51
|
Amini MA, Ahmed T, Liu FCF, Abbasi AZ, Soeandy CD, Zhang RX, Prashad P, Cummins CL, Rauth AM, Henderson JT, Wu XY. Exploring the transformability of polymer-lipid hybrid nanoparticles and nanomaterial-biology interplay to facilitate tumor penetration, cellular uptake and intracellular targeting of anticancer drugs. Expert Opin Drug Deliv 2021; 18:991-1004. [PMID: 33703991 DOI: 10.1080/17425247.2021.1902984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Successful delivery of anticancer drugs to intracellular targets requires different properties of the nanocarrier to overcome multiple transport barriers. However, few nanocarrier systems, to date, possess such properties, despite knowledge about the biological fate of inorganic and polymeric nanocarriers in relation to their fixed size, shape and surface properties. Herein, a polymer-lipid hybrid nanoparticle (PLN) system is described with size and shape transformability and its mechanisms of cellular uptake and intracellular trafficking are studied. METHODS Pharmaceutical lipids were screened for use in transformable PLN. Mechanisms of cellular uptake and the role of fatty acid-binding proteins in intracellular trafficking of PLN were investigated in breast cancer cells. Intra-tumoral penetration and retention of doxorubicin (DOX) were evaluated by confocal microscopy. RESULTS The lead PLNs showed time-dependent size reduction and shape change from spherical to spiky shape. This transformability of PLNs and lipid trafficking pathways facilitated intracellular transport of DOX-loaded PLN (DOX-PLN) into mitochondria and nuclei. DOX-PLN significantly increased DOX penetration and retention over free DOX or non-transformable liposomal DOX particles at 4 h post-intravenous administration. CONCLUSION Transformability of PLN and lipid-biology interplay can be exploited to design new nanocarriers for effective drug delivery to tumor cells and intracellular targets.
Collapse
Affiliation(s)
- Mohammad Ali Amini
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Taksim Ahmed
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Azhar Z Abbasi
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Chesarahmia Dojo Soeandy
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Rui Xue Zhang
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Preethy Prashad
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
52
|
Wu H, Cui Z, Huo Y, Sun Y, Zhang X, Guan J, Mao S. Influence of drug-carrier compatibility and preparation method on the properties of paclitaxel-loaded lipid liquid crystalline nanoparticles. J Pharm Sci 2021; 110:2800-2807. [PMID: 33785353 DOI: 10.1016/j.xphs.2021.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
The main objective of this paper is to elucidate the influence of drug-carrier compatibility and preparation method on the properties of Paclitaxel (PTX)-loaded lipid liquid crystalline nanoparticles (LLCNs). Here, glyceryl monooleate (GMO), glycerol monolinoleate (GML), glyceryl monolinolenate (GMLO) were selected as the lipids, and Soluplus, Poloxamer 407 (P407), Tween 80 were selected as the stabilizer to prepare LLCNs. First of all, PTX-carrier compatibility was screened by molecular dynamic simulation using Flory-Huggins interaction parameter as the criteria. Thereafter, PTX-loaded LLCNs were prepared under different energy input conditions and were characterized. Influence of lipid type, stabilizer type, drug-lipid ratio and preparation method on properties of the LLCNs was explored. It was found that both lipid and stabilizer type had significant influence on drug encapsulation efficiency. Compared to the LLCNs prepared under high energy condition, PTX-loaded LLCN prepared under low energy input had higher drug encapsulation efficiency, smaller particle size (211.6 nm versus 346.8 nm) and a sustained release behavior. In conclusion, molecular dynamic simulation is an effective tool to select the most appropriate composition of LLCNs for a specific drug substance, and LLCNs prepared using low energy input methods was particularly applicable for industrial manufacture.
Collapse
Affiliation(s)
- Haiyang Wu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhixiang Cui
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yingnan Huo
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yujiao Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
53
|
Bochicchio S, Lamberti G, Barba AA. Polymer-Lipid Pharmaceutical Nanocarriers: Innovations by New Formulations and Production Technologies. Pharmaceutics 2021; 13:198. [PMID: 33540659 PMCID: PMC7913085 DOI: 10.3390/pharmaceutics13020198] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Some issues in pharmaceutical therapies such as instability, poor membrane permeability, and bioavailability of drugs can be solved by the design of suitable delivery systems based on the combination of two pillar classes of ingredients: polymers and lipids. At the same time, modern technologies are required to overcome production limitations (low productivity, high energy consumption, expensive setup, long process times) to pass at the industrial level. In this paper, a summary of applications of polymeric and lipid materials combined as nanostructures (hybrid nanocarriers) is reported. Then, recent techniques adopted in the production of hybrid nanoparticles are discussed, highlighting limitations still present that hold back the industrial implementation.
Collapse
Affiliation(s)
- Sabrina Bochicchio
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy
| | - Gaetano Lamberti
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy
- Dipartimento di Ingegneria Industriale, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Anna Angela Barba
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
54
|
Therapeutic Apheresis, Circulating PLD, and Mucocutaneous Toxicity: Our Clinical Experience through Four Years. Pharmaceutics 2020; 12:pharmaceutics12100940. [PMID: 33008072 PMCID: PMC7600532 DOI: 10.3390/pharmaceutics12100940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer treatment has been greatly improved by the combined use of targeted therapies and novel biotechnological methods. Regarding the former, pegylated liposomal doxorubicin (PLD) has a preferential accumulation within cancer tumors, thus having lower toxicity on healthy cells. PLD has been implemented in the targeted treatment of sarcoma, ovarian, breast, and lung cancer. In comparison with conventional doxorubicin, PLD has lower cardiotoxicity and hematotoxicity; however, PLD can induce mucositis and palmo-plantar erythrodysesthesia (PPE, hand-foot syndrome), which limits its use. Therapeutical apheresis is a clinically proven solution against early PLD toxicity without hindering the efficacy of the treatment. The present review summarizes the pharmacokinetics and pharmacodynamics of PLD and the beneficial effects of extracorporeal apheresis on the incidence of PPE during chemoradiotherapy in cancer patients.
Collapse
|
55
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 DOI: 10.3389/fmolb.2020.00193/bibtex] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
56
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 PMCID: PMC7468194 DOI: 10.3389/fmolb.2020.00193] [Citation(s) in RCA: 449] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
57
|
Rizwanullah M, Ahmad J, Amin S, Mishra A, Ain MR, Rahman M. Polymer-Lipid Hybrid Systems: Scope of Intravenous-To-Oral Switch in Cancer Chemotherapy. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2468187309666190514083508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer chemotherapeutic administration by oral route has the potential to create
“hospitalization free chemotherapy”. Such a therapeutic approach will improve patient
compliance and significantly reduce the cost of treatment. In current clinical practice,
chemotherapy is primarily carried out by intravenous injection or infusion and leads
to various unwanted effects. Despite the presence of oral delivery challenges like poor
aqueous solubility, low permeability, drug stability and substrate for multidrug efflux
transporter, cancer chemotherapy delivery through oral administration has gained much
attention recently due to having more patient compliance compared to the intravenous
mode of administration. In order to address the multifaceted oral drug delivery challenges,
a hybrid delivery system is conceptualized to merge the benefits of both polymeric
and lipid-based drug carriers. Polymer-lipid hybrid systems have presented various significant
benefits as an efficient carrier to facilitate oral drug delivery by surmounting the
different associated obstacles. This carrier system has been found suitable to overcome
the numerous oral absorption hindrances and facilitate the intravenous-to-oral switch in
cancer chemotherapy. In this review, we aimed to discuss the different biopharmaceutic
challenges in oral delivery of cancer chemotherapy and how this hybrid system may provide
solutions to such challenges.
