51
|
Wang C, Chen F, Qian P, Cheng J. Recent advances in the Rh-catalyzed cascade arene C-H bond activation/annulation toward diverse heterocyclic compounds. Org Biomol Chem 2021; 19:1705-1721. [PMID: 33537690 DOI: 10.1039/d0ob02377a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Rh-catalyzed C-H bond activation/annulation provides a new strategy for the synthesis of new frameworks. In this review, we summarize the recent research on the Rh-catalyzed cascade arene C-H bond activation/annulation toward diverse heterocyclic compounds. The application, scope, limitations and mechanism of these transformations are also discussed.
Collapse
Affiliation(s)
- Chang Wang
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Fan Chen
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Pengcheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Jiang Cheng
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| |
Collapse
|
52
|
Wang H, Cao F, Gao W, Wang X, Yang Y, Shi T, Wang Z. Pd(II)-Catalyzed Annulation Reactions of Epoxides with Benzamides to Synthesize Isoquinolones. Org Lett 2021; 23:863-868. [PMID: 33464099 DOI: 10.1021/acs.orglett.0c04097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epoxides as alkylating reagents are unprecedentedly applied in Pd(II)-catalyzed C-H alkylation and oxidative annulation of substituted benzamides to synthesize isoquinolones rather than isochromans, which is accomplished through alerting the previously reported reaction mechanism by the addition of oxidant and TEA. Under these conditions, various isoquinolones have been prepared with yields up to 92%. In addition, this methodology has been successfully employed in the total syntheses of rupreschstyril, siamine, and cassiarin A in an expedient fashion.
Collapse
Affiliation(s)
- Huihong Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Weiwei Gao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, China
| | - Yuhang Yang
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, China
| | - Zhen Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China.,School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, China
| |
Collapse
|
53
|
Xie H, Zhong M, Kang H, Shu B, Zhang S. A Cascade Rh(III)‐catalyzed C−H Activation/Chemodivergent Annulation of
N
‐carbamoylindoles with Sulfoxonium Ylides for the Synthesis of Dihydropyrimidoindolone and Tricyclic [1,3]Oxazino[3,4‐
a
]indol‐1‐ones Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001380] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hui Xie
- Center for Drug Research and Development Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Mei Zhong
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Hua‐Jie Kang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Bing Shu
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Shang‐Shi Zhang
- Center for Drug Research and Development Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| |
Collapse
|
54
|
Kumar S, Nunewar S, Oluguttula S, Nanduri S, Kanchupalli V. Recent advances in Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation via carbene migratory insertion. Org Biomol Chem 2021; 19:1438-1458. [DOI: 10.1039/d0ob02309d] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The review highlighted diverse annulations, including nitrogen, oxygen, sulfur heterocycles and carbocylizations via Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation with various arene and carbene precursors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Saiprasad Nunewar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srilekha Oluguttula
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srinivas Nanduri
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| |
Collapse
|
55
|
Li X, Zhai P, Fang Y, Li W, Chang H, Gao W. Synthesis of isoxazolidines via catalyst-free one-pot three-component cycloaddition of sulfoxonium ylides, nitrosoarenes and alkenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01471k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A general and practical strategy for the construction of various keto-substituted isoxazolidines via one-pot three-component reaction of easily accessible, safer and more stable sulfoxonium ylides, nitrosoarenes and olefins is described.
Collapse
Affiliation(s)
- Xing Li
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Pingan Zhai
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Yongsheng Fang
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Wenhui Li
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Honghong Chang
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Wenchao Gao
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| |
Collapse
|
56
|
Chen T, Ding Z, Guan Y, Zhang R, Yao J, Chen Z. Ruthenium-catalyzed coupling of α-carbonyl phosphoniums with sulfoxonium ylides via C–H activation/Wittig reaction sequences. Chem Commun (Camb) 2021; 57:2665-2668. [DOI: 10.1039/d1cc00433f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A Ru(ii)-catalyzed coupling of various α-carbonyl phosphoniums with sulfoxonium ylides has been realized for the facile synthesis of 1-naphthols in good to excellent yields.
Collapse
Affiliation(s)
- Tian Chen
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Zhiqiang Ding
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Yuqiu Guan
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Ruike Zhang
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Jinzhong Yao
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- People's Republic of China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| |
Collapse
|
57
|
Jin HS, Du YZ, Zhao QY, Zhao LM. Ru( ii)-Catalyzed C–H activation/annulation reactions of N-aryl-pyrazolidinones with sulfoxonium ylides: synthesis of cinnoline-fused pyrazolidinones. Org Chem Front 2021. [DOI: 10.1039/d1qo01001h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first Ru(ii)-catalyzed cascade C–H activation/annulation reactions of N-aryl-pyrazolidinones with sulfoxonium ylides are reported.
