51
|
Ouahrani S, Tzompa‐Sosa DA, Dewettinck K, Zaidi F. Oxidative stability, structural, and textural properties of margarine enriched with
Moringa oleifera
leaves extract. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sara Ouahrani
- Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Daylan Amelia Tzompa‐Sosa
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Farid Zaidi
- Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| |
Collapse
|
52
|
Zhang S, Xu X, Yang J, Ren J. Impact of Emulsifier Structure and Concentration on Lipolysis Dynamics and Curcumin Bioaccessibility in the Nanoemulsions Stabilized by Polyglycerol Fatty Acid Esters. FOOD BIOPHYS 2022; 17:575-585. [PMID: 35645654 PMCID: PMC9128773 DOI: 10.1007/s11483-021-09681-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/18/2021] [Indexed: 11/04/2022]
|
53
|
Madalena D, Fernandes J, Avelar Z, Gonçalves R, Ramos ÓL, Vicente AA, Pinheiro AC. Emerging challenges in assessing bio-based nanosystems’ behaviour under in vitro digestion focused on food applications – A critical view and future perspectives. Food Res Int 2022; 157:111417. [DOI: 10.1016/j.foodres.2022.111417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 01/23/2023]
|
54
|
Maurya VK, Shakya A, Bashir K, Kushwaha SC, McClements DJ. Vitamin A fortification: Recent advances in encapsulation technologies. Compr Rev Food Sci Food Saf 2022; 21:2772-2819. [PMID: 35384290 DOI: 10.1111/1541-4337.12941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
Vitamin A is an essential micronutrient whose deficiency is still a major health concern in many regions of the world. It plays an essential role in human growth and development, immunity, and vision, but may also help prevent several other chronic diseases. The total amount of vitamin A in the human diet often falls below the recommended dietary allowance of approximately 900-1000 μ $ \umu $ g/day for a healthy adult. Moreover, a significant proportion of vitamin A may be degraded during food processing, storage, and distribution, thereby reducing its bioactivity. Finally, the vitamin A in some foods has a relatively low bioavailability, which further reduces its efficacy. The World Health Organization has recommended fortification of foods and beverages as a safe and cost-effective means of addressing vitamin A deficiency. However, there are several factors that must be overcome before effective fortified foods can be developed, including the low solubility, chemical stability, and bioavailability of this oil-soluble vitamin. Consequently, strategies are required to evenly disperse the vitamin throughout food matrices, to inhibit its chemical degradation, to avoid any adverse interactions with any other food components, to ensure the food is palatable, and to increase its bioavailability. In this review article, we discuss the chemical, physical, and nutritional attributes of vitamin A, its main dietary sources, the factors contributing to its current deficiency, and various strategies to address these deficiencies, including diet diversification, biofortification, and food fortification.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - Amita Shakya
- Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Haryana, India.,Division of Biotechnology, Cytogene Research & Development, Lucknow, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - Satish Chand Kushwaha
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA.,Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| |
Collapse
|
55
|
Tan Y, Zhou H, McClements DJ. Application of static in vitro digestion models for assessing the bioaccessibility of hydrophobic bioactives: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
56
|
Hong L, Salentinig S. Functional food colloids: studying structure and interactions during digestion. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
57
|
Infantes-Garcia M, Verkempinck S, Saadi M, Hendrickx M, Grauwet T. Towards understanding the modulation of in vitro gastrointestinal lipolysis kinetics through emulsions with mixed interfaces. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
58
|
Guo Y, Xu Y, Zhang T, Wang Y, Liu R, Chang M, Wang X. Medium and long-chain structured triacylglycerol enhances vitamin D bioavailability in an emulsion-based delivery system: combination of in vitro and in vivo studies. Food Funct 2022; 13:1762-1773. [PMID: 35112696 DOI: 10.1039/d1fo03407c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D (VitD) is an essential fat-soluble micronutrient required for maintaining and regulating calcium homeostasis. Although sunlight can provide VitD, epidemiological studies indicate that the occurrence of VitD deficiency and insufficiency is widespread. Lipids are required at all stages of VitD digestion and absorption. In this research two different medium and long-chain triacylglycerol structures, possessing identical fatty acid composition lipids, namely structured triacylglycerol (STG), and physical mixtures of medium/long-chain triacylglycerol (MCT/LCT), were selected. Our results demonstrated that STG had a significant VitD bioavailability compared to MCT/LCT. In terms of the lipid digestion and absorption, the extent of the higher free fatty acid released (69.42%, p < 0.05), extent of lipolysis (89.28%, p < 0.05), lipolysis rate (0.06 s-1, p < 0.05), and the ratio of the long-chain fatty acid to medium-chain fatty acid of STG (4.8, p < 0.05), result in a higher capacity for accommodating VitD when forming mixed micelles (61.31%, p < 0.05). An in vivo animal study also demonstrated that STG significantly increases the delivery ability of VitD (18.75 ng mL-1, p < 0.05). The findings of this work may have unique applications for designing novel interesterified lipids with an effective delivery capacity for fat-soluble nutrients.
Collapse
Affiliation(s)
- Yiwen Guo
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Xu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yandan Wang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruijie Liu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Chang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingguo Wang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
59
|
Bravo-Díaz C. Advances in the control of lipid peroxidation in oil-in-water emulsions: kinetic approaches †. Crit Rev Food Sci Nutr 2022; 63:6252-6284. [PMID: 35104177 DOI: 10.1080/10408398.2022.2029827] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large efforts have been, and still are, devoted to minimize the harmful effects of lipid peroxidation. Much of the early work focused in understanding both the lipid oxidation mechanisms and the action of antioxidants in bulk solution. However, food-grade oils are mostly present in the form of oil-in-water emulsions, bringing up an increasing complexity because of the three-dimensional interfacial region. This review presents an overview of the kinetic approaches employed in controlling the oxidative stability of edible oil-in-water emulsions and of the main outcomes, with particular emphasis on the role of antioxidants and on the kinetics of the inhibition reaction. Application of physical-organic chemistry methods, such as the pseudophase models to investigate antioxidant partitioning, constitute a remarkable example on how kinetic methodologies contribute to model chemical reactivity in multiphasic systems and to rationalize the role of interfaces, opening new opportunities for designing novel antioxidants with tailored properties and new prospects for modulating environmental conditions in attempting to optimize their efficiency. Here we will summarize the main kinetic features of the inhibition reaction and will discuss on the main factors affecting its rate, including the determination of antioxidant efficiencies from kinetic profiles, structure-reactivity relationships, partitioning of antioxidants and concentration effects.
