we could demonstrate that the design of albumin-targeted multi-modal prodrugs using platinum(IV) is a promising strategy to enhance the cellular uptake of bioactive ligands with low cell permeability (1-MDT) and to improve their selective delivery into the malignant tissue. This will allow tumor-specific anticancer therapy supported by a favorably tuned immune microenvironment.
Collapse
Affiliation(s)
- Philipp Fronik
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Isabella Poetsch
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Alexander Kastner
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Theresa Mendrina
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Sonja Hager
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Katharina Hohenwallner
- Faculty
of Chemistry, Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Hemma Schueffl
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Dietmar Herndler-Brandstetter
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Faculty
of Chemistry, Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Evelyn Rampler
- Faculty
of Chemistry, Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Joanna Kopecka
- Department
of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Chiara Riganti
- Department
of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Walter Berger
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Petra Heffeter
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christian R. Kowol
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| |
Collapse
|
76
|
Gabano E, Pinton G, Balzano C, Boumya S, Osella D, Moro L, Ravera M. Unsymmetric Cisplatin-Based Pt(IV) Conjugates Containing a PARP-1 Inhibitor Pharmacophore Tested on Malignant Pleural Mesothelioma Cell Lines. Molecules 2021; 26:4740. [PMID: 34443328 PMCID: PMC8402032 DOI: 10.3390/molecules26164740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Cisplatin is widely employed as a first-line chemotherapeutic agent for many solid tumors, including malignant pleural mesothelioma (MPM). However, its clinical use is limited by heavy side effects and acquired resistance, the latter being mainly related to enhanced DNA repair. Many clinical trials using combinations of platinum drugs and PARP-1 inhibitors (PARPis) have been carried out, with the hope that such combinations might lead to improved therapeutic efficacy against tumors. Here, the synthesis and efficacy in reducing MPM cell viability of four cisplatin-based Pt(IV) prodrugs containing the PARPi 3-aminobenzamide (3-ABA) fragment are described. The most promising conjugate is more effective than cisplatin or cisplatin/3-ABA combination, administered in equimolar doses, in inhibiting PARP-1 activity and inducing apoptosis in BRCA1/2 wild type MPM cells, grown as monolayer or as multicellular spheroids.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (E.G.); (C.B.); (D.O.)
| | - Giulia Pinton
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy; (G.P.); (S.B.)
| | - Cecilia Balzano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (E.G.); (C.B.); (D.O.)
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy; (G.P.); (S.B.)
| | - Sara Boumya
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy; (G.P.); (S.B.)
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (E.G.); (C.B.); (D.O.)
| | - Laura Moro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy; (G.P.); (S.B.)
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (E.G.); (C.B.); (D.O.)
| |
Collapse
|
77
|
Xian C, Chen H, Xiong F, Fang Y, Huang H, Wu J. Platinum-based chemotherapy via nanocarriers and co-delivery of multiple drugs. Biomater Sci 2021; 9:6023-6036. [PMID: 34323260 DOI: 10.1039/d1bm00879j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum-based anticancer drugs can inhibit the growth of cancer cells by disrupting DNA replication, which makes them widely applicable in clinics for treating tumors and cancers. However, owing to the intrinsic or acquired drug resistance and severe side effects caused in the treatment, their successful clinical applications have been limited. Various strategies have been used to address these challenges. Nanocarriers have been used for platinum drug delivery because they can be effectively deposited in tumor tissues to reduce the damage to normal organs for an enhanced permeability and retention (EPR) effect. Furthermore, for synergizing the function of platinum-based drugs with different mechanisms to decrease the toxicities, multicomponent chemotherapy has become an imperative strategy in clinical cancer treatments. This review aims to introduce the mechanisms of action and limitations of platinum-based drugs in clinics, followed by providing the current advancement of nanocarriers including lipids, polymers, dendrimers, micelles and albumin for platinum drug delivery in cancer treatments. In addition, multicomponent chemotherapy based on platinum drugs is introduced in detail. Finally, the prospects of multicomponent chemotherapy for cancer treatment are discussed as well.