Collapse
Affiliation(s)
- Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Javed Ahmad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, UP-229010, India
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, UP-229010, India
| | | | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS) Allahabad, UP-211007, India
| |
Collapse
|
58
|
Rabiee N, Ahmadi S, Arab Z, Bagherzadeh M, Safarkhani M, Nasseri B, Rabiee M, Tahriri M, Webster TJ, Tayebi L. Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: A Review. Int J Nanomedicine 2020; 15:4237-4256. [PMID: 32606675 PMCID: PMC7314593 DOI: 10.2147/ijn.s248736] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting approach for cancer treatment in the decades ahead to meet our growing societal needs.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Arab
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department and Bioengineering Division, Hacettepe University, Beytepe, Ankara06800, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI53233, USA
| |
Collapse
|
59
|
Bou S, Wang X, Anton N, Bouchaala R, Klymchenko AS, Collot M. Lipid-core/polymer-shell hybrid nanoparticles: synthesis and characterization by fluorescence labeling and electrophoresis. SOFT MATTER 2020; 16:4173-4181. [PMID: 32286601 DOI: 10.1039/d0sm00077a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Among the lipid nanoparticles, lipid polymer hybrid nanoparticles (HNPs) composed of an oily core and a polymeric shell display interesting features as efficient drug carriers due to the high loading capability of the oil phase and the stability and surface functionalization of the polymer shell. Herein, we formulated lipid-core/polymer-shell hybrid nanoparticles (HNPs) using a simple nanoprecipitation method involving Vitamin E Acetate (VEA) as the oily core and a tailor-made amphiphilic polymer as a wrapping shell. The fluorescence labeling of the oil, using a newly developed green fluorogenic BODIPY tracker, and of the polymer using a covalent attachment of a red emitting rhodamine was done to assess the formation, the composition and the stability of these new hybrid nanoparticles using dual color electrophoresis gel analysis. This technique, combined to conventional DLS and electronic microscopy analysis, allowed us to quickly determine that 20 wt% of the polymer was an optimal ratio for obtaining stable HNPs by nanoprecipiation. Finally, we showed that using different polymeric shells, various HNPs can be obtained and finely discriminated using a combined approach of electrophoresis and two-color labeling.
Collapse
Affiliation(s)
- Sophie Bou
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, University of Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
60
|
Alves SR, Colquhoun A, Wu XY, de Oliveira Silva D. Synthesis of terpolymer-lipid encapsulated diruthenium(II,III)-anti-inflammatory metallodrug nanoparticles to enhance activity against glioblastoma cancer cells. J Inorg Biochem 2019; 205:110984. [PMID: 31927403 DOI: 10.1016/j.jinorgbio.2019.110984] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 01/04/2023]
Abstract
Novel formulations of diruthenium(II,III)-NSAID (NSAID, non-steroidal anti-inflammatory drug) metallodrugs encapsulated into biocompatible terpolymer-lipid nanoparticles (TPLNs) to target glioblastoma cancer were developed. The nanoformulations of Ibuprofenate (RuIbp) and Naproxenate (RuNpx) metallodrugs were synthesized and characterized. The procedure rationally designed to avoid structural changes on the coordination sphere of the [Ru2(NSAID)4]+ paddlewheel unit succeeded in giving colloidally stable and nearly spherical shaped loaded [Ru2(NSAID)4]-TPLNs with appropriate parameters (~90% loading efficiency; drug loading around 10%; particle size ~130 nm; zeta potential around - 40 mV). The maintenance of the [Ru2(NSAID)4]+ framework was confirmed by spectroscopy and mass spectrometry. The encapsulation enhanced antiproliferative effects in U87MG cells for both metallodrugs. The RuIbp-TPLNs showed efficacy also against the cisplatin chemoresistant T98G cancer cells. Lack of significant effects for the loaded-Ibuprofen-TPLNs (HIbp-TPLNs) on both types of cells supports the key role of the dimetal core in the anticancer activity of the [Ru2(NSAID)4]+ metallodrugs. The high cell viability (>70%) found for both types of cells suggests activity associated mainly to antiproliferative effects. The blank-TPLNs internalized into U87MG cell cytoplasm mostly at the first 6 h, by energy-dependent mechanism. The cell uptake of the RuIbp-TPLNs occurred during the first 24 h and it was enhanced in relation to the non-encapsulated metallodrug. The development of these novel metallodrug-loaded TPLN nanoformulations, which exhibit colloidal stability suitable for intravenous injection and enhanced drug cellular uptake, expands the perspective for diruthenium(II,III)-NSAID metallodrugs targeting brain glioblastoma cancer.
Collapse
Affiliation(s)
- Samara Rodrigues Alves
- Laboratory for Synthetic and Structural Inorganic Chemistry - Bioinorganic and Metallodrugs, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, B2T, 05508-000, São Paulo, SP, Brazil; Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-000, São Paulo, SP, Brazil
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Denise de Oliveira Silva
- Laboratory for Synthetic and Structural Inorganic Chemistry - Bioinorganic and Metallodrugs, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, B2T, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
61
|
Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat Commun 2019; 10:5205. [PMID: 31729383 PMCID: PMC6858362 DOI: 10.1038/s41467-019-13198-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
Implantation of biodegradable wafers near the brain surgery site to deliver anti-cancer agents which target residual tumor cells by bypassing the blood-brain barrier has been a promising method for brain tumor treatment. However, further improvement in the prognosis is still necessary. We herein present novel materials and device technologies for drug delivery to brain tumors, i.e., a flexible, sticky, and biodegradable drug-loaded patch integrated with wireless electronics for controlled intracranial drug delivery through mild-thermic actuation. The flexible and bifacially-designed sticky/hydrophobic device allows conformal adhesion on the brain surgery site and provides spatially-controlled and temporarily-extended drug delivery to brain tumors while minimizing unintended drug leakage to the cerebrospinal fluid. Biodegradation of the entire device minimizes potential neurological side-effects. Application of the device to the mouse model confirms tumor volume suppression and improved survival rate. Demonstration in a large animal model (canine model) exhibited its potential for human application. There is a need to further improve the efficacy of biodegradable wafers used in surgically treated brain tumors. Here, the authors report a flexible, biodegradable wireless device capable of adhesion to surgical site for optimal drug delivery upon mild-thermic actuation and report therapeutic efficacy in mouse and canine tumor models.
Collapse
|
62
|
Abstract
Cancer remains one of the most difficult to manage healthcare problems. The last two decades have been considered the golden age of cancer research, with major breakthroughs being announced on a regular basis. However, the major problem regarding cancer treatment is the incapability to selectively target cancer cells, with certain populations of tumors still remaining alive after treatment. The main focus of researchers is to develop treatments that are both effective and selective in targeting malignant cells. In this regard, bioavailability can be increased by overcoming the biological barriers encountered in the active agent’s pathway, creating carrier vehicles that have the ability to target malignant cells and effectively release the active agent. Since its appearance, nanomedicine has provided many answers to these challenges, but still, some expectations were not satisfied. In this review, we focused on the most recent developments in targeted drug delivery. Furthermore, a summary of different types of nanoparticles used to deliver active therapeutic agents in oncology is presented, along with details on the nanodrugs that were clinically approved by the Food and Drug Administration (FDA), until April 2019.
Collapse
|
63
|
Reddy AS, Lakshmi BA, Kim S, Kim J. Synthesis and characterization of acetyl curcumin-loaded core/shell liposome nanoparticles via an electrospray process for drug delivery, and theranostic applications. Eur J Pharm Biopharm 2019; 142:518-530. [PMID: 31365879 DOI: 10.1016/j.ejpb.2019.07.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/17/2019] [Accepted: 07/27/2019] [Indexed: 01/28/2023]
Abstract
Despite substantial advancements in divergent drug delivery systems (DDS), there is still room for novel and innovative nanoparticle-mediated drug delivery methodologies such as core/shell liposomes to deliver drugs in a kinetically controlled manner into the active site without any side effects. Herein, ((1E,6E)-3,5-dioxohepta-1,6-diene-1,7-diyl) bis (2-methoxy-4,1-phenylene) diacetate acetyl curcumin (AC)-loaded poly(lactic-co-glycolic acid) (PLGA) core/shell liposome nanoparticles (ACPCSLNPs) were prepared using an electron spray method under an applied electric field, which facilitated the uniform formation of nano-sized liposome nanoparticles (LNPs). Then, kinetically controlled and sustained drug release profiles were investigated using the as-prepared ACPCSLNPs. Moreover, the inner polymeric core could not only induce the generation of electrostatic interactions between the polymer and drug molecules but could also affect the prominent repulsions between the polar head groups of lipids and the nonpolar drug molecules. As a result, the sustained maximum release of the drug molecules (~48.5%) into the system was observed over a long period (~4 days). Furthermore, cell cytotoxicity studies were conducted in a human cervical cancer cell line (HeLa) and a healthy human dermal fibroblast cell line (HDFa) by employing all AC loaded LNPs along with free drugs. Multicolor cell imaging was also observed in HeLa cells using ACPCSLNPs. Notably, more curcumin was released from the ACPCSLNPs than AC due to the presence of polar group attractions and polar-polar interactions between the lipid head groups and curcumin since curcumin is more soluble than AC in aqueous medium. In addition, the predictions of the release kinetic patterns were also investigated thoroughly using the exponential-based Korsmeyer-Peppas (K-P) and Higuchi models for drug-loaded LNPs and PLGA NPs, respectively.