Collapse
Affiliation(s)
- Carlos Bravo-Díaz
- Facultad de Ciencias, Departamento de Química Física, Universidad de Vigo, Vigo, Spain
| |
Collapse
|
60
|
Effect of ultrasound and coagulant types on properties of β-carotene bulk emulsion gels stabilized by soy protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107146] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
61
|
Tian L, Zhang S, Yi J, Zhu Z, Cui L, Decker EA, McClements DJ. Factors impacting the antioxidant/prooxidant activity of tea polyphenols on lipids and proteins in oil-in-water emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
62
|
Saffarionpour S, Diosady LL. Delivery of Ferric Sodium EDTA by Water-in-Oil-in-Water (W1/O/W2) Double Emulsions: Influence of Carrier Oil on its in Vitro Bioaccessibility. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02756-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Marze S. Compositional, Structural, and Kinetic Aspects of Lipid Digestion and Bioavailability: In Vitro, In Vivo, and Modeling Approaches. Annu Rev Food Sci Technol 2022; 13:263-286. [DOI: 10.1146/annurev-food-052720-093515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sébastien Marze
- INRAE, Biopolymères Interactions Assemblages, Nantes, France
| |
Collapse
|
64
|
Li R, Yuan G, Li D, Xu C, Du M, Tan S, Liu Z, He Q, rong L, Li J. Enhancing the bioaccessibility of puerarin through the collaboration of high internal phase Pickering emulsions with β-carotene. Food Funct 2022; 13:2534-2544. [DOI: 10.1039/d1fo03697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Puerarin is a medicinal and edible flavonoid compound found in the traditional Chinese medicine Pueraria lobata rhizome that has potential biological benefifits, including for the treatment of diabetes and memory...
Collapse
|
65
|
Yuan Y, Ma M, Xu Y, Wang D. Construction of biopolymer-based nanoencapsulation of functional food ingredients using the pH-driven method: a review. Crit Rev Food Sci Nutr 2021; 63:5724-5738. [PMID: 34969342 DOI: 10.1080/10408398.2021.2023858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biopolymer-based nanoencapsulation presents great performance in the delivery of functional food ingredients. In recent years, the pH-driven method has received considerable attention due to its unique characteristics of low energy and organic solvent-free during the construction of biopolymer-based nanoencapsulation. This review summarized the fundamental knowledge of pH-driven biopolymer-based nanoencapsulation. The principle of the pH-driven method is the protonation reaction of functional food ingredients that change with pH. The stability of functional food ingredients in an alkaline environment is a prerequisite for the adoption of this method. pH regulator is also an important influencing factor. Different coating materials used to the pH-driven nanoencapsulation were discussed, including single and composite materials, mainly focusing on proteins. Besides, the application evaluations of pH-driven nanoencapsulation in food were analyzed. The future development trends will be the influence of pH regulators on the carrier, the design of new non-protein-based carriers, the quantification of driving forces, the absorption mechanism of encapsulated nutrients, and the molecular interaction between the wall material and the intestinal mucosa. In conclusion, pH-driven biopolymer-based nanoencapsulation of functional food ingredients will have broad prospects for development.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
66
|
Effect of the emulsifier type on the physicochemical stability and in vitro digestibility of a lutein/zeaxanthin-enriched emulsion. Food Sci Biotechnol 2021; 30:1509-1518. [PMID: 34868700 DOI: 10.1007/s10068-021-00987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022] Open
Abstract
Lutein (L) and zeaxanthin (Z), as macular pigments, are water-insoluble, chemically unstable, and have low bioaccessibilities; they are often emulsified to overcome these limitations. This study investigated the impact of various emulsifiers (ethyl lauroyl arginate (LAE); Tween 80; and sodium dodecyl sulfate (SDS)) on the physicochemical properties and in vitro digestibilities of L/Z-fortified oil-in-water emulsions. Droplet aggregation and creaming extents were dependent on the emulsifier type. The ζ-potentials of emulsions stabilized by LAE, Tween 80, and SDS were + 87, - 26, and - 95 mV, respectively. SDS-stabilized emulsion had the smallest particles, while the particle sizes for the LAE- and Tween 80-stabilized emulsions were larger and not significantly different. The rates of L/Z degradation were sensitive to the emulsifier type and to heat, not to light. The L/Z bioaccessibility was the highest for the Tween 80 emulsion. Surfactants should therefore be carefully selected to optimize L/Z physicochemical stability and bioaccessibility in emulsions.