Collapse
Affiliation(s)
- Caihong Xian
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, China
| | - Haolin Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, China
| | - Fei Xiong
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, China
| |
Collapse
|
78
|
Qiao X, Gao YY, Zheng LX, Ding XJ, Xu LW, Hu JJ, Gao WZ, Xu JY. Targeting ROS-AMPK pathway by multiaction Platinum(IV) prodrugs containing hypolipidemic drug bezafibrate. Eur J Med Chem 2021; 223:113730. [PMID: 34388483 DOI: 10.1016/j.ejmech.2021.113730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
Alterations in lipid metabolism, commonly disregarded in the past, have been accepted as a hallmark for cancer. Exploring cancer therapeutics that interrupt the lipid metabolic pathways by monotherapy or combination with conventional chemotherapy or immunotherapy is of great importance. Here we modified cisplatin with an FDA-approved hypolipidemic drug, bezafibrate (BEZ), via the well-established Pt(IV) strategy, affording two multi-functional Pt(IV) anticancer agents cis,cis,trans-[Pt(NH3)2Cl2(BEZ)(OH)] (CB) and cis,cis,trans-[Pt(NH3)2Cl2(BEZ)2] (CP) (BEZ = bezafibrate). The Pt(IV) prodrug CB exhibited an enhanced anticancer activity up to 187-fold greater than the clinical anticancer drug cisplatin. Both CB and CP had less toxicity to normal cells, showing higher efficacies and superior therapeutic indexes than cisplatin. Mechanism studies revealed that the bezafibrate-conjugated Pt(IV) complex CB, as a representative, could massively accumulate in A549 cells and genomic DNA, induce DNA damage, elevate intracellular ROS levels, perturb mitochondrial transmembrane potentials, activate the cellular metabolic sensor AMPK, and result in profound proliferation inhibition and apoptosis. Further cellular data also provided evidence that phosphorylation of AMPK, as a metabolic sensor, could suppress the downstream HMGB1, NF-κB, and VEGFA, which may contribute to the inhibition of angiogenesis and metastasis. Our study suggests that the antitumor action of CB and CP mechanistically distinct from the conventional platinum drugs and that functionalizing platinum-based agents with lipid-modulating agents may represent a novel practical strategy for cancer treatment.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yu-Yang Gao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Li-Xia Zheng
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Jing Ding
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ling-Wen Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Juan-Juan Hu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Wei-Zhen Gao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
79
|
Bera A, Gautam S, Raza MK, Kondaiah P, Chakravarty AR. Oxoplatin-B, a cisplatin-based platinum(IV) complex with photoactive BODIPY for mitochondria specific "chemo-PDT" activity. J Inorg Biochem 2021; 223:111526. [PMID: 34246120 DOI: 10.1016/j.jinorgbio.2021.111526] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
Oxoplatin-B, a platinum(IV) complex [Pt(NH3)2Cl2(L1)(OH)] (1) of 4-methylbenzoic acid (HL1) functionalized with 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) was prepared, characterized and its antitumor activity studied. [Pt(NH3)2Cl2(L2)(OH)] (2) of 4-methylbenzoic acid (HL2) was studied as a control. Complex 1 showed an absorption band at 500 nm (ɛ = 4.34 × 104 M-1 cm-1) and an emission band at 515 nm (λex = 488 nm, ΦF = 0.64) in 1% dimethyl sulfoxide/Dulbecco's Modified Eagle's Medium (pH = 7.2). Visible light-induced (400-700 nm) generation of singlet oxygen was evidenced from 1,3-diphenylisobenzofuran titration study. Complex 1 showed photo-induced cytotoxicity in visible light (400-700 nm, 10 J cm-2) against human breast cancer (MCF-7), cervical cancer (HeLa) and lung cancer (A549) cells (IC50: 1.1-3.8 μM) while being less toxic in normal cells. Confocal imaging showed mitochondrial localization with additional evidence from platinum content from isolated mitochondria and 5,5,6,6'-tetrachloro-1,1',3,3' tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1) assay. Cellular apoptosis was observed from Annexin-V-FITC (fluorescein isothiocyanate)/propidium iodide assay.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Srishti Gautam
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
80
|
Can the Self-Assembling of Dicarboxylate Pt(IV) Prodrugs Influence Their Cell Uptake? Bioinorg Chem Appl 2021; 2021:9489926. [PMID: 34239547 PMCID: PMC8235969 DOI: 10.1155/2021/9489926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
The possibility of spontaneous self-assembly of dicarboxylato Pt(IV) prodrugs and the consequences on their uptake in cancer cells have been evaluated in different aqueous solutions. Four Pt(IV) complexes, namely, (OC-6-33)-diacetatodiamminedichloridoplatinum(IV), Ace, (OC-6-33)-diamminedibutanoatodichloridoplatinum(IV), But, (OC-6-33)-diamminedichloridodihexanoatoplatinum(IV), Hex, and (OC-6-33)-diamminedichloridodioctanoatoplatinum(IV), Oct, have been dispersed in i) milliQ water, ii) phosphate buffered saline, and iii) complete cell culture media (RPMI 1640 or DMEM) containing fetal bovine serum (FBS). The samples have been analyzed by dynamic light scattering (DLS) to measure the size and distribution of the nanoparticles possibly present. The zeta potential offered an indication of the stability of the resulting aggregates. In the case of the most lipophilic compounds of the series, namely, Oct and to a lesser extent Hex, the formation of nanosized aggregates has been observed, in particular at the highest concentration tested (10 μM). The cell culture media had the effect to disaggregate these nanoparticles, mainly by virtue of their albumin content, able to interact with the organic chains via noncovalent (hydrophobic) interactions. For Oct, at the highest concentration employed for the uptake tests (10 μM), the combination between passive diffusion and endocytosis of the self-assembled nanoparticles makes the cellular uptake higher than in the presence of passive diffusion only. During the study of cellular uptake on A2780 ovarian cancer cells pretreated with cytochalasin D, a statistically significant inhibition of endocytosis was observed for Oct. In these experimental conditions, the relationship between uptake and lipophilicity becomes almost linear instead of exponential. Since Oct anticancer prodrug is active at nanomolar concentrations, where the aggregation in culture media is almost abolished, this phenomenon should not significantly impact its antiproliferative activity.