Collapse
Affiliation(s)
- Hai-Shan Jin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Ya-Zhen Du
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Qing-Yang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
58
|
Su K, Guo X, Zhu L, Liu Y, Lu Y, Chen B. Indolizine synthesis via radical cyclization and demethylation of sulfoxonium ylides and 2-(pyridin-2-yl)acetate derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00550b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel radical cross-coupling/cyclization of 2-(pyridin-2-yl)acetate derivatives and sulfoxonium ylides is developed, which provides a straightforward access to structurally diverse methylthio-substituted indolizine.
Collapse
Affiliation(s)
- Kexin Su
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Xin Guo
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Liangwei Zhu
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Yafeng Liu
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Yixuan Lu
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
59
|
Li X, Zhang R, Qi Y, Zhao Q, Yao T. Rhodium( iii)-catalyzed C–H activation/annulation of N-iminopyridinium ylides with alkynes and diazo compounds. Org Chem Front 2021. [DOI: 10.1039/d0qo01333a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rh(iii)-Catalyzed C–H activation/annulation of N-iminopyridinium ylides with alkynes and diazo compounds has been realized for the synthesis of isoquinolones and isocoumarins.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Ruihong Zhang
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| | - Yaoting Qi
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| | - Qing Zhao
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| | - Tuanli Yao
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| |
Collapse
|
60
|
Shu S, Huang Z, Chen Y, Yang S, Jiang Y, Zhang J, Zhao Y. Rh(III)-Catalyzed [4+2] Annulation of Indoles with Sulfoxonium Ylides for the Synthesis of Dihydropyrimidoindolone Derivatives. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
61
|
Chen J, Zhong T, Zheng X, Yin C, Zhang L, Zhou J, Jiang X, Yu C. Selective Synthesis of Fused Tricyclic [1,3]oxazino[3,4‐
a
]indolone and Dihydropyrimido [1,6‐a]indolone
via
Rh(III)‐catalyzed [3+3] or [4+2] C−H Annulation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001286] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Junyu Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Lei Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jian Zhou
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
62
|
Lyu X, Huang S, Huang Y, Song H, Liu Y, Li Y, Yang S, Wang Q. Rhodium(III)‐Catalyzed Cross‐Coupling of Sulfoxonium Ylides with Quinoline‐8‐carboxaldehydes for Synthesis of Quinoline‐1,3‐diketones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xue‐Li Lyu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Shi‐Sheng Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yuan‐Qiong Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Hong‐Jian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yu‐Xiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yong‐Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Shao‐Xiang Yang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 P. R. China
| | - Qing‐Min Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
63
|
Lee SC, Son J, Kim JY, Eom H, Jang SB, Lee PH. Regioselective and Chemodivergent Synthesis of Azulenolactones and Azulenolactams from Rhodium(III)‐Catalyzed Reactions of Azulenecarboxamides with Sulfoxonium Ylides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Seung Cheol Lee
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Jeong‐Yu Son
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Jin Young Kim
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Hyeonsik Eom
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Seong Bin Jang
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| | - Phil Ho Lee
- The Korean Academy of Science and Technology Seongnam 13630 Republic of Korea
- Department of Chemistry Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
64
|
He M, Chen Y, Luo Y, Li J, Lai R, Yang Z, Wang Y, Wu Y. Transition-metal-free [3+3] annulation reaction of sulfoxonium ylides with cyclopropenones for the synthesis of 2-pyrones. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
65
|
Rhodium-catalyzed [4+1] annulation of sulfoxonium ylides: Sequential ortho-C H functionalization/carbonyl α-amination toward polycyclic quinazolinones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
66
|
Liu S, Pu M, Wu YD, Zhang X. Computational Study on the Fate of Oxidative Directing Groups in Ru(II), Rh(III), and Pd(II) Catalyzed C-H Functionalization. J Org Chem 2020; 85:12594-12602. [PMID: 32931704 DOI: 10.1021/acs.joc.0c01775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of C-H bonds assisted by a directing group is indispensable in organic synthesis. Among them, utilizing oxidative directing groups that can serve as an internal oxidant to drive the Mn/Mn+2 catalytic cycle has recently become a promising strategy. A survey of published reactions involving N-alkoxyamides or N-acyloxyamides reveals that not all N-O bonds act as an internal oxidant. We have therefore systematically investigated the effect of the oxidative groups on a model reaction catalyzed by Ru(II), Rh(III), and Pd(II) complexes. DFT calculations show that N-methoxy and N-acyloxy groups oxidize Ru(II) to Ru(IV) and Rh(III) to Rh(V), but cannot oxidize a cyclo-Pd(II) intermediate to Pd(IV). The stability of the metal imido intermediate 7-M (M = Ru, Rh, and Pd) controls whether the oxidation occurs or not. N-Acyloxy groups show a more pronounced selectivity than N-methoxy to oxidize Ru(II) and Rh(III) species, while no distinctive effect is observed for Pd(II).