Collapse
Affiliation(s)
- Ankireddy Seshadri Reddy
- Department of Chemical & Biological Engineering, Gachon University, Sungnam 13120, Republic of Korea
| | - Buddolla Anantha Lakshmi
- Department of Bionanotechnology, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 461-701, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 461-701, Republic of Korea
| | - Jongsung Kim
- Department of Chemical & Biological Engineering, Gachon University, Sungnam 13120, Republic of Korea.
| |
Collapse
|
64
|
Hu J, Li Y, Pakpour S, Wang S, Pan Z, Liu J, Wei Q, She J, Cang H, Zhang RX. Dose Effects of Orally Administered Spirulina Suspension on Colonic Microbiota in Healthy Mice. Front Cell Infect Microbiol 2019; 9:243. [PMID: 31334136 PMCID: PMC6624478 DOI: 10.3389/fcimb.2019.00243] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
Oral supplemented nutraceuticals derived from food sources are surmised to improve the human health through interaction with the gastrointestinal bacteria. However, the lack of fundamental quality control and authoritative consensus (e.g., formulation, route of administration, dose, and dosage regimen) of these non-medical yet bioactive compounds are one of the main practical issues resulting in inconsistent individual responsiveness and confounded clinical outcomes of consuming nutraceuticals. Herein, we studied the dose effects of widely used food supplement, microalgae spirulina (Arthrospira platensis), on the colonic microbiota and physiological responses in healthy male Balb/c mice. Based on the analysis of 16s rDNA sequencing, compared to the saline-treated group, oral administration of spirulina once daily for 24 consecutive days altered the diversity, structure, and composition of colonic microbial community at the genus level. More importantly, the abundance of microbial taxa was markedly differentiated at the low (1.5 g/kg) and high (3.0 g/kg) dose of spirulina, among which the relative abundance of Clostridium XIVa, Desulfovibrio, Eubacterium, Barnesiella, Bacteroides, and Flavonifractor were modulated at various degrees. Evaluation of serum biomarkers in mice at the end of spirulina intervention showed reduced the oxidative stress and the blood lipid levels and increased the level of appetite controlling hormone leptin in a dose-response manner, which exhibited the significant correlation with differentially abundant microbiota taxa in the cecum. These findings provide direct evidences of dose-related modulation of gut microbiota and physiological states by spirulina, engendering its future mechanistic investigation of spirulina as potential sources of prebiotics for beneficial health effects via the interaction with gut microbiota.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yaguang Li
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sepideh Pakpour
- Faculty of Applied Science, University of British Columbia, Kelowna, BC, Canada
| | - Sufang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhenhong Pan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Junhong Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Qingxia Wei
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Princess Margaret Cancer Center, University of Health Network, Toronto, ON, Canada
| | - Junjun She
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huaixing Cang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Rui Xue Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
65
|
Zhou J, Wang Q, Geng S, Lou R, Yin Q, Ye W. Construction and evaluation of tumor nucleus-targeting nanocomposite for cancer dual-mode imaging - Guiding photodynamic therapy/photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:541-551. [PMID: 31147026 DOI: 10.1016/j.msec.2019.04.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023]
Abstract
To tackle the barrier of the insufficient intra-cellular delivery of reactive oxygen species (ROS) and heat, we designed a multifunctional nanoplatform to release ROS and heat directly in the cell nucleus for enhancing combined photodynamic therapy (PDT) and photothermal therapy (PTT) of tumors. As a photothermal agent, WS2 nanoparticles were adsorbed photosensitive Au25(Captopril)18- (Au25) nanoclusters via electrostatic interaction. And Dexamethasone (Dex), a glucocorticoid with nucleus targeting capability, played a key role in the intra-nuclear process of heat and ROS. PTT can increase intra-tumoral blood flow to promote Au25 produce more ROS for PDT. Under near infrared (NIR) laser irradiation at a single 808 nm, these nucleus targeting WS2 nanoplatforms showed a significant decreased cell viability of 18.2 ± 1.7% and a high DNA damage degree of 59.6 ± 8.3%. Furthermore, the WS2 nanoplatform could be further used for X-ray computed tomography (CT) images. Taken together, our study provided a new prospect for effectively diagnostic and enhancing PTT/PDT efficacy.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China.
| | - Qiaolei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shizhen Geng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Lou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qianwen Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Weiran Ye
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
66
|
Park C, Meghani N, Amin H, Tran PHL, Tran TTD, Nguyen VH, Lee BJ. The roles of short and long chain fatty acids on physicochemical properties and improved cancer targeting of albumin-based fattigation-platform nanoparticles containing doxorubicin. Int J Pharm 2019; 564:124-135. [PMID: 30991133 DOI: 10.1016/j.ijpharm.2019.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the impact of different chain length fatty acids on physicochemical properties and cancer targeting of fattigation-platform nanoparticles (NPs). Two different types of fatty acids (short chain, 2-hydroxybutyric acid, C4; long chain, oleic acid, C18:1) were successfully conjugated to human serum albumin (HSA) via simple 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) coupling reaction. These conjugates readily formed HSA-C4 and HSA-C18:1 NPs which showed good stability in serum and desirable biocompatibility with normal cell line (HEK293T). Doxorubicin hydrochloride (DOX) was efficiently loaded into NPs by incubation process via electrostatic interaction. The structure, morphology, and texture of DOX-loaded NPs were characterized by Transmission electron microscopy (TEM) equipped with Energy-dispersive X-ray spectroscopy (EDS). The initial burst release of DOX-loaded NPs was controlled by the presence and chain length of fatty acids. In vitro cytotoxicity studies with three cancer cell lines (A549, HT-29, and PANC-1) suggested that fattigation-platform NPs have distinctive cytotoxic effects compared to Doxil®. Confocal microscopy and flow cytometry exhibited that the cellular uptake of DOX-loaded NPs was varied by the different chain lengths of fatty acids. It was evident that the chain length of fatty acids in the fattigation-platform NPs could play a vital role in varying physicochemical properties and cancer cell targeting of NPs.
Collapse
Affiliation(s)
- Chulhun Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | | | - Hardik Amin
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Thao T-D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Van H Nguyen
- Pharmaceutical Engineering Lab, Biomedical Engineering Department, International University-Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
67
|
Raloxifene-encapsulated hyaluronic acid-decorated chitosan nanoparticles selectively induce apoptosis in lung cancer cells. Bioorg Med Chem 2019; 27:1629-1638. [DOI: 10.1016/j.bmc.2019.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 01/04/2023]
|
68
|
Du M, Ouyang Y, Meng F, Zhang X, Ma Q, Zhuang Y, Liu H, Pang M, Cai T, Cai Y. Polymer-lipid hybrid nanoparticles: A novel drug delivery system for enhancing the activity of Psoralen against breast cancer. Int J Pharm 2019; 561:274-282. [PMID: 30851393 DOI: 10.1016/j.ijpharm.2019.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
A polymer-lipid hybrid nanocarrier was developed to encapsulate psoralen (PSO) to improve its water solubility and bioavailability. The effects of PSO-loaded polymer-lipid hybrid nanoparticles (PSO-PLNs) on breast cancer MCF-7 cells were investigated. PSO-PLNs were prepared through a nanoprecipitation method and were optimized by a central composite design-response surface methodology using particle size and entrapment efficiency as indices. Dynamic light scattering and transmission electron microscopy analysis confirmed the physicochemical characterizations of PSO-PLNs, which had an average size of 93.44 ± 2.39 nm and a zeta potential of -27.63 ± 0.31 mV. In vitro drug release of PSO-PLNs was evaluated using dialysis and showed a delayed release compared with free PSO. The in vivo anticancer efficiency of PSO-PLNs was appreciated using a MCF-7 breast tumor model. Administration of PSO-PLNs showed similar antitumor efficacy but lower toxicity compared with doxorubicin. Our designed nanocarriers successfully optimized the pharmacokinetics of PSO via improved systemic delivery.