Collapse
|
81
|
Krasnovskaya O, Spector D, Erofeev A, Gorelkin P, Akasov R, Skvortsov D, Trigub A, Vlasova K, Semkina A, Zyk N, Beloglazkina E, Majouga A. Alternative mechanism of action of the DNP Pt IV prodrug: intracellular cisplatin release and the mitochondria-mediated apoptotic pathway. Dalton Trans 2021; 50:7922-7927. [PMID: 34037020 DOI: 10.1039/d1dt00898f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In a recent research paper Dr. Suxing Jin et al. reported two multispecific PtIV complexes DNP and NP with non-steroidal anti-inflammatory drug naproxen (NPX) as the axial ligand(s). Herein, we clarify the mechanism of action of DNP, its therapeutic target and intracellular redox-status.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Daniil Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Peter Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia
| | - Roman Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russia and Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow, 119333, Russia
| | - Dmitry Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and Faculty of biology and biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow, 101000, Russia
| | - Alexander Trigub
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, Moscow, 123182, Russia
| | - Ksenia Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia.
| | - Alevtina Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov str. 1, Moscow, 117997, Russia and Serbsky National Medical Research Center for Psychiatry and Narcology, Department of Basic and Applied Neurobiology, Kropotkinskiy 23, Moscow 119991, Russia
| | - Nikolay Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia.
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia.
| | - Alexander Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1, 3, Moscow, 119991, Russia. and National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 101000, Russia and Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad' 9, Moscow, 125047, Russia
| |
Collapse
|
82
|
Barbanente A, Iacobazzi RM, Azzariti A, Hoeschele JD, Denora N, Papadia P, Pacifico C, Natile G, Margiotta N. New Oxaliplatin-Pyrophosphato Analogs with Improved In Vitro Cytotoxicity. Molecules 2021; 26:3417. [PMID: 34200051 PMCID: PMC8200237 DOI: 10.3390/molecules26113417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Two new Pt(II)-pyrophosphato complexes containing the carrier ligands cis-1,3-diaminocyclohexane (cis-1,3-DACH) and trans-1,2-diamine-4-cyclohexene (1,2-DACHEX), variants of the 1R,2R-diaminocyclohexane ligand present in the clinically used Pt-drug oxaliplatin, have been synthesized with the aim of developing new potential antitumor drugs with high bone tropism. The complexes are more stable at physiological pH than in acid conditions, with Na2[Pt(pyrophosphato)(cis-1,3-DACH)] (1) slightly more stable than [Pt(dihydrogenpyrophosphato)(1,2-DACHEX)] (2). The greater reactivity at acidic pH ensures a greater efficacy at the tumor site. Preliminary NMR studies indicate that 1 and 2 react slowly with 5'-GMP (used as a model of nucleic acids), releasing the pyrophosphate ligand and affording the bis 5'-GMP adduct. In vitro cytotoxicity assays performed against a panel of four human cancer cell lines have shown that both compounds are more active than oxaliplatin. Flow cytometry studies on HCT116 cells showed that the pyrophosphato compounds with the non-classical 1,3- and 1,4-diaminocyclohexane ligands (1 and 4) are the most capable to induce cells' death by apoptosis and necrosis.