Collapse
Affiliation(s)
- Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Yun-Dong Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| |
Collapse
|
67
|
Zhang M, Zhang J, Teng Z, Chen J, Xia Y. Ruthenium(II)-Catalyzed Homocoupling of α-Carbonyl Sulfoxonium Ylides Under Mild Conditions: Methodology Development and Mechanistic DFT Study. Front Chem 2020; 8:648. [PMID: 33195001 PMCID: PMC7525066 DOI: 10.3389/fchem.2020.00648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023] Open
Abstract
A mild ruthenium(II)-catalyzed homocoupling of α-carbonyl sulfoxonium ylides was developed and the detailed mechanism was understood based on DFT calculations in the current report. The catalytic system utilizes the α-carbonyl sulfoxonium ylide as both the directing group for ortho-sp2 C-H activation and the acylmethylating reagent for C-C coupling. Various substituents are compatible in the transformation and a variety of isocoumarin derivatives were synthesized at room temperature without any protection. The theoretical results disclosed that the full catalytic cycle contains eight elementary steps, and in all the cationic Ru(II) monomer is involved as the catalytic active species. The acid additive is responsible for protonation of the ylide carbon prior to the intramolecular nucleophilic addition and C-C bond cleavage. Interestingly, the intermediacy of free acylmethylation intermediate or its enol isomer is not necessary for the transformation.
Collapse
Affiliation(s)
- Maosheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Jinrong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Zhenfang Teng
- Information Technology Center, Wenzhou University, Wenzhou, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| |
Collapse
|
68
|
Liu R, Wei Y, Shi M. Rhodium(III)‐Catalyzed Cross Coupling of Sulfoxonium Ylides and 1,3‐Diynes to Produce Naphthol‐Indole Derivatives: An Arene
ortho
C−H Activation/Annulation Cascade. ChemCatChem 2020. [DOI: 10.1002/cctc.202001315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruixing Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Linglin Lu Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Linglin Lu Shanghai 200032 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Linglin Lu Shanghai 200032 China
- Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518000 Guangdong China
| |
Collapse
|
69
|
Wang F, Liu BX, Rao W, Wang SY. Metal-Free Chemoselective Reaction of Sulfoxonium Ylides and Thiosulfonates: Diverse Synthesis of 1,4-Diketones, Aryl Sulfursulfoxonium Ylides, and β-Keto Thiosulfones Derivatives. Org Lett 2020; 22:6600-6604. [PMID: 32806158 DOI: 10.1021/acs.orglett.0c02370] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A diverse chemoselective insertion reaction of sulfoxonium ylides and thiosulfonates under transition-metal-free conditions is developed, which successfully affords 1,4-diketone compounds, arylthiosulfoxide-ylides, and β-keto thiosulfones, respectively. The nucleophilic addition of two molecular sulfoxonium ylides to construct sulfone-substituted 1,4-dione compounds is the highlight of this work.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College and Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
70
|
Nishii Y, Miura M. Cp*M-Catalyzed Direct Annulation with Terminal Alkynes and Their Surrogates for the Construction of Multi-Ring Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02972] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuji Nishii
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
71
|
Ding H, Lv G, Chen Y, Luo Y, Li J, Guo L, Wu Y. Synthesis of 2,3‐dihydrofurans
via
Lewis acid‐Catalyzed [4+1] Cycloaddition of Enynones with Sulfoxonium Ylides in Ionic Liquids: A Mild and Green Platform. ChemistrySelect 2020. [DOI: 10.1002/slct.202002188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Haosheng Ding
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Guanghui Lv
- Department of Pharmacy, Taihe HospitalHubei University of Medicine No. 32 South Renmin Road Huibei, Shiyan 442000 P. R. China
| | - Yuncan Chen
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Yi Luo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Li Guo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| |
Collapse
|
72
|
Xu Y, Huang X, Lv G, Lai R, Lv S, Li J, Hai L, Wu Y. Iridium-Catalyzed Carbenoid Insertion of Sulfoxonium Ylides for Synthesis of Quinoxalines and β-Keto Thioethers in Water. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingying Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Xin Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Guanghui Lv