Collapse
Affiliation(s)
- Manling Du
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yong Ouyang
- Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou 510800, China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of TCM, Zhongshan, Guangdong 528400, China
| | - Xingwang Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qianqian Ma
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yong Zhuang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hui Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mujuan Pang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, China.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Cancer Research Institute of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
69
|
Kesse S, Boakye-Yiadom KO, Ochete BO, Opoku-Damoah Y, Akhtar F, Filli MS, Asim Farooq M, Aquib M, Maviah Mily BJ, Murtaza G, Wang B. Mesoporous Silica Nanomaterials: Versatile Nanocarriers for Cancer Theranostics and Drug and Gene Delivery. Pharmaceutics 2019; 11:E77. [PMID: 30781850 PMCID: PMC6410079 DOI: 10.3390/pharmaceutics11020077] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Mesoporous silica nanomaterials (MSNs) have made remarkable achievements and are being thought of by researchers as materials that can be used to effect great change in cancer therapies, gene delivery, and drug delivery because of their optically transparent properties, flexible size, functional surface, low toxicity profile, and very good drug loading competence. Mesoporous silica nanoparticles (MSNPs) show a very high loading capacity for therapeutic agents. It is well known that cancer is one of the most severe known medical conditions, characterized by cells that grow and spread rapidly. Thus, curtailing cancer is one of the greatest current challenges for scientists. Nanotechnology is an evolving field of study, encompassing medicine, engineering, and science, and it has evolved over the years with respect to cancer therapy. This review outlines the applications of mesoporous nanomaterials in the field of cancer theranostics, as well as drug and gene delivery. MSNs employed as therapeutic agents, as well as their importance and future prospects in the ensuing generation of cancer theranostics and drug and therapeutic gene delivery, are discussed herein. Thus, the use of mesoporous silica nanomaterials can be seen as using one stone to kill three birds.
Collapse
Affiliation(s)
- Samuel Kesse
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Kofi Oti Boakye-Yiadom
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Belynda Owoya Ochete
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yaw Opoku-Damoah
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Fahad Akhtar
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Mensura Sied Filli
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Md Aquib
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Bazezy Joelle Maviah Mily
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54600, Pakistan.
| | - Bo Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
70
|
Spatially Controlled Surface Modification of Porous Silicon for Sustained Drug Delivery Applications. Sci Rep 2019; 9:1367. [PMID: 30718670 PMCID: PMC6361965 DOI: 10.1038/s41598-018-37750-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/06/2018] [Indexed: 11/24/2022] Open
Abstract
A new and facile approach to selectively functionalize the internal and external surfaces of porous silicon (pSi) for drug delivery applications is reported. To provide a surface that is suitable for sustained drug release of the hydrophobic cancer chemotherapy drug camptothecin (CPT), the internal surfaces of pSi films were first modified with 1-dodecene. To further modify the external surface of the pSi samples, an interlayer was applied by silanization with (3-aminopropyl)triethoxysilane (APTES) following air plasma treatment. In addition, copolymers of N-(2-hydroxypropyl) acrylamide (HPAm) and N-benzophenone acrylamide (BPAm) were grafted onto the external pSi surfaces by spin-coating and UV crosslinking. Each modification step was verified using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, water contact angle (WCA) measurements, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). In order to confirm that the air plasma treatment and silanization step only occurred on the top surface of pSi samples, confocal microscopy was employed after fluorescein isothiocyanate (FITC) conjugation. Drug release studies carried out over 17 h in PBS demonstrated that the modified pSi reservoirs released CPT continuously, while showing excellent stability. Furthermore, protein adsorption and cell attachment studies demonstrated the ability of the graft polymer layer to reduce both significantly. In combination with the biocompatible pSi substrate material, the facile modification strategy described in this study provides access to new multifunctional drug delivery systems (DDS) for applications in cancer therapy.
Collapse
|
71
|
Nabil G, Bhise K, Sau S, Atef M, El-Banna HA, Iyer AK. Nano-engineered delivery systems for cancer imaging and therapy: Recent advances, future direction and patent evaluation. Drug Discov Today 2019; 24:462-491. [PMID: 30121330 PMCID: PMC6839688 DOI: 10.1016/j.drudis.2018.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Cancer is the second highest cause of death worldwide. Several therapeutic approaches, such as conventional chemotherapy, antibodies and small molecule inhibitors and nanotherapeutics have been employed in battling cancer. Amongst them, nanotheranostics is an example of successful personalized medicine bearing dual role of early diagnosis and therapy to cancer patients. In this review, we have focused on various types of theranostic polymer and metal nanoparticles for their role in cancer therapy and imaging concerning their limitation, future application such as dendritic cell cancer vaccination, gene delivery, T-cell activation and immune modulation. Also, some of the recorded patent applications and clinical trials have been illustrated. The impact of the biological microenvironment on the biodistribution and accumulation of nanoparticles have been discussed.
Collapse
Affiliation(s)
- Ghazal Nabil
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ketki Bhise
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Mohamed Atef
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hossny A El-Banna
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
72
|
Wang Z, Zhang RX, Zhang C, Dai C, Ju X, He R. Fabrication of Stable and Self-Assembling Rapeseed Protein Nanogel for Hydrophobic Curcumin Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:887-894. [PMID: 30608682 DOI: 10.1021/acs.jafc.8b05572] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Food-dervied biopolymer nanogels have recently received considerable attention as favorable carrier systems for nutraceuticals and drugs. In the present study, new biocompatible and self-assembled acylated rapeseed protein isolate (ARPI)-based nanogels were fabricated for potential hydrophobic drug delivery by chemical acylation and heat-induced protein denaturation. The effects of the ARPI concentration, pH, heat temperature, and heat time on the physiochemical properties of self-assembled ARPI nanogels were investigated. The optimized ARPI nanogels were characterized by a hydrodiameter of 170 nm in size, spherical morphology, and light core-dark shell structure. In comparison to native rapeseed protein isolates and ARPI without the heat treatment, ARPI nanogels as a result of dual acylation and heat processes exhibited significantly altered spatial secondary and tertiary structures, increased surface hydrophobicity, and decreased free sulfhydryl contents of the protein. Such properties endow amphilic ARPI with the self-aggregating ability, resulting in the hydrophobic core with formations of covalent disulfide bonds and the hydrophilic shell with succinyl moieties exposed to the water side. Such a cross-linked structure allowed for ARPI nanogels to be resistant against a broad array of pH and ionic strength as well as lyophilization and dilution. ARPI nanogels demonstrated 95% encapsulation efficiency of hydrophobic compound curcumin and significantly increased its anticancer activity against multiple cancer cell lines.
Collapse
Affiliation(s)
- Zhigao Wang
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 People's Republic of China
| | - Rui Xue Zhang
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing , Jiangsu 210003 , People's Republic of China
| | - Caixia Dai
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing , Jiangsu 210003 , People's Republic of China
| | - Xingrong Ju
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 People's Republic of China
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing , Jiangsu 210003 , People's Republic of China
| | - Rong He
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing , Jiangsu 210003 , People's Republic of China
| |
Collapse
|
73
|
|
74
|
Chamseddine IM, Frieboes HB, Kokkolaras M. Design Optimization of Tumor Vasculature-Bound Nanoparticles. Sci Rep 2018; 8:17768. [PMID: 30538267 PMCID: PMC6290012 DOI: 10.1038/s41598-018-35675-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023] Open
Abstract
Nanotherapy may constitute a promising approach to target tumors with anticancer drugs while minimizing systemic toxicity. Computational modeling can enable rapid evaluation of nanoparticle (NP) designs and numerical optimization. Here, an optimization study was performed using an existing tumor model to find NP size and ligand density that maximize tumoral NP accumulation while minimizing tumor size. Optimal NP avidity lies at lower bound of feasible values, suggesting reduced ligand density to prolong NP circulation. For the given set of tumor parameters, optimal NP diameters were 288 nm to maximize NP accumulation and 334 nm to minimize tumor diameter, leading to uniform NP distribution and adequate drug load. Results further show higher dependence of NP biodistribution on the NP design than on tumor morphological parameters. A parametric study with respect to drug potency was performed. The lower the potency of the drug, the bigger the difference is between the maximizer of NP accumulation and the minimizer of tumor size, indicating the existence of a specific drug potency that minimizes the differential between the two optimal solutions. This study shows the feasibility of applying optimization to NP designs to achieve efficacious cancer nanotherapy, and offers a first step towards a quantitative tool to support clinical decision making.