Collapse
|
67
|
Liao W, Dumas E, Ghnimi S, Elaissari A, Gharsallaoui A. Effect of emulsifier and droplet size on the antibacterial properties of emulsions and emulsion‐based films containing essential oil compounds. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Liao
- Univ. Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Emilie Dumas
- Univ. Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Sami Ghnimi
- Univ. Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon 1, CNRS, ISA‐UMR 5280 Villeurbanne France
| | - Adem Gharsallaoui
- Univ. Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| |
Collapse
|
68
|
Yu JJ, Zhang YF, Yan J, Li SH, Chen Y. A novel glycoprotein emulsion using high-denatured peanut protein and sesbania gum via cold plasma for encapsulation of β-carotene. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
69
|
Encapsulation of Lutein via Microfluidic Technology: Evaluation of Stability and In Vitro Bioaccessibility. Foods 2021; 10:foods10112646. [PMID: 34828927 PMCID: PMC8622530 DOI: 10.3390/foods10112646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/05/2023] Open
Abstract
Inadequate intake of lutein is relevant to a higher risk of age-related eye diseases. However, lutein has been barely incorporated into foods efficiently because it is prone to degradation and is poorly bioaccessible in the gastrointestinal tract. Microfluidics, a novel food processing technology that can control fluid flows at the microscale, can enable the efficient encapsulation of bioactive compounds by fabricating suitable delivery structures. Hence, the present study aimed to evaluate the stability and the bioaccessibility of lutein that is encapsulated in a new noodle-like product made via microfluidic technology. Two types of oils (safflower oil (SO) and olive oil (OL)) were selected as a delivery vehicle for lutein, and two customized microfluidic devices (co-flow and combination-flow) were used. Lutein encapsulation was created by the following: (i) co-flow + SO, (ii) co-flow + OL, (iii) combination-flow + SO, and (iv) combination-flow + OL. The initial encapsulation of lutein in the noodle-like product was achieved at 86.0 ± 2.7%. Although lutein’s stability experienced a decreasing trend, the retention of lutein was maintained above 60% for up to seven days of storage. The two types of device did not result in a difference in lutein bioaccessibility (co-flow: 3.1 ± 0.5%; combination-flow: 3.6 ± 0.6%) and SO and OL also showed no difference in lutein bioaccessibility (SO: 3.4 ± 0.8%; OL: 3.3 ± 0.4%). These results suggest that the types of oil and device do not affect the lutein bioaccessibility. Findings from this study may provide scientific insights into emulsion-based delivery systems that employ microfluidics for the encapsulation of bioactive compounds into foods.
Collapse
|
70
|
Cheng L, Ye A, Hemar Y, Singh H. Modification of the interfacial structure of droplet-stabilised emulsions during in vitro dynamic gastric digestion: Impact on in vitro intestinal lipid digestion. J Colloid Interface Sci 2021; 608:1286-1296. [PMID: 34758419 DOI: 10.1016/j.jcis.2021.10.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
The in-vitro gastrointestinal digestion behaviour of an oil-in-water emulsion with an interface consisting of nano-sized droplets coated with caseinate particles, referred to as a droplet-stabilised emulsion (DSE), was explored using the human gastric simulator and pH-stat models. A caseinate-particle-stabilised emulsion (PSE) was used as a control, with a similar droplet size distribution and the same composition as the DSE. The nanodroplet-stabilised interface of the DSE was preserved during the first 180 min of gastric digestion. During 240 min, the droplet sizes of the DSE and the PSE increased from 22.71 ± 1.14 to 63.34 ± 6.57 μm and from 17.98 ± 1.16 to 85.11 ± 9.35 μm respectively. The small droplet size of the DSE that was released from the gastric phase contributed to slightly higher total free fatty acid (FFA) release (56.18 ± 3.55%) than that from the PSE (49.4 ± 2.67%). The FFA release rate of the DSE (1.21 % min-1) was greater than that of the PSE (1.06 % min-1) during the first 30 min of small intestinal digestion; similar FFA release rates (0.5 µmol s-1 m-2 × 10-4) were obtained for both emulsions beyond 30 min of digestion. This study provides new information on lipid digestion using a novel interfacial layer that was stabilised with nanodroplets.
Collapse
Affiliation(s)
- Lirong Cheng
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Yacine Hemar
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|
71
|
Ma P, Zhang J, Teng Z, Zhang Y, Bauchan GR, Luo Y, Liu D, Wang Q. Metal-Organic Framework-Stabilized High Internal Phase Pickering Emulsions Based on Computer Simulation for Curcumin Encapsulation: Comprehensive Characterization and Stability Mechanism. ACS OMEGA 2021; 6:26556-26565. [PMID: 34661010 PMCID: PMC8515605 DOI: 10.1021/acsomega.1c03932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) have taken a center stage in the arena of delivery systems in the food industry because of their high loading capacity and stability. In addition, metal-organic frameworks (MOFs), a type of cutting-edge designable porous scaffolding material, have attracted attention in reticular chemistry, which satisfies fundamental demands for delivery research in the past years. Here, we demonstrate a novel metal-organic framework (MOF)-stabilized HIPPE delivery system for hydrophobic phytochemicals. First, a novel high-biocompatibility and stable MOF particle, UiO-66-NH2, was selected from atomic simulation screening, which showed proper electronegativity and amphiphilic properties to develop the HIPPE system. Monodispersed UiO-66-NH2 nanoparticles with the particle size of 161.36 nm were then prepared via solvothermal synthesization. Pickering emulsions with inner phase ratios from 50 to 80% with varied contents of polyethylene glycol (PEG) were prepared by in situ high-pressure homogenization, and their physicochemical properties including crystallography, morphology, and rheology were systematically characterized. Subsequently, curcumin, a model antioxidant, was loaded in the HIPPE system and named cur@UiO-66-NH2/HIPPE. It exhibited high loading capacity, up to 6.93 ± 0.41%, and encapsulation efficiency (19.76 ± 3.84%). This novel MOF nanoparticle-stabilized HIPPE delivery system could be practically utilized for other bioactive components and antimicrobial agents, which would find applications in food safety and biomedical areas in the future.