- Department of Pharmacy; Taihe Hospital; Hubei University of Medicine; No. 32 South Renmin Road 442000 Shiyan Huibei China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Songyang Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| |
Collapse
|
73
|
Luo N, Zhan Z, Ban Z, Lu G, He J, Hu F, Huang G. Brønsted Acid‐Promoted Diastereoselective [4+1] Cyclization Reaction of Enamides and Sulfoxonium Ylides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nan Luo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Zhenzhen Zhan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Zihui Ban
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Guoqiang Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Jianping He
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Fangpeng Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Guosheng Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
74
|
Chen J, Zhang L, Zheng X, Zhou J, Zhong T, Yu C. Synthesis of isoquinolinone derivatives by Rh (III)-catalyzed C–H functionalization of N-ethoxybenzamides. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1755984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Junyu Chen
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Lei Zhang
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Xiangyun Zheng
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Jian Zhou
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Tianshuo Zhong
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Chuanming Yu
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| |
Collapse
|
75
|
Wang L, Zhou J, Chen HQ, Li DL, Lin JB, Li K, Ding TM, Zhang SY. Fe-Catalyzed Sequential C(sp 3)-H/N-H Annulation of 2-Methylindoles with Ethyl Trifluoropyruvate at Room Temperature: Construction of Pyrrolo[1,2-α]indoles. Org Lett 2020; 22:4716-4720. [PMID: 32498522 DOI: 10.1021/acs.orglett.0c01522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and benign iron-catalyzed room-temperature method was developed for direct sequential C(sp3)-H/N-H annulation to construct pyrroloindole scaffolds. This strategy features cheap and readily available raw materials and mild room-temperature reaction conditions and provides a green and practical method for the one-pot rapid synthesis of a wide range of diversely functionalized pyrrolo[1,2-α]indoles.
Collapse
Affiliation(s)
- Le Wang
- School of Biotechnology and Health Science, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han-Qia Chen
- School of Biotechnology and Health Science, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China
| | - Dong-Li Li
- School of Biotechnology and Health Science, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China
| | - Jun-Bing Lin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Ke Li
- Department of Medicinal Chemistry, College of Pharmacy, Second Military Medical University, No. 325, Guohe Road, Shanghai 200433, China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Yu Zhang
- School of Biotechnology and Health Science, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
76
|
Kona CN, Nishii Y, Miura M. Thioether-Directed C4-Selective C–H Acylmethylation of Indoles Using α-Carbonyl Sulfoxonium Ylides. Org Lett 2020; 22:4806-4811. [DOI: 10.1021/acs.orglett.0c01617] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chandrababu Naidu Kona
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
77
|
Chen X, Wang M, Zhang X, Fan X. A novel synthesis of diversely functionalized 1,2,4-triones through the homo- and cross-coupling reactions of β-keto sulfoxonium ylides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
78
|
Zhu S, Shi K, Zhu H, Jia ZK, Xia XF, Wang D, Zou LH. Copper-Catalyzed Annulation or Homocoupling of Sulfoxonium Ylides: Synthesis of 2,3-Diaroylquinolines or α,α,β-Tricarbonyl Sulfoxonium Ylides. Org Lett 2020; 22:1504-1509. [PMID: 32043889 DOI: 10.1021/acs.orglett.0c00085] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An unprecedented copper-catalyzed reaction of sulfoxonium ylides and anthranils is reported that enables an easy access to 2,3-diaroylquinolines through a [4+1+1] annulation. Copper-catalyzed homocoupling of sulfoxonium ylides provided α,α,β-tricarbonyl sulfoxonium ylides, which provides a strategy to extend the carbon chain through C-C bond formation. The utility of the products as well as the mechanistic details of the process are presented.