Collapse
Affiliation(s)
- Alessandra Barbanente
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (A.B.); (C.P.); (G.N.)
| | - Rosa Maria Iacobazzi
- Laboratorio di Farmacologia Sperimentale, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - Amalia Azzariti
- Laboratorio di Farmacologia Sperimentale, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - James D. Hoeschele
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI 48197, USA;
| | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Paride Papadia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy;
| | - Concetta Pacifico
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (A.B.); (C.P.); (G.N.)
| | - Giovanni Natile
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (A.B.); (C.P.); (G.N.)
| | - Nicola Margiotta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (A.B.); (C.P.); (G.N.)
| |
Collapse
|
83
|
Liang Z, Lin J, Gong X, Cheng Y, Huang C, Zhang J, Wu X, Wang F, Zhao Y, Wu K. Reactions of a photoactivatable diazido Pt(iv) anticancer complex with a single-stranded oligodeoxynucleotide. Dalton Trans 2021; 49:11249-11259. [PMID: 32756682 DOI: 10.1039/d0dt02208j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum based anticancer agents are widely applied in clinic and their major target is believed to be DNA. Herein, the interaction of a photoactivatable diazido Pt(iv) anticancer prodrug trans,trans,trans-[Pt(N3)2(OH)2(py)2] (py = pyridine; 1) with a 15-mer single-G-containing oligodeoxynucleotide (ODN I: 5'-CT2CTCTTG8T9CT11TCTC-3') was investigated by mass spectrometric methods. Up to penta-platinated ODN I adducts were identified from primary mass spectra while the mono- and di-platinated adducts had the highest intensity. Fragmentation of mono-, di- and tri-platinated I adducts in tandem MS revealed that T2, G8, T11 and T9 are binding sites. No cytosine sites were identified which may be due to the facile loss of Pt adducts from cytosine during CID. The intensity of {Pt(py)2}-bound adducts was comparable to that of {Pt(N3)(py)2}-bound adducts, indicating that the photo-reduction pathway of complex 1 from Pt(iv) to Pt(ii) through two one-electron donations from two azides was substantial. Moreover, no transformation of N3 to NH3 on the {Pt(N3)(py)2}-bound adducts was observed, whereas it is very popular during the reactions of complexes with short ODNs or mono-nucleotides. The oxidation on I induced by the reactive oxygen species (ROS) formed by the photodecomposition of complex 1 was significant, and the oxidation of G8 to 8-hydroxyguanine (8-OH-G), spiroiminodihydantoin (Sp) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) was discovered. These results unambiguously revealed a sequence-length-dependent photochemical reactivity of complex 1 when it interacted with different ODNs, providing deeper understanding in the reactivity of photoactivatable diazido anticancer Pt(iv) prodrugs to DNA.
Collapse
Affiliation(s)
- Zujun Liang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Jiafan Lin
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xianxian Gong
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Yiyu Cheng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Chao Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Jishuai Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
84
|
Biodistribution and efficacy of the anticancer drug, oxaliplatin palmitate acetate, in mice. Int J Pharm 2021; 604:120740. [PMID: 34062232 DOI: 10.1016/j.ijpharm.2021.120740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Oxaliplatin palmitate acetate (OPA), a platinum (IV) oxaliplatin derivative, was previously designed with the aim to improve the platinum-based anti-cancer therapy. In this work, we further explore the potential of OPA in extensive in vitro and in vivo studies. OPA in pancreatic (BxPC3-luc), lung (NCI-H1993) and liver (Hep3B) cancer cell lines showed a higher toxicity in comparison to oxaliplatin. The in vitro release kinetic experiments of OPA from the nanoparticles (NPs) under sink conditions exhibited a very rapid profile. Furthermore, OPA cannot be considered a prodrug of oxaliplatin, based on the OPA intact molecule pharmacokinetic profile study in rats. The formation of oxaliplatin from the biodegradation of OPA ranges only from 5% to 7% and both drugs were rapidly eliminated from the plasma. Pharmacokinetics of OPA PLGA nanoparticles in mice showed that nanoparticles failed to prolong the release of OPA in the plasma and did not add any therapeutic benefit over OPA solution, as suggested by the rapid in vitro release of OPA from nanoparticles. In pancreatic xenograft BxPC3-luc cancer model, both OPA in solution and OPA nanoparticles inhibited the tumor growth, equally and significantly, as compared to oxaliplatin. In liver xenograft Hep3B cancer model, OPA solution and cisplatin demonstrated good and similar antitumor efficacy. In lung xenograft NCI-H1993 cancer model, OPA solution, with a significant antitumor efficacy, was superior to cisplatin, which did not differ from the vehicle. In conclusion, OPA may offer a promising advance in platinum-based chemotherapy against various forms of cancers in an adequate dose and schedule.