Collapse
Affiliation(s)
- Peihua Ma
- Department
of Nutrition and Food Science, College of Agriculture and Natural
Resources, University of Maryland, College Park, Maryland 20742, United States
| | - Jinglin Zhang
- Department
of Nutrition and Food Science, College of Agriculture and Natural
Resources, University of Maryland, College Park, Maryland 20742, United States
| | - Zi Teng
- Department
of Nutrition and Food Science, College of Agriculture and Natural
Resources, University of Maryland, College Park, Maryland 20742, United States
- Agricultural
Research Service, Beltsville Agricultural Research Center, Food Quality
Laboratory, U.S. Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Yuan Zhang
- Department
of Chemistry and Biochemistry, College of Computer, Mathematical and
Natural Science, University of Maryland, College Park, Maryland 20742, United States
| | - Gary R. Bauchan
- Agricultural
Research Service, Soybean Genomics and Improvement Laboratory, Electron
and Confocal Microscopy Unit, U.S. Department
of Agriculture, Beltsville, Maryland 20705, United States
| | - Yaguang Luo
- Agricultural
Research Service, Beltsville Agricultural Research Center, Food Quality
Laboratory, U.S. Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Dongxia Liu
- Department
of Chemistry and Biochemistry, College of Computer, Mathematical and
Natural Science, University of Maryland, College Park, Maryland 20742, United States
| | - Qin Wang
- Department
of Nutrition and Food Science, College of Agriculture and Natural
Resources, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
72
|
Xue F, Li X, Qin L, Liu X, Li C, Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv Drug Deliv Rev 2021; 176:113886. [PMID: 34314783 DOI: 10.1016/j.addr.2021.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.
Collapse
|
73
|
Costa M, Paiva-Martins F, Losada-Barreiro S, Bravo-Díaz C. Modeling Chemical Reactivity at the Interfaces of Emulsions: Effects of Partitioning and Temperature. Molecules 2021; 26:4703. [PMID: 34361854 PMCID: PMC8348087 DOI: 10.3390/molecules26154703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
Bulk phase chemistry is hardly ever a reasonable approximation to interpret chemical reactivity in compartmentalized systems, because multiphasic systems may alter the course of chemical reactions by modifying the local concentrations and orientations of reactants and by modifying their physical properties (acid-base equilibria, redox potentials, etc.), making them-or inducing them-to react in a selective manner. Exploiting multiphasic systems as beneficial reaction media requires an understanding of their effects on chemical reactivity. Chemical reactions in multiphasic systems follow the same laws as in bulk solution, and the measured or observed rate constant of bimolecular reactions can be expressed, under dynamic equilibrium conditions, in terms of the product of the rate constant and of the concentrations of reactants. In emulsions, reactants distribute between the oil, water, and interfacial regions according to their polarity. However, determining the distributions of reactive components in intact emulsions is arduous because it is physically impossible to separate the interfacial region from the oil and aqueous ones without disrupting the existing equilibria and, therefore, need to be determined in the intact emulsions. The challenge is, thus, to develop models to correctly interpret chemical reactivity. Here, we will review the application of the pseudophase kinetic model to emulsions, which allows us to model chemical reactivity under a variety of experimental conditions and, by carrying out an appropriate kinetic analysis, will provide important kineticparameters.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Sonia Losada-Barreiro
- Departamento de Química—Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain;
| | - Carlos Bravo-Díaz
- Departamento de Química—Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain;
| |
Collapse
|
74
|
Stability and bioactivity of carotenoids from Synechococcus sp. PCC 7002 in Zein/NaCas/Gum Arabic composite nanoparticles fabricated by pH adjustment and heat treatment antisolvent precipitation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106663] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
75
|
Hu X, Zhu S, Ma T, Lu S, Zhao J, Hu X, Song Y, Liao X. Magnetic modified cellulose nanocrystals fabricated using ultrasound-coprecipitation: Characterization and application as pickering emulsion stabilizers. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
76
|
Niro CM, Medeiros JA, Freitas JA, Azeredo HM. Advantages and challenges of Pickering emulsions applied to bio-based films: a mini-review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3535-3540. [PMID: 33345306 DOI: 10.1002/jsfa.11029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The strategy of adding hydrophobic compounds to bio-based films (usually based on hydrophilic matrices), forming films containing emulsions, is a technique that has been used to improve some physical properties (such as reducing water solubility and water vapor permeability) and / or to impart properties, such as antioxidant and antimicrobial effects by carrying hydrophobic active components that would otherwise be insoluble in hydrophilic matrices. Although Pickering emulsions have been reported as presenting greater stability when compared with surfactant-stabilized emulsions, little is known about the drying stability of Pickering emulsions (which is important for film applications). Anyway, several studies have indicated that Pickering emulsions are interesting systems to improve the water vapor barrier properties of bio-based films and coatings, and to act as carriers of active hydrophobic components. On the other hand, the tensile properties of those films are usually impaired by the presence of Pickering emulsions. The objective of this review is to present recent developments and future perspectives in bio-based films loaded with Pickering emulsions. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carolina M Niro
- Postgraduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Jackson A Medeiros
- Postgraduate Program in Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, Brazil
| | - John Am Freitas
- Postgraduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Henriette Mc Azeredo
- Embrapa Agroindústria Tropical, Empresa Brasileira de Pesquisa Agropecuária, R Dra Sara Mesquita, 2270, Fortaleza, Brasil, 60511110, Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, R XV de Novembro, 1452, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
77
|
Zhou H, Zheng B, McClements DJ. Encapsulation of lipophilic polyphenols in plant-based nanoemulsions: impact of carrier oil on lipid digestion and curcumin, resveratrol and quercetin bioaccessibility. Food Funct 2021; 12:3420-3432. [PMID: 33900331 DOI: 10.1039/d1fo00275a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lipophilic polyphenol compounds (LPCs) are claimed to exhibit a broad spectrum of biological activities that may improve human health and wellbeing, including antioxidant, anti-inflammatory, and anti-cancer properties. Nanoemulsion-based delivery systems have been developed to encapsulate LPCs so as to increase their food matrix compatibility, physicochemical stability, and bioavailability. LPCs vary in their structural features, including the number and position of phenolic hydroxyl, ketone, and aliphatic groups, which results in different molecular, physicochemical, and gastrointestinal properties. In this study, we examined the impact of plant-based carrier oils (coconut, sunflower, and flaxseed oils) and LPC type (curcumin, resveratrol, and quercetin) on the in vitro gastrointestinal fate of polyphenols loaded into quillaja saponin-stabilized nanoemulsions. Coconut oil contains high levels of medium-chain saturated fatty acids (MC-SFAs), sunflower oil contains high levels of long-chain monounsaturated fatty acids (LC-MUFAs), and flaxseed oil contains high levels of long-chain polyunsaturated fatty acids (LC-PUFAs). The encapsulation efficiency and gastrointestinal stability of the LPCs were slightly lower in the MC than the LC oils. Differences in the gastrointestinal stability of the three LPCs were linked to differences in their oil-water partition coefficients. Some of the LPCs inhibited lipid digestion for certain oil types. In particular, resveratrol retarded the digestion of all three oils, but it still had the highest GIT stability and bioaccessibility. This study provides valuable information about the gastrointestinal fate of LPC-loaded nanoemulsions and highlights important differences in the behavior of LPCs with different characteristics. This knowledge may facilitate the design of more effective plant-based delivery systems for bioactive lipophilic polyphenols.