Collapse
Affiliation(s)
- Shuai Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Kai Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Hao Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Zhe-Kang Jia
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Xiao-Feng Xia
- School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Dawei Wang
- School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Liang-Hua Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| |
Collapse
|
79
|
Mu Y, Chen Y, Gao Y, Sun J, Iqbal Z, Wan Y, Yang M, Yang Z, Tang D. Ru‐Catalyzed O‐H Insertion of Sulfoxonium Ylide and Carboxylic Acid to Synthesize α‐Acyloxy Ketones. ChemistrySelect 2020. [DOI: 10.1002/slct.201903657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yangxiu Mu
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry ScienceInstitution Ningxia Center of Agricultural Organic Synthesis Yinchuan 750002 P. R. China
| | - Yongxin Chen
- Northwest Institute of Eco-Environment and ResourcesChinese Academy of Sciences Lanzhou China
| | - Yuanyu Gao
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry ScienceInstitution Ningxia Center of Agricultural Organic Synthesis Yinchuan 750002 P. R. China
| | - Jian Sun
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry ScienceInstitution Ningxia Center of Agricultural Organic Synthesis Yinchuan 750002 P. R. China
| | - Zafar Iqbal
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry ScienceInstitution Ningxia Center of Agricultural Organic Synthesis Yinchuan 750002 P. R. China
| | - Yaya Wan
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry ScienceInstitution Ningxia Center of Agricultural Organic Synthesis Yinchuan 750002 P. R. China
| | | | - Zhixiang Yang
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry ScienceInstitution Ningxia Center of Agricultural Organic Synthesis Yinchuan 750002 P. R. China
| | - Dong Tang
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry ScienceInstitution Ningxia Center of Agricultural Organic Synthesis Yinchuan 750002 P. R. China
- Department of Chemistry Lishui University China
| |
Collapse
|
80
|
Kou X, Kou KGM. α-Arylation of Silyl Enol Ethers via Rhodium(III)-Catalyzed C–H Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05622] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xuezhen Kou
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Kevin G. M. Kou
- Department of Chemistry, University of California, Riverside, California 92507, United States
| |
Collapse
|
81
|
Kommagalla Y, Ando S, Chatani N. Rh(III)-Catalyzed Reaction of α-Carbonyl Sulfoxonium Ylides and Alkenes: Synthesis of Indanones via [4 + 1] Cycloaddition. Org Lett 2020; 22:1375-1379. [DOI: 10.1021/acs.orglett.9b04664] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yadagiri Kommagalla
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shunsuke Ando
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
82
|
Janot C, Chagnoleau JB, Halcovitch NR, Muir J, Aïssa C. Palladium-Catalyzed Synthesis of α-Carbonyl-α'-(hetero)aryl Sulfoxonium Ylides: Scope and Insight into the Mechanism. J Org Chem 2020; 85:1126-1137. [PMID: 31808694 DOI: 10.1021/acs.joc.9b03032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite recent advances, a general method for the synthesis of α-carbonyl-α'-(hetero)aryl sulfoxonium ylides is needed to benefit more greatly from the potential safety advantages offered by these compounds over the parent diazo compounds. Herein, we report the palladium-catalyzed cross-coupling of aryl bromides and triflates with α-carbonyl sulfoxonium ylides. We also report the use of this method for the modification of an active pharmaceutical ingredient and for the synthesis of a key precursor of antagonists of the neurokinin-1 receptor. In addition, the mechanism of the reaction was inferred from several observations. Thus, the oxidative addition complex [(XPhos)PhPdBr] and its dimer were observed by 31P{1H} NMR, and these complexes were shown to be catalytically and kinetically competent. Moreover, a complex resulting from the transmetalation of [(XPhos)ArPdBr] (Ar = p-CF3-C6H4) with a model sulfoxonium ylide was observed by mass spectrometry. Finally, the partial rate law suggests that the transmetalation and the subsequent deprotonation are rate-determining in the catalytic cycle.
Collapse
Affiliation(s)
- Christopher Janot
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , United Kingdom
| | - Jean-Baptiste Chagnoleau
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , United Kingdom
| | - Nathan R Halcovitch
- Department of Chemistry , Lancaster University , Bailrigg , Lancaster LA1 4YB , United Kingdom
| | - James Muir
- Pharmaceutical Technology and Development , AstraZeneca Macclesfield Campus , Cheshire SK10 2NA , United Kingdom
| | - Christophe Aïssa
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , United Kingdom
| |
Collapse
|
83
|
Das D, Sahoo G, Biswas A, Samanta R. Rh
III
‐Catalyzed Synthesis of Highly Substituted 2‐Pyridones using Fluorinated Diazomalonate. Chem Asian J 2020; 15:360-364. [DOI: 10.1002/asia.201901620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Debapratim Das
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Gopal Sahoo
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Aniruddha Biswas
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Rajarshi Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
84
|
Zhang J, Wang X, Chen D, Kang Y, Ma Y, Szostak M. Synthesis of C6-Substituted Isoquinolino[1,2-b]quinazolines via Rh(III)-Catalyzed C–H Annulation with Sulfoxonium Ylides. J Org Chem 2020; 85:3192-3201. [DOI: 10.1021/acs.joc.9b03065] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiaogang Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Di Chen
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yifan Kang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Michal Szostak
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
85
|
Zhang SS, Xie H, Shu B, Che T, Wang XT, Peng D, Yang F, Zhang L. Iridium-catalyzed B-H insertion of sulfoxonium ylides and borane adducts: a versatile platform to α-boryl carbonyls. Chem Commun (Camb) 2020; 56:423-426. [PMID: 31822876 DOI: 10.1039/c9cc08795h] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iridium-catalyzed boron-hydrogen bond insertion reactions of trimethylamine-borane and sulfoxonium ylides have been demonstrated, furnishing α-boryl ketones in moderate to excellent yields in most cases (51 examples; up to 84%). This practical and scalable insertion reaction showed broad substrate scope, high functional-group compatibility and could be applied in late-stage modification of structurally complex drug compounds. Further synthetic applications were also demonstrated.