Collapse
Affiliation(s)
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Michael Kokkolaras
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada.
- GERAD - Group for Research in Decision Analysis, Montreal, Quebec, Canada.
| |
Collapse
|
75
|
Wang Z, Zhang RX, Zhang T, He C, He R, Ju X, Wu XY. In Situ Proapoptotic Peptide-Generating Rapeseed Protein-Based Nanocomplexes Synergize Chemotherapy for Cathepsin-B Overexpressing Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41056-41069. [PMID: 30387987 DOI: 10.1021/acsami.8b14001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intracellular activation of nanomaterials within cancer cells presents a powerful means to enhance anticancer specificity and efficacy. In light of upregulated lysosomal protease cathepsin-B (CathB) in many types of invasive cancer cells, herein, we exploit CathB-catalyzed biodegradation of acetylated rapeseed protein isolate (ARPI) to design polymer-drug nanocomplexes that can produce proapoptotic peptides in situ and synergize chemotherapy. ARPI forms nanocomplexes with chitosan (CS) and anticancer drug doxorubicin (DOX) [DOX-ARPI/CS nanoparticles (NPs)] by ionic self-assembly. The dual acidic pH- and CathB-responsive properties of the nanocomplexes and CathB-catalyzed biodegradation of ARPI enable efficient lysosomal escape and nuclei trafficking of released DOX, resulting in elevated cytotoxicity in CathB-overexpressing breast cancer cells. The ARPI-derived bioactive peptides exhibit synergistic anticancer effect with DOX by regulating pro- and antiapoptotic-relevant proteins ( p53, Bax, Bcl-2, pro-caspase-3) at mitochondria. In an orthotopic breast tumor model of CathB-overexpressing breast cancer, DOX-ARPI/CS NPs remarkably inhibit tumor growth, enhance tumor cell apoptosis and prolong host survival without eliciting any systemic toxicity. These results suggest that exploitation of multifunctional biomaterials to specifically produce anticancer agents inside cancer cells and trigger drug release to the subcellular target sites is a promising strategy for designing effective synergistic nanomedicines with minimal off-target toxicity.
Collapse
Affiliation(s)
- Zhigao Wang
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto M5S 3M2 , Canada
| | - Rui Xue Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto M5S 3M2 , Canada
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , People's Republic of China
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto M5S 3M2 , Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto M5S 3M2 , Canada
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing , Nanjing University of Finance and Economics , Nanjing 210003 , People's Republic China
| | - Xingrong Ju
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing , Nanjing University of Finance and Economics , Nanjing 210003 , People's Republic China
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto M5S 3M2 , Canada
| |
Collapse
|
76
|
A Promising Biocompatible Platform: Lipid-Based and Bio-Inspired Smart Drug Delivery Systems for Cancer Therapy. Int J Mol Sci 2018; 19:ijms19123859. [PMID: 30518027 PMCID: PMC6321581 DOI: 10.3390/ijms19123859] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023] Open
Abstract
Designing new drug delivery systems (DDSs) for safer cancer therapy during pre-clinical and clinical applications still constitutes a considerable challenge, despite advances made in related fields. Lipid-based drug delivery systems (LBDDSs) have emerged as biocompatible candidates that overcome many biological obstacles. In particular, a combination of the merits of lipid carriers and functional polymers has maximized drug delivery efficiency. Functionalization of LBDDSs enables the accumulation of anti-cancer drugs at target destinations, which means they are more effective at controlled drug release in tumor microenvironments (TMEs). This review highlights the various types of ligands used to achieve tumor-specific delivery and discusses the strategies used to achieve the effective release of drugs in TMEs and not into healthy tissues. Moreover, innovative recent designs of LBDDSs are also described. These smart systems offer great potential for more advanced cancer therapies that address the challenges posed in this research area.
Collapse
|
77
|
Lee S, Stubelius A, Hamelmann N, Tran V, Almutairi A. Inflammation-Responsive Drug-Conjugated Dextran Nanoparticles Enhance Anti-Inflammatory Drug Efficacy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40378-40387. [PMID: 30067018 PMCID: PMC7170936 DOI: 10.1021/acsami.8b08254] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stimuli-responsive nanoparticles (NPs) are especially interesting to enhance the drug delivery specificity for biomedical applications. With the aim to achieve a highly stable and inflammation-specific drug release, we designed a reactive oxygen species (ROS)-responsive dextran-drug conjugate (Nap-Dex). By blending Nap-Dex with the acid-sensitive acetalated dextran polymer, we achieved a dual-responsive NP with high specificity toward the inflammatory environment. The inflammatory environment not only has elevated ROS levels but also has a lower pH than healthy tissues, making pH and ROS highly suitable triggers to target inflammatory diseases. The anti-inflammatory cyclooxygenase inhibitor naproxen was modified with an ROS-responsive phenylboronic acid (PBA) and conjugated onto dextran. The dextran units were functionalized with up to 87% modified naproxen. This resulted in a complete drug release from the polymer within 20 min at 10 mM H2O2. The dual-responsive NPs reduced the levels of the proinflammatory cytokine IL-6 120 times more efficiently and TNFα 6 times more efficiently than free naproxen from lipopolysaccharide (LPS)-activated macrophages. These additional anti-inflammatory effects were found to be mainly attributed to ROS-scavenging effects. In addition, the model cargo fluorescein diacetate was released in an LPS-induced inflammatory response in vitro. We believe that drug conjugation using PBA can be applied to various drugs and dextran-based materials for enhanced drug efficacy, where this work demonstrates the significance of functionalized carbohydrates polymer-drug conjugates.
Collapse
Affiliation(s)
| | | | - Naomi Hamelmann
- Department of Biomolecular Nanotechnology, MESA+ Institute of Nanotechnology, Faculty of Science and Technology , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | | | | |
Collapse
|
78
|
Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv 2018; 15:1085-1104. [DOI: 10.1080/17425247.2018.1529756] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Andrew M. Bodratti
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
79
|
Zhou L, Xi Y, Chen M, Niu W, Wang M, Ma PX, Lei B. A highly antibacterial polymeric hybrid micelle with efficiently targeted anticancer siRNA delivery and anti-infection in vitro/in vivo. NANOSCALE 2018; 10:17304-17317. [PMID: 30198034 DOI: 10.1039/c8nr03001d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most of the diseases such as tumors are usually accompanied by microbial infection, especially after surgical operation, which prevents successful cancer therapy. It is necessary to develop a safe and efficient siRNA delivery vector with high anti-bacterial capability. Here, three multifunctional polymeric hybrid micelles (PHM1, PHM2 and PHM3) with high antimicrobial activity were prepared by mixing polymers PEG-b-P3/4HB-b-PEI-b-FA (EHP-FA) and PEG-b-P3/4HB-b-EPL (EHE) copolymer at different mixing ratios and evaluated for targeted siRNA delivery and anti-infection applications. The PHM micelles, taking advantage of the binding ability of EHE and the protection ability of EHP-FA, could effectively combine, protect siRNA, release complexed siRNA and target cancer cells. Additionally, PHM micelles displayed good hemocompatibility, lower cytotoxicity and higher gene silencing efficiency than commercial PEI (25 kDa) in A549, HeLa, HepG2 and C2C12 cells. Through optimizing the ratio of EHP-FA and EHE, PHM/sip65 showed a high p65 gene silencing efficiency above 90% in various cancer cells, which were significantly higher than EHP-FA/sip65 alone and EHE/sip65 complexes. Furthermore, PHM2 micelles showed excellent antimicrobial activity towards positive bacteria (S. aureus) in vitro and in vivo. Our study may provide a facile strategy to develop multifunctional polymer gene vectors for highly promising siRNA delivery and anti-infection.