Collapse
Affiliation(s)
- Hualu Zhou
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Bingjing Zheng
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA. and Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
78
|
Tan Y, Zhou H, Zhang Z, McClements DJ. Bioaccessibility of oil-soluble vitamins (A, D, E) in plant-based emulsions: impact of oil droplet size. Food Funct 2021; 12:3883-3897. [PMID: 33978004 DOI: 10.1039/d1fo00347j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We systematically investigated the impact of oil droplet diameter (≈0.15, 1.6, and 11 μm) on the bioaccessibility of three oil-soluble vitamins (vitamin A palmitate, vitamin D, and vitamin E acetate) encapsulated within soybean oil-in-water emulsions stabilized by quillaja saponin. Lipid digestion kinetics decreased with increasing droplet size due to the reduction in oil-water interfacial area. Vitamin bioaccessibility decreased with increasing droplet size from 0.15 to 11 μm: 87 to 39% for vitamin A; 76 to 44% for vitamin D; 77 to 21% for vitamin E. Vitamin bioaccessibility also decreased as their hydrophobicity and molecular weight increased, probably because their tendency to remain inside the oil droplets and/or be poorly solubilized by the mixed micelles increased. Hydrolysis of the esterified vitamins also occurred under gastrointestinal conditions: vitamin A palmitate (∼90%) and vitamin E acetate (∼3%). Consequently, the composition and structure of emulsion-based delivery systems should be carefully designed when creating vitamin-fortified functional food products.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Hualu Zhou
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Zhiyun Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. and Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
79
|
Behl T, Kaur G, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bungau SG, Munteanu MA, Brisc MC, Andronie-Cioara FL, Brisc C. Elucidating the Multi-Targeted Role of Nutraceuticals: A Complementary Therapy to Starve Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4045. [PMID: 33919895 PMCID: PMC8070907 DOI: 10.3390/ijms22084045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying multifactorial diseases are always complex and challenging. Neurodegenerative disorders (NDs) are common around the globe, posing a critical healthcare issue and financial burden to the country. However, integrative evidence implies some common shared mechanisms and pathways in NDs, which include mitochondrial dysfunction, neuroinflammation, oxidative stress, intracellular calcium overload, protein aggregates, oxidative stress (OS), and neuronal destruction in specific regions of the brain, owing to multifaceted pathologies. The co-existence of these multiple pathways often limits the advantages of available therapies. The nutraceutical-based approach has opened the doors to target these common multifaceted pathways in a slow and more physiological manner to starve the NDs. Peer-reviewed articles were searched via MEDLINE and PubMed published to date for in-depth research and database collection. Considered to be complementary therapy with current clinical management and common drug therapy, the intake of nutraceuticals is considered safe to target multiple mechanisms of action in NDs. The current review summarizes the popular nutraceuticals showing different effects (anti-inflammatory, antioxidant, neuro-protectant, mitochondrial homeostasis, neurogenesis promotion, and autophagy regulation) on vital molecular mechanisms involved in NDs, which can be considered as complementary therapy to first-line treatment. Moreover, owing to its natural source, lower toxicity, therapeutic interventions, biocompatibility, potential nutritional effects, and presence of various anti-oxidative and neuroprotective constituents, the nutraceuticals serve as an attractive option to tackle NDs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| |
Collapse
|
80
|
Li Q, Shi J, Du X, McClements DJ, Chen X, Duan M, Liu L, Li J, Shao Y, Cheng Y. Polysaccharide conjugates from Chin brick tea (Camellia sinensis) improve the physicochemical stability and bioaccessibility of β-carotene in oil-in-water nanoemulsions. Food Chem 2021; 357:129714. [PMID: 33865002 DOI: 10.1016/j.foodchem.2021.129714] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/30/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
A natural antioxidant emulsifier, tea polysaccharide conjugate (TPC), was isolated from Chin brick tea. The impact of TPC on β-carotene stability and bioaccessibility in oil-in-water nanoemulsions was assessed. TPC exhibited strong antioxidant activity and could be used to fabricate stable nanoemulsions (d < 140 nm). The extent of lipid digestion was considerably lower for lipid droplets coated by TPC (68%) than Tween 80 (94%) or whey protein isolate (WPI) (89%), probably because TPC formed interfacial layers that hindered the access of lipases to lipids. The chemical stability of β-carotene in TPC-nanoemulsions was markedly higher than in those formulated with Tween 80 or WPI due to the high antioxidant activity of TPC. The bioaccessibility of β-carotene (20-30%) was independent of emulsifier type. TPC from Chin brick tea can therefore be used as a dual-purpose functional ingredient in emulsified foods.