Collapse
Affiliation(s)
- Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Dong Y, Yu JT, Sun S, Cheng J. Rh(iii)-Catalyzed sequential ortho-C-H oxidative arylation/cyclization of sulfoxonium ylides with quinones toward 2-hydroxy-dibenzo[b,d]pyran-6-ones. Chem Commun (Camb) 2020; 56:6688-6691. [PMID: 32412018 DOI: 10.1039/d0cc00176g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A rhodium(iii)-catalyzed ortho-C-H functionalization of sulfoxonium ylides followed by intramolecular annulation reactions with quinones was described, where the carbonyl in sulfoxonium ylides served as a chelation group. This protocol leads to the efficient formation of 2-hydroxy-6H-benzo[c]chromen-6-one derivatives, proceeding with the cleavage of the C(O)-S bond in sulfoxonium ylides. This protocol featured high chemo-selectivity and functional group tolerance, where sulfoxonium ylides acted as the aroyl sources.
Collapse
Affiliation(s)
- Yaqun Dong
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Gehu Road 1, Changzhou, 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Gehu Road 1, Changzhou, 213164, P. R. China.
| | - Song Sun
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Gehu Road 1, Changzhou, 213164, P. R. China.
| | - Jiang Cheng
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Gehu Road 1, Changzhou, 213164, P. R. China.
| |
Collapse
|
87
|
Zhao Y, Shi C, Su X, Xia W. Synthesis of isoquinolones by visible-light-induced deaminative [4+2] annulation reactions. Chem Commun (Camb) 2020; 56:5259-5262. [DOI: 10.1039/d0cc01333a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A metal-free approach for the synthesis of isoquinolone derivatives by means of photoinitiated deaminative [4+2] annulation of alkynes and N-amidepyridinium salts is presented.
Collapse
Affiliation(s)
- Yating Zhao
- College of Chemical and Material Engineering
- Quzhou University
- Quzhou
- China
- State Key Lab of Urban Water Resource and Environment
| | - Chengcheng Shi
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Xing Su
- College of Chemical and Material Engineering
- Quzhou University
- Quzhou
- China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| |
Collapse
|
88
|
Muthukrishnan I, Karuppasamy M, Vachan BS, Rajput D, Subbiah N, Uma Maheswari C, Sridharan V. Chemodivergent synthesis of functionalized methanodibenzo[b,f][1,5]diazocin-13-ylmethanones and tetrahydroquinolines via solvent-dependent AB2 and A2B2 multicomponent annulation reactions. Org Chem Front 2020. [DOI: 10.1039/d0qo00449a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A solvent-dependent chemodivergent approach was developed for the synthesis of 6,12-methanodibenzo[b,f][1,5]diazocin-13-ylmethanones and 2,3,4-trisubstituted 1,2,3,4-tetrahydroquinolines involving two distinct AB2 and A2B2 multicomponent processes.
Collapse
Affiliation(s)
- Isravel Muthukrishnan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Muthu Karuppasamy
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - B. S. Vachan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Diksha Rajput
- Department of Chemistry and Chemical Sciences
- Central University of Jammu
- Jammu-181143
- India
| | - Nagarajan Subbiah
- Department of Chemistry
- National Institute of Technology
- Warangal-506004
- India
| | - C. Uma Maheswari
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Vellaisamy Sridharan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| |
Collapse
|
89
|
Mayakrishnan S, Tamizmani M, Maheswari NU. Harnessing hypervalent iodonium ylides as carbene precursors: C–H activation of N-methoxybenzamides with a Rh(iii)-catalyst. Chem Commun (Camb) 2020; 56:15462-15465. [DOI: 10.1039/d0cc06038k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first ever attempt at reacting hypervalent iodonium ylides with readily available N-methoxybenzamides by using a Rh(iii)-catalyst has been well explored.