Collapse
Affiliation(s)
- Li Zhou
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | | | | | | | | | | | | |
Collapse
|
80
|
Mu H, Holm R. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin Drug Deliv 2018; 15:771-785. [DOI: 10.1080/17425247.2018.1504018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Holm
- Drug Product Development, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
81
|
Efremova MV, Naumenko VA, Spasova M, Garanina AS, Abakumov MA, Blokhina AD, Melnikov PA, Prelovskaya AO, Heidelmann M, Li ZA, Ma Z, Shchetinin IV, Golovin YI, Kireev II, Savchenko AG, Chekhonin VP, Klyachko NL, Farle M, Majouga AG, Wiedwald U. Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics. Sci Rep 2018; 8:11295. [PMID: 30050080 PMCID: PMC6062557 DOI: 10.1038/s41598-018-29618-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
High-quality, 25 nm octahedral-shaped Fe3O4 magnetite nanocrystals are epitaxially grown on 9 nm Au seed nanoparticles using a modified wet-chemical synthesis. These Fe3O4-Au Janus nanoparticles exhibit bulk-like magnetic properties. Due to their high magnetization and octahedral shape, the hybrids show superior in vitro and in vivo T2 relaxivity for magnetic resonance imaging as compared to other types of Fe3O4-Au hybrids and commercial contrast agents. The nanoparticles provide two functional surfaces for theranostic applications. For the first time, Fe3O4-Au hybrids are conjugated with two fluorescent dyes or the combination of drug and dye allowing the simultaneous tracking of the nanoparticle vehicle and the drug cargo in vitro and in vivo. The delivery to tumors and payload release are demonstrated in real time by intravital microscopy. Replacing the dyes by cell-specific molecules and drugs makes the Fe3O4-Au hybrids a unique all-in-one platform for theranostics.
Collapse
Affiliation(s)
- Maria V Efremova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Victor A Naumenko
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Marina Spasova
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Anastasiia S Garanina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Maxim A Abakumov
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
- Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, 117997, Russian Federation
| | - Anastasia D Blokhina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Pavel A Melnikov
- Department of Fundamental and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health and Social Development of the Russian Federation, Moscow, 119034, Russian Federation
| | | | - Markus Heidelmann
- ICAN - Interdisciplinary Center for Analytics on the Nanoscale and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Zi-An Li
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Zheng Ma
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Igor V Shchetinin
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Yuri I Golovin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- Derzhavin Tambov State University, Nanocenter, Tambov, 392000, Russian Federation
| | - Igor I Kireev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Alexander G Savchenko
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Vladimir P Chekhonin
- Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, 117997, Russian Federation
- Department of Fundamental and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health and Social Development of the Russian Federation, Moscow, 119034, Russian Federation
| | - Natalia L Klyachko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation.
- D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation.
| | - Ulf Wiedwald
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation.
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany.
| |
Collapse
|
82
|
Ma J, Deng H, Zhao F, Deng L, Wang W, Dong A, Zhang J. Liposomes-Camouflaged Redox-Responsive Nanogels to Resolve the Dilemma between Extracellular Stability and Intracellular Drug Release. Macromol Biosci 2018; 18:e1800049. [DOI: 10.1002/mabi.201800049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/29/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jinfeng Ma
- Department of Polymer Science and Engineering; Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Hongzhang Deng
- Department of Polymer Science and Engineering; Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Fuli Zhao
- Department of Polymer Science and Engineering; Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Liandong Deng
- Department of Polymer Science and Engineering; Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Weiwei Wang
- Institute of Biomedical Engineering; Chinese Academy of Medical Science and Peking Union Medical College; Tianjin 300192 China
| | - Anjie Dong
- Department of Polymer Science and Engineering; Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering; Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; Tianjin 300072 China
| |
Collapse
|
83
|
Zhang RX, Li J, Zhang T, Amini MA, He C, Lu B, Ahmed T, Lip H, Rauth AM, Wu XY. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy - an illustration with firsthand examples. Acta Pharmacol Sin 2018; 39:825-844. [PMID: 29698389 DOI: 10.1038/aps.2018.33] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology has been applied extensively in drug delivery to improve the therapeutic outcomes of various diseases. Tremendous efforts have been focused on the development of novel nanoparticles and delineation of the physicochemical properties of nanoparticles in relation to their biological fate and functions. However, in the design and evaluation of these nanotechnology-based drug delivery systems, the pharmacology of delivered drugs and the (patho-)physiology of the host have received less attention. In this review, we discuss important pharmacological mechanisms, physiological characteristics, and pathological factors that have been integrated into the design of nanotechnology-enabled drug delivery systems and therapies. Firsthand examples are presented to illustrate the principles and advantages of such integrative design strategies for cancer treatment by exploiting 1) intracellular synergistic interactions of drug-drug and drug-nanomaterial combinations to overcome multidrug-resistant cancer, 2) the blood flow direction of the circulatory system to maximize drug delivery to the tumor neovasculature and cells overexpressing integrin receptors for lung metastases, 3) endogenous lipoproteins to decorate nanocarriers and transport them across the blood-brain barrier for brain metastases, and 4) distinct pathological factors in the tumor microenvironment to develop pH- and oxidative stress-responsive hybrid manganese dioxide nanoparticles for enhanced radiotherapy. Regarding the application in diabetes management, a nanotechnology-enabled closed-loop insulin delivery system was devised to provide dynamic insulin release at a physiologically relevant time scale and glucose levels. These examples, together with other research results, suggest that utilization of the interplay of pharmacology, (patho-)physiology and nanotechnology is a facile approach to develop innovative drug delivery systems and therapies with high efficiency and translational potential.
Collapse
|
84
|
Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev 2018; 128:101-114. [PMID: 29277543 DOI: 10.1016/j.addr.2017.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production.
Collapse
|
85
|
Bodratti AM, Alexandridis P. Formulation of Poloxamers for Drug Delivery. J Funct Biomater 2018; 9:E11. [PMID: 29346330 PMCID: PMC5872097 DOI: 10.3390/jfb9010011] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/26/2022] Open
Abstract
Poloxamers, also known as Pluronics®, are block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), which have an amphiphilic character and useful association and adsorption properties emanating from this. Poloxamers find use in many applications that require solubilization or stabilization of compounds and also have notable physiological properties, including low toxicity. Accordingly, poloxamers serve well as excipients for pharmaceuticals. Current challenges facing nanomedicine revolve around the transport of typically water-insoluble drugs throughout the body, followed by targeted delivery. Judicious design of drug delivery systems leads to improved bioavailability, patient compliance and therapeutic outcomes. The rich phase behavior (micelles, hydrogels, lyotropic liquid crystals, etc.) of poloxamers makes them amenable to multiple types of processing and various product forms. In this review, we first present the general solution behavior of poloxamers, focusing on their self-assembly properties. This is followed by a discussion of how the self-assembly properties of poloxamers can be leveraged to encapsulate drugs using an array of processing techniques including direct solubilization, solvent displacement methods, emulsification and preparation of kinetically-frozen nanoparticles. Finally, we conclude with a summary and perspective.
Collapse
Affiliation(s)
- Andrew M Bodratti
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA.
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA.
| |
Collapse
|
86
|
de la Torre C, Domínguez-Berrocal L, Murguía JR, Marcos MD, Martínez-Máñez R, Bravo J, Sancenón F. ϵ
-Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C
9h
Peptide to Induce Apoptosis in Cancer Cells. Chemistry 2018; 24:1890-1897. [DOI: 10.1002/chem.201704161] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| | - Leticia Domínguez-Berrocal
- Departamento de Genómica y Proteómica; Instituto de, Biomedicina de Valencia; c/ Jaime Roig 11 46010 Valencia Spain
| | - José R. Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
| | - M. Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| | - Jerónimo Bravo
- Departamento de Genómica y Proteómica; Instituto de, Biomedicina de Valencia; c/ Jaime Roig 11 46010 Valencia Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| |
Collapse
|
87
|
Mira A, Mateo CR, Mallavia R, Falco A. Poly(methyl vinyl ether-alt-maleic acid) and ethyl monoester as building polymers for drug-loadable electrospun nanofibers. Sci Rep 2017; 7:17205. [PMID: 29222482 PMCID: PMC5722912 DOI: 10.1038/s41598-017-17542-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022] Open
Abstract
New biomaterials are sought for the development of bioengineered nanostructures. In the present study, electrospun nanofibers have been synthesized by using poly(methyl vinyl ether-alt-maleic acid) and poly(methyl vinyl ether-alt-maleic ethyl monoester) (PMVEMA-Ac and PMVEMA-ES, respectively) as building polymers for the first time. To further functionalize these materials, nanofibers of PMVEMA-Ac and PMVEMA-ES containing a conjugated polyelectrolyte (HTMA-PFP, blue emitter, and HTMA-PFNT, red emitter) were achieved with both forms maintaining a high solid state fluorescence yield without altered morphology. Also, 5-aminolevulinic acid (5-ALA) was incorporated within these nanofibers, where it remained chemically stable. In all cases, nanofiber diameters were less than 150 nm as determined by scanning and transmission electron microscopy, and encapsulation efficiency of 5-ALA was 97 ± 1% as measured by high-performance liquid chromatography. Both polymeric matrices showed rapid release kinetics in vertical cells (Franz cells) and followed Higuchi kinetics. In addition, no toxicity of nanofibers, in the absence of light, was found in HaCaT and SW480 cell lines. Finally, it was shown that loaded 5-ALA was functional, as it was internalized by cells in nanofiber-treated cultures and served as a substrate for the generation of protoporphyrin IX, suggesting these pharmaceutical vehicles are suitable for photodynamic therapy applications.