Collapse
Affiliation(s)
- Qian Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Jinglan Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaolin Du
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | | | - Xiaoqiang Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Mengran Duan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lu Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jing Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yundong Shao
- Zhejiang Skyherb Biotechnology Inc., Anji, Zhejiang 313300, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Anji, Zhejiang 313300, China
| |
Collapse
|
81
|
Effect of sophorolipid on the curcumin-loaded ternary composite nanoparticles self-assembled from zein and chondroitin sulfate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106493] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
82
|
Zhou H, Zheng B, McClements DJ. In Vitro Gastrointestinal Stability of Lipophilic Polyphenols is Dependent on their Oil-Water Partitioning in Emulsions: Studies on Curcumin, Resveratrol, and Quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3340-3350. [PMID: 33689331 DOI: 10.1021/acs.jafc.0c07578] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many lipophilic polyphenols have low bioavailability because of their poor solubility and chemical stability within the human gut. The encapsulation of these polyphenols within digestible lipid droplets can improve their solubility and stability. However, there is currently a poor understanding of how the molecular and physicochemical properties of specific polyphenols impact these characteristics. In this study, the factors influencing the solubility and stability of different polyphenols (curcumin, resveratrol, and quercetin) under simulated gastrointestinal conditions were examined when they were delivered in the form of soybean oil-in-water nanoemulsions containing quillaja saponin-coated droplets (d32 ≈ 0.15 μm; ζ = -63 mV; pH 5). The polyphenols were loaded into the lipid droplets using a pH-driven method, which is based on the pH-dependent electrical charge, oil-water partitioning, and water-solubility of these molecules. The encapsulation efficiency of all three polyphenols was relatively high (75-87%). However, their chemical stability under gastrointestinal conditions (i.e., the % remaining after exposure to gastrointestinal conditions) differed considerably: quercetin (44%), curcumin (92%), and resveratrol (100%). This effect was mainly attributed to the lower logD value of quercetin (2.17) than those of resveratrol (3.39) and curcumin (4.12). As a result, a high fraction (>50%) of quercetin was located within the aqueous gastrointestinal fluids, where it would be more prone to chemical degradation or precipitation. The fraction of the polyphenols solubilized in the gastrointestinal fluids (bioaccessibility) followed a different trend: curcumin (57%) < quercetin (73%) < resveratrol (76%). This effect was attributed to the chemical instability and/or binding of curcumin with other molecules in the simulated intestinal conditions. These results provide useful information for designing nanoemulsion-based delivery systems to improve the efficacy of lipophilic polyphenols.
Collapse
Affiliation(s)
- Hualu Zhou
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Bingjing Zheng
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
83
|
Li C, Zhang R, Ma C, Shang H, McClements DJ, White JC, Xing B. Food-Grade Titanium Dioxide Particles Decreased the Bioaccessibility of Vitamin D 3 in the Simulated Human Gastrointestinal Tract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2855-2863. [PMID: 33625220 DOI: 10.1021/acs.jafc.0c06644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Food-grade titanium dioxide (E171) particles, as a "whiteness" additive, are often co-ingested with lipid-rich foods. Therefore, we explored the impact of E171 on lipid digestion and vitamin D3 (VD3) bioaccessibility encapsulated within oil-in-water emulsions in a simulated human gastrointestinal tract (GIT) model. VD3 bioaccessibility significantly decreased from 80 to 74% when raising E171 from 0 to 0.5 wt %. The extent of lipid digestion was reduced by E171 addition in a dose-dependent manner. VD3 bioaccessibility was positively correlated with the final amount of free fatty acids (FFAs) produced by lipid digestion (R2 = 0.95), suggesting that the reduction in VD3 bioaccessibility was due to the inhibition of lipid digestion by E171. Further experiments showed that E171 interacted with lipase and calcium ions, thereby interfering with lipid digestion. The findings of this study enhance our understanding toward the potential impact of E171 on the nutritional attributes of foods for human digestion health.
Collapse
Affiliation(s)
- Chunyang Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ruojie Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chuanxin Ma
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Heping Shang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
84
|
Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C. Polyphenolic Antioxidants in Lipid Emulsions: Partitioning Effects and Interfacial Phenomena. Foods 2021; 10:539. [PMID: 33807705 PMCID: PMC8001919 DOI: 10.3390/foods10030539] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The autoxidation of lipids in complex systems such as emulsions or biological membranes, although known to occur readily and to be associated with important pathological events, is lacking in quantitative data in spite of the huge efforts that have been made in attempting to unravel the complex mechanisms of lipid oxidation and its inhibition by antioxidants. Lipids are present as oil-in-water emulsions in many foods and pharmaceutical formulations, and the prevalent role of the interfacial region is critical to understand the antioxidant behavior and to correctly interpret antioxidant efficiencies. The aim of this review is to summarize the current knowledge on the chemical fate of antioxidants before they react with peroxyl radicals. Many researchers highlighted the predominant role of interfaces, and although some attempts have been made to understand their role, in most instances, they were essentially qualitative and based on putative hypotheses. It is only recently that quantitative reports have been published. Indeed, knowledge on the effects of relevant experimental variables on the effective concentrations of antioxidants is necessary for a successful design of alternate, effective antioxidative solutions.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.); (F.P.-M.)
| | - Sonia Losada-Barreiro
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.); (F.P.-M.)
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Vigo, 36200 Vigo, Spain
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.); (F.P.-M.)
| | - Carlos Bravo-Díaz
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Vigo, 36200 Vigo, Spain
| |
Collapse
|
85
|
Pan Y, Li XM, Meng R, Xu BC, Zhang B. Investigation of the Formation Mechanism and Curcumin Bioaccessibility of Emulsion Gels Based on Sugar Beet Pectin and Laccase Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2557-2563. [PMID: 33617251 DOI: 10.1021/acs.jafc.0c07288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, modified whey protein hydrolysates (WPH) were obtained after succinic anhydride succinylation and linear dextrin glycation, and emulsion gels were prepared on the basis of unmodified/modified WPH stabilized emulsions with sugar beet pectin (SBP) addition and laccase-catalyzed cross-linking. The influences of emulsifier types and SBP contents on the texture of emulsion gels were estimated. The texture and rheological properties of emulsion gels were characterized. An ideal gel emulsion was formed when the SBP content was 3% (w/w). A uniform network was observed in emulsion gels stabilized by W-L, W-L-S, and W-S-L. In addition, the effect of the emulsifier type on the bioaccessibility of curcumin encapsulated in emulsion gels was investigated and the W-S-L stabilized emulsion gel exhibited the highest curcumin bioaccessibility (65.57%). This study provides a theoretical basis for the development of emulsion gels with different textures by SBP addition and laccase cross-linking as encapsulation delivery systems.