Collapse
Affiliation(s)
- Sivakalai Mayakrishnan
- Organic & Bioorganic Chemistry Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
| | - Masilamani Tamizmani
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Naryanan Uma Maheswari
- Organic & Bioorganic Chemistry Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
| |
Collapse
|
90
|
Fu Y, Wang Z, Zhang Q, Li Z, Liu H, Bi X, Wang J. Ru(ii)-catalyzed C6-selective C–H acylmethylation of pyridones using sulfoxonium ylides as carbene precursors. RSC Adv 2020; 10:6351-6355. [PMID: 35496007 PMCID: PMC9049633 DOI: 10.1039/c9ra10749e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 02/02/2023] Open
Abstract
In this study, we describe a method using sulfoxonium ylides as carbene precursors to achieve C6-selective acylmethylation of pyridones catalyzed by a ruthenium(ii) complex. This approach featured mild reaction conditions, moderate to excellent yields, high step economy, and had excellent functional group tolerance with good site selectivity. Besides, gram-scale preparation, synthetic utility, and mechanistic studies were conducted. It offers a direct and efficient way to synthesize pyridone derivatives. In this study, we describe a method using sulfoxonium ylides as carbene precursors to achieve C6-selective acylmethylation of pyridones catalyzed by a ruthenium(ii) complex.![]()
Collapse
Affiliation(s)
- Yangjie Fu
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhaohui Wang
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qiyu Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hong Liu
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaoling Bi
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jiang Wang
- State Key Laboratory of Drug Research
- Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| |
Collapse
|
91
|
Shu B, Wang XT, Shen ZX, Che T, Zhong M, Song JL, Kang HJ, Xie H, Zhang L, Zhang SS. Iridium-catalyzed arylation of sulfoxonium ylides and arylboronic acids: a straightforward preparation of α-aryl ketones. Org Chem Front 2020. [DOI: 10.1039/d0qo00543f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly efficient iridium(iii)-catalyzed arylation coupling of sulfoxonium ylides with arylboronic acids to generate α-aryl ketones has been established for the first time.
Collapse
Affiliation(s)
- Bing Shu
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- School of Pharmacy
| | - Xiao-Tong Wang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- School of Pharmacy
| | - Zi-Xuan Shen
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Tong Che
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Mei Zhong
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Jia-Lin Song
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Hua-Jie Kang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Hui Xie
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Luyong Zhang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- Jiangsu Key Laboratory of Drug Screening
| | - Shang-Shi Zhang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems
| |
Collapse
|
92
|
Wen S, Chen Y, Zhao Z, Ba D, Lv W, Cheng G. Ruthenium(II)-Catalyzed Construction of Isocoumarins via Dual C–H/C–C Activation of Sulfoxonium Ylides. J Org Chem 2019; 85:1216-1223. [DOI: 10.1021/acs.joc.9b02520] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Si Wen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Zemin Zhao
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Dan Ba
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Weiwei Lv
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
93
|
Karishma P, Agarwal DS, Laha B, Mandal SK, Sakhuja R. Ruthenium Catalyzed C-H Acylmethylation of N-Arylphthalazine-1,4-diones with α-Carbonyl Sulfoxonium Ylides: Highway to Diversely Functionalized Phthalazino-fused Cinnolines. Chem Asian J 2019; 14:4274-4288. [PMID: 31613428 DOI: 10.1002/asia.201901250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/11/2019] [Indexed: 12/15/2022]
Abstract
A direct ortho-Csp2 -H acylmethylation of 2-aryl-2,3-dihydrophthalazine-1,4-diones with α-carbonyl sulfoxonium ylides is achieved through a RuII -catalyzed C-H bond activation process. The protocol featured high functional group tolerance on the two substrates, including aryl-, heteroaryl-, and alkyl-substituted α-carbonyl sulfoxonium ylides. Thereafter, 2-(ortho-acylmethylaryl)-2,3-dihydrophthalazine-1,4-diones were used as potential starting materials for the expeditious synthesis of 6-arylphthalazino[2,3-a]cinnoline-8,13-diones and 5-acyl-5,6-dihydrophthalazino[2,3-a]cinnoline-8,13-diones under Lawesson's reagent and BF3 ⋅OEt2 mediated conditions, respectively. Of these, the BF3 ⋅OEt2 -mediated cyclization proceeded in DMSO as a solvent and a methylene source via dual C-C and C-N bond formations.