Collapse
|
85
|
Harringer S, Hejl M, Enyedy ÉA, Jakupec MA, Galanski MS, Keppler BK, Dyson PJ, Varbanov HP. Multifunctional Pt(iv) prodrug candidates featuring the carboplatin core and deferoxamine. Dalton Trans 2021; 50:8167-8178. [PMID: 34031671 DOI: 10.1039/d1dt00214g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synergistic combination of the anticancer drug carboplatin and the iron chelator deferoxamine (DFO) served as a foundation for the development of novel multifunctional prodrugs. Hence, five platinum(iv) complexes, featuring the equatorial coordination sphere of carboplatin, and one or two DFO units incorporated at axial positions, were synthesized and characterized using ESI-HRMS, multinuclear (1H, 13C, 15N, 195Pt) NMR spectroscopy and elemental analysis. Analytical studies demonstrated that the chelating properties of the DFO moiety were not compromised after coupling to the platinum(iv) core. The cytotoxic activity of the compounds was evaluated in monolayer (2D) and spheroid (3D) cancer cell models, derived from ovarian teratocarcinoma (CH1/PA-1), colon carcinoma (SW480) and non-small cell lung cancer (A549). The platinum(iv)-DFO prodrugs demonstrated moderate in vitro cytotoxicity (a consequence of their slow activation kinetics) but with less pronounced differences between intrinsically chemoresistant and chemosensitive cell lines as well as between 2D and 3D models than the clinically used platinum(ii) drug carboplatin.
Collapse
Affiliation(s)
- Sophia Harringer
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
87
|
Cirri D, Bartoli F, Pratesi A, Baglini E, Barresi E, Marzo T. Strategies for the Improvement of Metal-Based Chemotherapeutic Treatments. Biomedicines 2021; 9:504. [PMID: 34064364 PMCID: PMC8147839 DOI: 10.3390/biomedicines9050504] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
This article provides an overview of the various research approaches we have explored in recent years to improve metal-based agents for cancer or infection treatments. Although cisplatin, carboplatin, and oxaliplatin remain the cornerstones in tumor chemotherapy, the discovery and approval of novel inorganic anticancer drugs is a very slow process. Analogously, although a few promising inorganic drugs have found clinical application against parasitic or bacterial infections, their use remains relatively limited. Moreover, the discovery process is often affected by small therapeutic enhancements that are not attractive for the pharmaceutical industry. However, the availability of increasing mechanistic information for the modes of action of established inorganic drugs is fueling the exploration of various approaches for developing effective inorganic chemotherapy agents. Through a series of examples, some from our own research experience, we focus our attention on a number of promising strategies, including (1) drug repurposing, (2) the simple modification of the chemical structures of approved metal-based drugs, (3) testing novel drug combinations, and (4) newly synthesized complexes coupling different anticancer drugs. Accordingly, we aim to suggest and summarize a series of reliable approaches that are exploitable for the development of improved and innovative treatments.
Collapse
Affiliation(s)
- Damiano Cirri
- Department of Chemistry and Industrial Chemistry (DCCI), Univerisity of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy;
| | - Francesco Bartoli
- Department of Translational Research and of New Surgical and Medical Technologies, Univerisity of Pisa, Via Risorgimento, 36, 56126 Pisa, Italy;
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry (DCCI), Univerisity of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy;
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (E.B.); (E.B.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (E.B.); (E.B.)
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (E.B.); (E.B.)
| |
Collapse
|
88
|
Srinivasulu YG, Mozhi A, Goswami N, Yao Q, Xie J. Traceable Nanocluster–Prodrug Conjugate for Chemo-photodynamic Combinatorial Therapy of Non-small Cell Lung Cancer. ACS APPLIED BIO MATERIALS 2021; 4:3232-3245. [DOI: 10.1021/acsabm.0c01611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yuvasri Genji Srinivasulu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| | - Anbu Mozhi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, Odisha 751013, India
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| |
Collapse
|
89
|
Ramu V, Kundu P, Kondaiah P, Chakravarty AR. Maloplatin-B, a Cisplatin-Based BODIPY-Tagged Mito-Specific "Chemo-PDT" Agent Active in Red Light. Inorg Chem 2021; 60:6410-6420. [PMID: 33843212 DOI: 10.1021/acs.inorgchem.1c00124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Maloplatin-B, a cisplatin-based complex, namely [Pt(A-BOD)(NH3)2](NO3) (Pt-A-BOD) with a pendant boron-dipyrromethene (BODIPY) moiety, where HA-BOD is a methyl malonyl chloride derived monostyryl BODIPY ligand, was designed and developed as near-IR light (600-720 nm) organelle-targeting photodynamic therapy agent. The complex [Pt(acac)(NH3)2](NO3) (Pt-Ac) was used as a control. Pt-A-BOD displayed an absorption band at 616 nm (ε = 2.9 × 104 M-1 cm-1) in 10% dimethyl sulfoxide/Dulbecco's Modified Eagle's Medium (DMSO/DMEM, pH 7.2). This complex displayed a broad emission band within 650-850 nm with a λem value of 720 nm in 10% DMSO-DMEM (pH 7.2) upon excitation (λex) at 615 nm with a large Stokes shift. The fluorescence quantum yield (ΦF) value for Pt-A-BOD is 0.032 and for the ligand HA-BOD is 0.24. The BODIPY complex and ligand showed the formation of singlet oxygen as the ROS (reactive oxygen species) on irradiation with near-IR red light of 660 nm, as evidenced from a 1,3-diphenylisobenzofuran (DPBF) assay. The complex displayed remarkable apoptotic NIR light-induced PDT activity with half-maximum inhibitory concentration values (IC50) of 1.6-2.4 μM in A549 lung and HeLa cervical cancer cells, while it was less active in the dark. The cellular ROS generation by the complex in red light was ascertained by a DCFDA (2',7'-dichlorofluorescein diacetate) assay. Cellular imaging showed its localization primarily in the mitochondria of A549 cancer cells. The JC1 and Annexin-V FITC/PI assays carried out for A549 cancer cells treated with the BODIPY complex showed the alteration of mitochondrial membrane potential and apoptotic cell death on near-IR red light (600-720 nm) irradiation, respectively.