Collapse
Affiliation(s)
- Yi Pan
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Xiao-Min Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Ran Meng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
86
|
Ma P, Zhang Z, Tsai S, Zhang H, Li Y, Yuan F, Wang Q. Curcumin-Loaded Pickering Emulsion Formed by Ultrasound and Stabilized by Metal Organic Framework Optimization. Foods 2021; 10:foods10030523. [PMID: 33802252 PMCID: PMC7998958 DOI: 10.3390/foods10030523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
The ultrasound-assisted preparation of a curcumin-loaded metal organic framework (MOF) UiO-66-NH2 stabilized Pickering emulsion system was carried out in this study. A 3-level-4-factor Box–Behnken design (BBD) and response surface methodology (RSM) analysis were employed to systematically evaluate the effect of different experimental parameters (i.e., ultrasonic power, ultrasonic time, oil content, and MOF content) on curcumin loading capacity (LC) and encapsulation efficiency (EE). The results indicated that ultrasonic power and MOF content significantly affected LC and EE, whereas ultrasonic time and oil content had little effect. A mathematical model for optimizing the preparation of emulsion systems was established. Based on the ridge max analysis, an optimal condition for the newly developed curcumin-loaded MOF-Pickering emulsion was identified, i.e., ultrasonic power 150 W, ultrasonic time 11.17 min, oil content 20.0%, and MOF content 1.10%. At this condition, the LC and EE of curcumin obtained from the experiment reached 7.33% ± 0.54% and 56.18% ± 3.03%, respectively, which were within the prediction range of LC (7.35% ± 0.29%) and EE (54.34% ± 2.45%). The emulsion systems created in this study may find new applications for the delivery of bioactive compounds in food and pharmaceutical areas.
Collapse
Affiliation(s)
- Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
| | - Zhi Zhang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
| | - Shawn Tsai
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
| | - Hongchao Zhang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
| | - Yuan Li
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
| | - Fang Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Qin Wang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
- Correspondence: ; Tel.: +1-(301)-405-8421
| |
Collapse
|
87
|
Chan C, Du S, Dong Y, Cheng X. Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Curr Top Med Chem 2021; 21:92-114. [PMID: 33243123 PMCID: PMC8191596 DOI: 10.2174/1568026620666201126162945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Lipid nanoparticles (LNPs) have been widely applied in drug and gene delivery. More than twenty years ago, DoxilTM was the first LNPs-based drug approved by the US Food and Drug Administration (FDA). Since then, with decades of research and development, more and more LNP-based therapeutics have been used to treat diverse diseases, which often offer the benefits of reduced toxicity and/or enhanced efficacy compared to the active ingredients alone. Here, we provide a review of recent advances in the development of efficient and robust LNPs for drug/gene delivery. We emphasize the importance of rationally combining experimental and computational approaches, especially those providing multiscale structural and functional information of LNPs, to the design of novel and powerful LNP-based delivery systems.
Collapse
Affiliation(s)
- Chun Chan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Shi Du
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering; The Center for Clinical and Translational Science; The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
88
|
Infantes-Garcia M, Verkempinck S, Gonzalez-Fuentes P, Hendrickx M, Grauwet T. Lipolysis products formation during in vitro gastric digestion is affected by the emulsion interfacial composition. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106163] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
89
|
McClements DJ. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog Lipid Res 2020; 81:101081. [PMID: 33373615 DOI: 10.1016/j.plipres.2020.101081] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The design, fabrication, and application of edible nanoemulsions for the encapsulation and delivery of bioactive agents has been a highly active research field over the past decade or so. In particular, they have been widely used for the encapsulation and delivery of hydrophobic bioactive substances, such as hydrophobic drugs, lipids, vitamins, and phytochemicals. A great deal of progress has been made in creating stable edible nanoemulsions that can increase the stability and efficacy of these bioactive agents. This article highlights some of the most important recent advances within this area, including increasing the water-dispersibility of bioactives, protecting bioactives from chemical degradation during storage, increasing the bioavailability of bioactives after ingestion, and targeting the release of bioactives within the gastrointestinal tract. Moreover, it highlights progress that is being made in creating plant-based edible nanoemulsions. Finally, the potential toxicity of edible nanoemulsions is considered.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
90
|
Encapsulation of β-carotene in oleogel-in-water Pickering emulsion with improved stability and bioaccessibility. Int J Biol Macromol 2020; 164:1432-1442. [DOI: 10.1016/j.ijbiomac.2020.07.227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 01/19/2023]
|
91
|
Mulrooney SL, O'Neill GJ, Brougham DF, O'Riordan D. Vitamin D 3 bioaccessibility: Influence of fatty acid chain length, salt concentration and l-α-phosphatidylcholine concentration on mixed micelle formation and delivery of vitamin D 3. Food Chem 2020; 344:128722. [PMID: 33277128 DOI: 10.1016/j.foodchem.2020.128722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
Vitamin D (VD) is a fat-soluble vitamin with high deficiency levels evident globally. Bioaccessibility of VD is influenced by formation of mixed micelles (MM) during digestion. This study assessed the impact of fatty acid (FA) type, phospholipid concentration on MM formation and stability of MM to salts. MM formation occurred at NaCl and KCl concentrations ranging from 20 to 100 mM, when octanoic acid (C8) or stearic acid (C18) were used. MM hydrodynamic size increased with increasing l-α-phosphatidylcholine concentration (1.5-7.5 mM) for both C8 and C18, above which concentration MM did not form. FA chain length impacted MM with hydrodynamic size increasing from 3.8 nm for decanoic acid (C10) to 4.4 nm for C18. VD3 incorporation in MM was not influenced by the FA used (C10 or C18). Understanding stability and formation of MM and VD3 loading is an essential first step towards manipulating food structures for improving delivery of VD.
Collapse
Affiliation(s)
- Steven L Mulrooney
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Graham J O'Neill
- School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland.