Collapse
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Devesh S Agarwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Biswajit Laha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab, 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab, 140306, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| |
Collapse
|
94
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
95
|
Lou J, Wang Q, Zhou YG, Yu Z. Rhodium(III)-Catalyzed Annulative Coupling of Sulfoxonium Ylides and Allenoates: An Arene C–H Activation/Cyclopropanation Cascade. Org Lett 2019; 21:9217-9222. [DOI: 10.1021/acs.orglett.9b03589] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiang Lou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Quannan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
96
|
Li J, He H, Huang M, Chen Y, Luo Y, Yan K, Wang Q, Wu Y. Iridium-Catalyzed B–H Bond Insertion Reactions Using Sulfoxonium Ylides as Carbene Precursors toward α-Boryl Carbonyls. Org Lett 2019; 21:9005-9008. [PMID: 31689110 DOI: 10.1021/acs.orglett.9b03410] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Hua He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Mengyi Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yuncan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Kaichuan Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
97
|
Clare D, Dobson BC, Inglesby PA, Aïssa C. Chemospecific Cyclizations of α-Carbonyl Sulfoxonium Ylides on Aryls and Heteroaryls. Angew Chem Int Ed Engl 2019; 58:16198-16202. [PMID: 31507055 PMCID: PMC6856693 DOI: 10.1002/anie.201910821] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/10/2019] [Indexed: 11/07/2022]
Abstract
The functionalization of aryl and heteroaryls using α-carbonyl sulfoxonium ylides without the help of a directing group has remained so far a neglected area, despite the advantageous safety profile of sulfoxonium ylides. Described herein are the cyclizations of α-carbonyl sulfoxonium ylides onto benzenes, benzofurans and N-p-toluenesulfonyl indoles in the presence of a base in HFIP, whereas pyrroles and N-methyl indoles undergo cyclization in the presence of an iridium catalyst. Significantly, these two sets of conditions are chemospecific for each groups of substrates.
Collapse
Affiliation(s)
- Daniel Clare
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Benjamin C. Dobson
- Pharmaceutical Technology and DevelopmentAstraZeneca Macclesfield CampusCheshireSK10 2NAUK
| | - Phillip A. Inglesby
- Pharmaceutical Technology and DevelopmentAstraZeneca Macclesfield CampusCheshireSK10 2NAUK
| | - Christophe Aïssa
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
98
|
Zhou P, Yang WT, Rahman AU, Li G, Jiang B. Rh(III)-Catalyzed [3 + 3] Annulation Reaction of Cyclopropenones and Sulfoxonium Ylides toward Trisubstituted 2-Pyrones. J Org Chem 2019; 85:360-366. [DOI: 10.1021/acs.joc.9b02253] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Peng Zhou
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Wei-Tao Yang
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Anis Ur Rahman
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
99
|
Chen Q, Wang Y, Hua R. Base-Promoted Chemodivergent Formation of 1,4-Benzoxazepin-5(4 H)-ones and 1,3-Benzoxazin-4(4 H)-ones Switched by Solvents. Molecules 2019; 24:molecules24203773. [PMID: 31635103 PMCID: PMC6832296 DOI: 10.3390/molecules24203773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
The KOH-promoted chemodivergent benzannulation of ortho-fluorobenzamides with 2-propyn-1-ol can afford either 1,4-benzoxazepin-5(4H)-ones or 1,3-benzoxazin-4(4H)-ones in good yields with high selectivity, depending greatly upon the use of solvents. In the case of using DMSO, the intermolecular benzannulation produced seven-membered benzo-fused heterocycles of 1,4-benzoxazepin-5(4H)-ones, whereas in MeCN, the six-membered benzo-fused heterocycles of 1,3-benzoxazin-4(4H)-ones were formed. The KOH-promoted benzannulation proceeded most probably through the C–F nucleophilic substitution of ortho-fluorobenzamides with 2-propyn-1-ol to give the intermediate of ortho-[(2-propynyl)oxy]benzamide, which underwent the intramolecular hydroamidation in a different manner to afford either seven- or six-membered benzo-fused heterocycles.
Collapse
Affiliation(s)
- Qian Chen
- Department of Chemistry, Tsinghua University, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Beijing 100084, China.
| | - Yunpeng Wang
- Department of Chemistry, Tsinghua University, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Beijing 100084, China.
| | - Ruimao Hua
- Department of Chemistry, Tsinghua University, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Beijing 100084, China.
| |
Collapse
|
100
|
Huang Y, Lyu X, Song H, Wang Q. Sulfoxonium Ylides as Carbene Precursors: Rhodium(III)‐Catalyzed Sequential C−H Functionalization, Selective Enol Oxygen‐Atom Nucleophilic Addition, and Hydrolysis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900861] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuanqiong Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Xueli Lyu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 People's Republic of China
| |
Collapse
|