Collapse
|
90
|
Leal J, Santos L, Fernández-Aroca DM, Cuevas JV, Martínez MA, Massaguer A, Jalón FA, Ruiz-Hidalgo MJ, Sánchez-Prieto R, Rodríguez AM, Castañeda G, Durá G, Carrión MC, Barrabés S, Manzano BR. Effect of the aniline fragment in Pt(II) and Pt(IV) complexes as anti-proliferative agents. Standard reduction potential as a more reliable parameter for Pt(IV) compounds than peak reduction potential. J Inorg Biochem 2021; 218:111403. [PMID: 33730639 DOI: 10.1016/j.jinorgbio.2021.111403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
The problems of resistance and side effects associated with cisplatin and other chemotherapeutic drugs have boosted research aimed at finding new compounds with improved properties. The use of platinum(IV) prodrugs is one alternative, although there is some controversy regarding the predictive ability of the peak reduction potentials. In the work described here a series of fourteen chloride Pt(II) and Pt(IV) compounds was synthesised and fully characterised. The compounds contain different bidentate arylazole heterocyclic ligands. Their cytotoxic properties against human lung carcinoma (A549), human breast carcinoma (MCF7) and human colon carcinoma (HCT116 and HT29) cell lines were studied. A clear relationship between the type of ligand and the anti-proliferative properties was found, with the best results obtained for the Pt(II) compound that contains an aniline fragment, (13), thus evidencing a positive effect of the NH2 group. Stability and aquation studies in DMSO, DMF and DMSO/water mixtures were carried out on the active complexes and an in-depth analysis of the two aquation processes, including DFT analysis, of 13 was undertaken. It was verified that DNA was the target and that cell death occurred by apoptosis in the case of 13. Furthermore, the cytotoxic derivatives did not exhibit haemolytic activity. The reduction of the Pt(IV) compounds whose Pt(II) congeners were active was studied by several techniques. It was concluded that the peak reduction potential was not useful to predict the ability for reduction. However, a correlation between the cytotoxic activity and the standard reduction potential was found.
Collapse
Affiliation(s)
- Jorge Leal
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Lucia Santos
- Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela s/n, 13071 Ciudad Real, Spain
| | - Diego M Fernández-Aroca
- Universidad de Castilla-La Mancha, Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - J Vicente Cuevas
- Universidad de Burgos, Department of Chemistry, Pza. Misael Bañuelos S/N, 09001 Burgos, Spain
| | - M Angeles Martínez
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Anna Massaguer
- Departamento de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Felix A Jalón
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - M José Ruiz-Hidalgo
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina de Albacete, Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas De Madrid Alberto Sols (CSIC-UAM), Universidad de Castilla-La Mancha, Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Gregorio Castañeda
- Universidad de Castilla-La Mancha, Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela s/n, 13071 Ciudad Real, Spain
| | - Gema Durá
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - M Carmen Carrión
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Sílvia Barrabés
- Departamento de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Blanca R Manzano
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain.
| |
Collapse
|
91
|
Ravera M, Gabano E, Zanellato I, Rangone B, Perin E, Ferrari B, Bottone MG, Osella D. Cis,cis,trans-[Pt IVCl 2(NH 3) 2(perillato) 2], a dual-action prodrug with excellent cytotoxic and antimetastatic activity. Dalton Trans 2021; 50:3161-3177. [PMID: 33595015 DOI: 10.1039/d0dt04051g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two Pt(iv) conjugates containing one or two molecules of perillic acid (4-isopropenylcyclohexene-1-carboxylic acid), an active metabolite of limonene, were synthesized both with traditional and microwave-assisted methods and characterized. Their antiproliferative activity was tested on a panel of human tumor cell lines. In particular, cis,cis,trans-[PtIVCl2(NH3)2(perillato)2] exhibited excellent antiproliferative and antimetastatic activity on A-549 lung tumor cells at nanomolar concentrations. A number of in vitro biological tests were performed to decipher some aspects of its mechanism of action, including transwell migration and invasion as well as wound healing assay.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Theiner S, Schoeberl A, Schweikert A, Keppler BK, Koellensperger G. Mass spectrometry techniques for imaging and detection of metallodrugs. Curr Opin Chem Biol 2021; 61:123-134. [PMID: 33535112 DOI: 10.1016/j.cbpa.2020.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
Undoubtedly, metallomic approaches based on mass spectrometry have evolved into essential tools supporting the drug development of novel metal-based anticancer drugs. This article will comment on the state-of-the-art instrumentation and highlight some of the recent analytical advances beyond routine, especially focusing on the latest developments in inductively coupled plasma-mass spectrometry (ICP-MS). Mass spectrometry-based bioimaging and single-cell methods will be presented, paving the way to exciting investigations of metal-based anticancer drugs in heterogeneous and structurally, as well as functionally complex solid tumor tissues.