Collapse
Affiliation(s)
- Amalia Mira
- Universidad Miguel Hernández (UMH), Instituto de Biología Molecular y Celular (IBMC), 03202, Elche (Alicante), Spain
| | - C Reyes Mateo
- Universidad Miguel Hernández (UMH), Instituto de Biología Molecular y Celular (IBMC), 03202, Elche (Alicante), Spain
| | - Ricardo Mallavia
- Universidad Miguel Hernández (UMH), Instituto de Biología Molecular y Celular (IBMC), 03202, Elche (Alicante), Spain.
| | - Alberto Falco
- Universidad Miguel Hernández (UMH), Instituto de Biología Molecular y Celular (IBMC), 03202, Elche (Alicante), Spain.
| |
Collapse
|
88
|
Hemati Azandaryani A, Kashanian S, Derakhshandeh K. Folate Conjugated Hybrid Nanocarrier for Targeted Letrozole Delivery in Breast Cancer Treatment. Pharm Res 2017; 34:2798-2808. [DOI: 10.1007/s11095-017-2260-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/10/2017] [Indexed: 01/26/2023]
|
89
|
Florek J, Caillard R, Kleitz F. Evaluation of mesoporous silica nanoparticles for oral drug delivery - current status and perspective of MSNs drug carriers. NANOSCALE 2017; 9:15252-15277. [PMID: 28984885 DOI: 10.1039/c7nr05762h] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The oral pathway is considered as the most common method for drug administration, although many drugs, especially the highly pH- and/or enzymatic biodegradable peptide drugs, are very difficult to formulate and achieve a good intestinal absorption. Efficient systematic absorption of an active substance, delivered via oral ingestion, is only achievable if the drug (1) is substantially present as a solution in the gastrointestinal tract, (2) is able to penetrate through the intestinal mucus, (3) overcomes the different gastrointestinal barriers, and (4) provides an effective therapeutic dose. Therefore, optimization of oral bioavailability of poorly-soluble drugs still remains a significant challenge for the pharmaceutical industry. Even though numerous conventional drug carriers have successfully solved some of the issues related to oral delivery of poorly-soluble drugs, only few of them met commercialization requirements. These drawbacks have led the scientific world to reconsider its approaches toward targeted drug delivery systems and researchers started looking for alternative vectorized carriers. In this area, nanoparticle-based materials have several significant advantages over free and non-formulated drugs. For example, nanosized porous silica carriers allow for more sustained and controlled drug release or improved oral bioavailability. Thus, in the present review, we will highlight the most important features of nanostructured silica drug carriers, such as particle size, particle shape, surface roughness or surface functionalization, and underline the key advantages of these nanosupports. In particular, this article will discuss recent progress and challenges in the area of mesoporous silica nanocarriers used for oral drug delivery. Additional emphasis will be set on the biological and chemical features of the gastrointestinal tract as well as currently tested nanoformulations and strategies to avoid drug degradation in the gastrointestinal environment.
Collapse
Affiliation(s)
- Justyna Florek
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria.
| | | | | |
Collapse
|
90
|
Zhang RX, Zhang T, Chen K, Cheng J, Lai P, Rauth AM, Pang KS, Wu XY. Sample Extraction and Simultaneous Chromatographic Quantitation of Doxorubicin and Mitomycin C Following Drug Combination Delivery in Nanoparticles to Tumor-bearing Mice. J Vis Exp 2017. [PMID: 29053672 DOI: 10.3791/56159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Combination chemotherapy is frequently used in the clinic for cancer treatment; however, associated adverse effects to normal tissue may limit its therapeutic benefit. Nanoparticle-based drug combination has been shown to mitigate the problems encountered by free drug combination therapy. Our previous studies have shown that the combination of two anticancer drugs, doxorubicin (DOX) and mitomycin C (MMC), produced a synergistic effect against both murine and human breast cancer cells in vitro. DOX and MMC co-loaded polymer-lipid hybrid nanoparticles (DMPLN) bypassed various efflux transporter pumps that confer multidrug resistance and demonstrated enhanced efficacy in breast tumor models. Compared to conventional solution forms, such superior efficacy of DMPLN was attributed to the synchronized pharmacokinetics of DOX and MMC and increased intracellular drug bioavailability within tumor cells enabled by the nanocarrier PLN. To evaluate the pharmacokinetics and bio-distribution of co-administered DOX and MMC in both free solution and nanoparticle forms, a simple and efficient multi-drug analysis method using reverse-phase high performance liquid chromatography (HPLC) was developed. In contrast to previously reported methods that analyzed DOX or MMC individually in the plasma, this new HPLC method is able to simultaneously quantitate DOX, MMC and a major cardio-toxic DOX metabolite, doxorubicinol (DOXol), in various biological matrices (e.g., whole blood, breast tumor, and heart). A dual fluorescent and ultraviolet absorbent probe 4-methylumbelliferone (4-MU) was used as an internal standard (I.S.) for one-step detection of multiple drug analysis with different detection wavelengths. This method was successfully applied to determine the concentrations of DOX and MMC delivered by both nanoparticle and solution approaches in whole blood and various tissues in an orthotopic breast tumor murine model. The analytical method presented is a useful tool for pre-clinical analysis of nanoparticle-based delivery of drug combinations.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Department of Pharmaceutical Sciences, University of Toronto
| | - Tian Zhang
- Department of Pharmaceutical Sciences, University of Toronto
| | - King Chen
- Department of Pharmaceutical Sciences, University of Toronto
| | - Ji Cheng
- Department of Pharmaceutical Sciences, University of Toronto
| | - Paris Lai
- Department of Pharmaceutical Sciences, University of Toronto
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Ontario Cancer Institute, University Health Network
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, University of Toronto
| | - Xiao Yu Wu
- Department of Pharmaceutical Sciences, University of Toronto;
| |
Collapse
|
91
|
Alves Rico SR, Abbasi AZ, Ribeiro G, Ahmed T, Wu XY, de Oliveira Silva D. Diruthenium(ii,iii) metallodrugs of ibuprofen and naproxen encapsulated in intravenously injectable polymer-lipid nanoparticles exhibit enhanced activity against breast and prostate cancer cells. NANOSCALE 2017; 9:10701-10714. [PMID: 28678269 DOI: 10.1039/c7nr01582h] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A unique class of diruthenium(ii,iii) metallodrugs containing non-steroidal anti-inflammatory drug (NSAID), Ru2(NSAID), have been reported to show anticancer activity in glioma models in vitro and in vivo. This work reports the encapsulation of the lead metallodrug of ibuprofen (HIbp), [Ru2(Ibp)4Cl] or RuIbp, and also of the new analogue of naproxen (HNpx), [Ru2(Npx)4Cl] or RuNpx, in novel intravenously (i.v.) injectable solid polymer-lipid nanoparticles (SPLNs). A rationally selected composition of lipids/polymers rendered nearly spherical Ru2(NSAID)-SPLNs with a mean size of 120 nm and zeta potential of about -20 mV. The Ru2(NSAID)-SPLNs are characterized by spectroscopic techniques and the composition in terms of ruthenium-drug species is analyzed by mass spectrometry. The metallodrug-loaded nanoparticles showed high drug loading (17-18%) with ∼100% drug loading efficiency, and good colloidal stability in serum at body temperature. Fluorescence-labeled SPLNs were taken up by the cancer cells in a time- and energy-dependent manner as analyzed by confocal microscopy and fluorescence spectrometry. The Ru2(NSAID)-SPLNs showed enhanced cytotoxicity (IC50 at 60-100 μmol L-1 ) in relation to the corresponding Ru2(NSAID) metallodrugs in breast (EMT6 and MDA-MB-231) and prostate (DU145) cancer cells in vitro. The cell viability of both metallodrug nanoformulations is also compared with those of the parent NSAIDs, HIbp and HNpx, and their corresponding NSAID-SPLNs. In vivo and ex vivo fluorescence imaging revealed good biodistribution and high tumor accumulation of fluorescence-labeled SPLNs following i.v. injection in an orthotopic breast tumor model. The enhanced anticancer activity of the metallodrug-loaded SPLNs in these cell lines can be associated with the advantages of the nanoformulations, assigned mainly to the stability of the colloidal nanoparticles suitable for i.v. injection and enhanced cellular uptake. The findings of this work encourage future in vivo efficacy studies to further exploit the potential of the novel Ru2(NSAID)-SPLN nanoformulations for clinical application.