Collapse
Affiliation(s)
- Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Andreas Schweikert
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria; Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
93
|
Lee VEY, Lim ZC, Chew SL, Ang WH. Strategy for Traceless Codrug Delivery with Platinum(IV) Prodrug Complexes Using Self-Immolative Linkers. Inorg Chem 2021; 60:1823-1831. [DOI: 10.1021/acs.inorgchem.0c03299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Violet Eng Yee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Zhi Chiaw Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Suet Li Chew
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| |
Collapse
|
94
|
Liu Z, Li Z, Du T, Chen Y, Wang Q, Li G, Liu M, Zhang N, Li D, Han J. Design, synthesis and biological evaluation of dihydro-2-quinolone platinum(iv) hybrids as antitumor agents displaying mitochondria injury and DNA damage mechanism. Dalton Trans 2021; 50:362-375. [PMID: 33319888 DOI: 10.1039/d0dt03194a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design of novel platinum(iv) complexes with mitochondria injury competence, besides the DNA damage mechanism, is a promising way to develop new platinum drugs. Herein, dihydro-2-quinolone (DHQLO) as a mitocan was incorporated into the platinum(iv) system for the first time to prepare a new series of DHQLO platinum(iv) compounds. Complex 1b could effectively inhibit the proliferation of tumor cells in vitro and in vivo. It accumulated at higher levels in both whole cells and DNA, and easily underwent intercellular reduction to release platinum(ii) and DHQLO moieties. The released platinum(ii) complex caused serious DNA damage by covalent conjunction with the DNA duplex, and remarkably increased the expression of the γ-H2AX protein. Moreover, 1b also caused serious mitochondria injury to induce mitochondrial membrane depolarization and increase ROS generation. Such actions upon DNA and mitochondria activate the p53 apoptotic pathway synergetically in tumor cells by upregulating the protein p53 and apoptotic proteins caspase9 and caspase3, which efficiently promoted the apoptotic death of tumor cells. Compound 1b with such synergic mechanism exhibited great potential in reversing cisplatin resistance and improving antitumor efficacies.
Collapse
Affiliation(s)
- Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Xu Z, Tang WK, Zhou Q, Chen S, Siu CK, Zhu G. On the hydrolytic stability of unsymmetric platinum(iv) anticancer prodrugs containing axial halogens. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00208b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The hydrolytic stability of Pt(iv) complexes is determined by all the six ligands that coordinate to the Pt(iv) center. By appropriately choosing all the ligands during the design of Pt(iv) prodrugs, the stability of Pt(iv) prodrugs can be improved.
Collapse
Affiliation(s)
- Zoufeng Xu
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
- City University of Hong Kong Shenzhen Research Institute
| | - Wai Kit Tang
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
| | - Qiyuan Zhou
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
- City University of Hong Kong Shenzhen Research Institute
| | - Shu Chen
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
- City University of Hong Kong Shenzhen Research Institute
| | - Chi-Kit Siu
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
- City University of Hong Kong Shenzhen Research Institute
| |
Collapse
|
96
|
Huang M, Myers CR, Wang Y, You M. Mitochondria as a Novel Target for Cancer Chemoprevention: Emergence of Mitochondrial-targeting Agents. Cancer Prev Res (Phila) 2020; 14:285-306. [PMID: 33303695 DOI: 10.1158/1940-6207.capr-20-0425] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Cancer chemoprevention is the most effective approach to control cancer in the population. Despite significant progress, chemoprevention has not been widely adopted because agents that are safe tend to be less effective and those that are highly effective tend to be toxic. Thus, there is an urgent need to develop novel and effective chemopreventive agents, such as mitochondria-targeted agents, that can prevent cancer and prolong survival. Mitochondria, the central site for cellular energy production, have important functions in cell survival and death. Several studies have revealed a significant role for mitochondrial metabolism in promoting cancer development and progression, making mitochondria a promising new target for cancer prevention. Conjugating delocalized lipophilic cations, such as triphenylphosphonium cation (TPP+), to compounds of interest is an effective approach for mitochondrial targeting. The hyperpolarized tumor cell membrane and mitochondrial membrane potential allow for selective accumulation of TPP+ conjugates in tumor cell mitochondria versus those in normal cells. This could enhance direct killing of precancerous, dysplastic, and tumor cells while minimizing potential toxicities to normal cells.
Collapse
Affiliation(s)
- Mofei Huang
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Charles R Myers
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yian Wang
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ming You
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin. .,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
97
|
Deng Z, Wang N, Ai F, Wang Z, Zhu G. Nanomaterial‐mediated platinum drug‐based combinatorial cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Na Wang
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Fujin Ai
- College of Health Science and Environment Engineering Shenzhen Technology University Shenzhen P. R. China
| | - Zhigang Wang
- School of Pharmaceutical Sciences Health Science Center Shenzhen University Shenzhen P. R. China
| | - Guangyu Zhu
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| |
Collapse
|
98
|
Karmakar S, Kostrhunova H, Ctvrtlikova T, Novohradsky V, Gibson D, Brabec V. Platinum(IV)-Estramustine Multiaction Prodrugs Are Effective Antiproliferative Agents against Prostate Cancer Cells. J Med Chem 2020; 63:13861-13877. [PMID: 33175515 DOI: 10.1021/acs.jmedchem.0c01400] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we describe the synthesis, characterization, and biological properties of Pt(IV) derivatives of cisplatin with estramustine at the first axial position, which is known to disrupt the microtubule assembly and act as an androgen antagonist, and varying the second axial position using an innocent ligand (acetate or hydroxyl) to prepare dual-action and triple-action prodrugs with known inhibitors of histone deacetylase, cyclooxygenase, and pyruvate dehydrogenase kinase. We demonstrate superior antiproliferative activity at submicromolar concentrations of the prodrugs against a panel of cancer cell lines, particularly against prostate cancer cell lines. The results obtained in this study exemplify the complex mode of action of "multiaction" Pt(IV) prodrugs. Interestingly, changing the second axial ligand in the Pt-estramustine complex has a significant effect on the mode of action, suggesting that all three components of the Pt(IV) prodrugs (platinum moiety and axial ligands) contribute to the killing of cells and not just one dominant component.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Tereza Ctvrtlikova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| |
Collapse
|
99
|
Photoactivatable Platinum-Based Anticancer Drugs: Mode of Photoactivation and Mechanism of Action. Molecules 2020; 25:molecules25215167. [PMID: 33171980 PMCID: PMC7664195 DOI: 10.3390/molecules25215167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Platinum-based anticancer drugs are a class of widely used agents in clinical cancer treatment. However, their efficacy was greatly limited by their severe side effects and the arising drug resistance. The selective activation of inert platinum-based drugs in the tumor site by light irradiation is able to reduce side effects, and the novel mechanism of action of photoactivatable platinum drugs might also conquer the resistance. In this review, the recent advances in the design of photoactivatable platinum-based drugs were summarized. The complexes are classified according to their mode of action, including photoreduction, photo-uncaging, and photodissociation. The rationale of drug design, dark stability, photoactivation process, cytotoxicity, and mechanism of action of typical photoactivatable platinum drugs were reviewed. Finally, the challenges and opportunities for designing more potent photoactivatable platinum drugs were discussed.
Collapse
|
100
|
Inhibition of histone deacetylases, topoisomerases and epidermal growth factor receptor by metal-based anticancer agents: Design & synthetic strategies and their medicinal attributes. Bioorg Chem 2020; 105:104396. [PMID: 33130345 DOI: 10.1016/j.bioorg.2020.104396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Metal-based inhibitors of histone deacetylases (HDAC), DNA topoisomerases (Topos) and Epidermal Growth Factor Receptor (EGFR) have demonstrated their cytotoxic potential against various cancer types such as breast, lung, uterus, colon, etc. Additionally, these have proven their role in resolving the resistance issues, enhancing the affinity, lipophilicity, stability, and biocompatibility and therefore, emerged as potential candidates for molecularly targeted therapeutics. This review focusses on nature and role of metals and organic ligands in tuning the anticancer activity in multiple modes of inhibition considering HDACs, Topos or EGFR as one of the primary targets. The conceptual design and synthetic approaches of platinum and non-platinum metal complexes comprising of chiefly ruthenium, rhodium, palladium, copper, iron, nickel, cobalt, zinc metals coordinated with organic scaffolds, along with their biological activity profiles, structure-activity relationships (SARs), docking studies, possible modes of action, and their scope and limitations are discussed in detail.
Collapse
|