Collapse
Affiliation(s)
- Samara R Alves Rico
- Laboratory for Synthetic and Structural Inorganic Chemistry - Bioinorganic and Metallodrugs, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, B2 T, 05508-000, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
92
|
Teixeira MC, Carbone C, Souto EB. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res 2017; 68:1-11. [PMID: 28778472 DOI: 10.1016/j.plipres.2017.07.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 01/03/2023]
Abstract
Solid lipid nanoparticle (SLN), nanostructured lipid carriers (NLC) and hybrid nanoparticles, have gained increasing interest as drug delivery systems because of their potential to load and release drugs from the Biopharmaceutical classification system (BCS) of class II (low solubility and high permeability) and of class IV (low solubility and low permeability). Lipid properties (e.g. high solubilizing potential, biocompatibility, biotolerability, biodegradability and distinct route of absorption) contribute for the improvement of the bioavailability of these drugs for a set of administration routes. Their interest continues to grow, as translated by the number of patents being field worldwide. This paper discusses the recent advances on the use of SLN, NLC and lipid-polymer hybrid nanoparticles for the loading of lipophilic, poorly water-soluble and poorly permeable drugs, being developed for oral, topical, parenteral and ocular administration, also discussing the industrial applications of these systems. A review of the patents filled between 2014 and 2017, concerning the original inventions of lipid nanocarriers, is also provided.
Collapse
Affiliation(s)
- M C Teixeira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - C Carbone
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Laboratory of Drug Delivery Technology, Dept. of Drug Sciences, University of Catania, Catania, Italy
| | - E B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
93
|
Affiliation(s)
- Esther Amstad
- Soft Materials Laboratory,
Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
94
|
Zhang T, Prasad P, Cai P, He C, Shan D, Rauth AM, Wu XY. Dual-targeted hybrid nanoparticles of synergistic drugs for treating lung metastases of triple negative breast cancer in mice. Acta Pharmacol Sin 2017; 38:835-847. [PMID: 28216624 PMCID: PMC5520182 DOI: 10.1038/aps.2016.166] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022] Open
Abstract
Lung metastasis is the major cause of death in patients with triple negative breast
cancer (TNBC), an aggressive subtype of breast cancer with no effective therapy at
present. It has been proposed that dual-targeted therapy, ie, targeting
chemotherapeutic agents to both tumor vasculature and cancer cells, may offer some
advantages. The present work was aimed to develop a dual-targeted synergistic drug
combination nanomedicine for the treatment of lung metastases of TNBC. Thus,
Arg-Gly-Asp peptide (RGD)-conjugated, doxorubicin (DOX) and mitomycin C (MMC)
co-loaded polymer-lipid hybrid nanoparticles (RGD-DMPLN) were prepared and
characterized. The synergism between DOX and MMC and the effect of RGD-DMPLN on cell
morphology and cell viability were evaluated in human MDA-MB-231 cells in
vitro. The optimal RGD density on nanoparticles (NPs) was identified based on
the biodistribution and tumor accumulation of the NPs in a murine lung metastatic
model of MDA-MB-231 cells. The microscopic distribution of RGD-conjugated NPs in lung
metastases was examined using confocal microscopy. The anticancer efficacy of
RGD-DMPLN was investigated in the lung metastatic model. A synergistic ratio of DOX
and MMC was found in the MDA-MB-231 human TNBC cells. RGD-DMPLN induced morphological
changes and enhanced cytotoxicity in vitro. NPs with a median RGD density
showed the highest accumulation in lung metastases by targeting both tumor
vasculature and cancer cells. Compared to free drugs, RGD-DMPLN exhibited
significantly low toxicity to the host, liver and heart. Compared to non-targeted
DMPLN or free drugs, administration of RGD-DMPLN (10 mg/kg, iv) resulted in a
4.7-fold and 31-fold reduction in the burden of lung metastases measured by
bioluminescence imaging, a 2.4-fold and 4.0-fold reduction in the lung metastasis
area index, and a 35% and 57% longer median survival time, respectively.
Dual-targeted RGD-DMPLN, with optimal RGD density, significantly inhibited the
progression of lung metastasis and extended host survival.
Collapse
|
95
|
Tsai WC, Rizvi SSH. Microencapsulation and characterization of liposomal vesicles using a supercritical fluid process coupled with vacuum-driven cargo loading. Food Res Int 2017; 96:94-102. [PMID: 28528112 DOI: 10.1016/j.foodres.2017.03.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
A new technique of liposomal microencapsulation, consisting of supercritical fluid extraction followed by rapid expansion of the supercritical solution and vacuum-driven cargo loading, was successfully developed. It is a continuous flow-through process without usage of any toxic organic solvent. For use as a coating material, the solubility of soy phospholipids in supercritical carbon dioxide was first determined using a dynamic equilibrium system and the data was correlated with the Chrastil model with good agreement. Liposomes were made with D-(+)-glucose as a cargo and their properties were characterized as functions of expansion pressure, temperature, and cargo loading rates. The highest encapsulation efficiency attained was 31.7% at the middle expansion pressure of 12.41MPa, highest expansion temperature of 90°C, and lowest cargo loading rate of 0.25mL/s. The large unilamellar vesicles and multivesicular vesicles were observed to be a majority of the liposomes produced using this eco-friendly process.
Collapse
Affiliation(s)
- Wen-Chyan Tsai
- Institute of Food Science, Cornell University, Ithaca, NY 14850, USA.
| | - Syed S H Rizvi
- Institute of Food Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
96
|
Rahimi M, Safa KD, Salehi R. Co-delivery of doxorubicin and methotrexate by dendritic chitosan-g-mPEG as a magnetic nanocarrier for multi-drug delivery in combination chemotherapy. Polym Chem 2017. [DOI: 10.1039/c7py01701d] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nanoparticulate drug delivery systems have the potential to improve the therapeutic efficacy of anticancer agents, and combination therapy is a promising strategy for clinical cancer treatment with synergistic effects.
Collapse
Affiliation(s)
- Mahdi Rahimi
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166614766
- Iran
| | - Kazem D. Safa
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166614766
- Iran
| | - Roya Salehi
- Drug Applied Research Centre and School of Advanced Medical Science
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|
97
|
Xu Y, Deng L, Ren H, Zhang X, Huang F, Yue T. Transport of nanoparticles across pulmonary surfactant monolayer: a molecular dynamics study. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp02548c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three types of nanoparticles, including hydrophobic nanoparticles, hydrophilic nanoparticles, and hydrophilic nanoparticles coated with lipids, were found by our molecular dynamics simulations to be transported across the pulmonary surfactant monolayer, but via different pathways, which affect their subsequent interactions with target cell membranes.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
- Center for Bioengineering and Biotechnology
| | - Li Deng
- Center for Bioengineering and Biotechnology
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Hao Ren
- Center for Bioengineering and Biotechnology
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
- Center for Bioengineering and Biotechnology
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
- Center for Bioengineering and Biotechnology
| |
Collapse
|