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Dolores O'Riordan
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
92
|
Lamothe S, Jolibois É, Britten M. Effect of emulsifiers on linseed oil emulsion structure, lipolysis and oxidation during in vitro digestion. Food Funct 2020; 11:10126-10136. [PMID: 33150352 DOI: 10.1039/d0fo02072a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Health benefits have been associated with the consumption of omega-3 polyunsaturated fatty acids (PUFA). Linseed oil is rich in long chain omega-3 PUFA, but can generate toxic compounds due to its high susceptibility to oxidation. The nature of the emulsifier can affect both lipolysis and oxidation during digestion since these phenomena occur at the oil-water interface. The objective of this study was to compare the effect of low-molecular weight surfactants (cetyltrimethylammonium bromide (CTAB), Citrem), protein (sodium caseinate, fish gelatin) and polysaccharides (gum arabic, modified starch) on the structure of linseed oil emulsions, lipolysis and formation of reactive oxidation species during in vitro digestion. The emulsion stabilized with Citrem underwent extensive coalescence in the gastric phase, which strongly decreased the extent of lipid digestion and reduced the formation of oxidation markers relative to other emulsions. Emulsions stabilized by proteins and modified starch showed aggregation with partial coalescence in the gastric phase, but protein-stabilized emulsions showed better resistance to oxidation. This study shows that emulsifier properties affect the susceptibility of the emulsion to aggregation and coalescence in the gastrointestinal environment, and strongly influence the extent of lipid digestion and the formation of reactive oxidation products. These findings point out the importance of the choice of the emulsifier to control the lipid digestibility and the protection of sensible lipids thus promoting optimal nutritional properties in omega-3-enriched foods.
Collapse
Affiliation(s)
- Sophie Lamothe
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada.
| | | | | |
Collapse
|
93
|
Nanoemulsion structure and food matrix determine the gastrointestinal fate and in vivo bioavailability of coenzyme Q10. J Control Release 2020; 327:444-455. [DOI: 10.1016/j.jconrel.2020.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
|
94
|
Gomes A, Costa ALR, Cardoso DD, Furtado GDF, Cunha RL. Impact of whey protein/surfactant mixture and oil type on the gastrointestinal fate of emulsions: Ingredient engineering. Food Res Int 2020; 137:109360. [DOI: 10.1016/j.foodres.2020.109360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
|
95
|
Kim S, Shin WS. Formation of a novel coating material containing lutein and zeaxanthin via a Maillard reaction between bovine serum albumin and fucoidan. Food Chem 2020; 343:128437. [PMID: 33162255 DOI: 10.1016/j.foodchem.2020.128437] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
The effective delivery of bioactive compounds has recently been receiving attention. In this study, a conjugate with BSA and fucoidan synthesized via the Maillard reaction was confirmed through electrophoresis, the o-phthalaldehyde assay, and through changes in absorbance. Two moles of fucoidan were glycated with one mole of BSA at 60 °C and 79% relative humidity for 4 days. The droplet coated with B-F conjugate remained stable during storage at 4 and 25 °C and slightly increased only at 55 °C however, the droplet coated with intact BSA and B/F mixture significantly increased. L/Z were degraded about 82, 79, and 36% for 4, 25, and 55 °C, respectively, regardless of the type of emulsifier. Although the conjugates could not prevent the degradation of lutein and zeaxanthin during storage, they improved the stability of the emulsion and showed 4.20-fold and 1.32-fold higher bioaccessibility than intact BSA and B/F mixtures, respectively.
Collapse
Affiliation(s)
- Sunbin Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Weon-Sun Shin
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
96
|
Tan Y, Li R, Liu C, Muriel Mundo J, Zhou H, Liu J, McClements DJ. Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles. Food Funct 2020; 11:187-199. [PMID: 31833516 DOI: 10.1039/c9fo02164g] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Consumption of sufficiently high quantities of dietary fibers has been linked to a range of health benefits. Recent research, however, has shown that some dietary fibers interfere with lipid digestion, which may reduce the bioavailability of oil-soluble vitamins and nutraceuticals. For this reason, we examined the impact of a cationic polysaccharide (chitosan) on the bioaccessibility of vitamin D using the standardized INFOGEST in vitro digestion model. The vitamin D was encapsulated within an emulsion-based delivery system that contained whey protein-coated corn oil droplets. Our results showed that chitosan promoted severe droplet flocculation in the small intestine and reduced the amount of free fatty acids detected using a pH-stat method. However, a back-titration of the digested sample showed that the lipids were fully digested at all chitosan levels used (0.1-0.5%), suggesting that chitosan may have bound some of the free fatty acids released during lipid digestion. The presence of the chitosan decreased the bioaccessibility of vitamin D by about 37%, but this effect did not depend strongly on chitosan concentration (0.1-0.5%). It was hypothesized that chitosan bound to the vitamin-loaded mixed micelles and promoted their precipitation. The knowledge gained in this study might provide useful insights in designing emulsion-based delivery systems with high vitamin bioaccessibility.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | | | | | | | | | | | |
Collapse
|
97
|
Mora-Gutierrez A, Attaie R, Núñez de González MT, Jung Y, Marquez SA. Interface Compositions as Determinants of Resveratrol Stability in Nanoemulsion Delivery Systems. Foods 2020; 9:foods9101394. [PMID: 33023075 PMCID: PMC7601424 DOI: 10.3390/foods9101394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
The incorporation of hydrophobic ingredients, such as resveratrol (a fat-soluble phytochemical), in nanoemulsions can increase the water solubility and stability of these hydrophobic ingredients. The nanodelivery of resveratrol can result in a marked improvement in the bioavailability of this health-promoting ingredient. The current study hypothesized that resveratrol can bind to caprine casein, which may result in the preservation of the biological properties of resveratrol. The fluorescence spectra provided proof of this complex formation by demonstrating that resveratrol binds to caprine casein in the vicinity of tryptophan amino acid residues. The caprine casein/resveratrol complex is stabilized by hydrophobic interactions and hydrogen bonds. Hence, to study the rate of resveratrol degradation during processing/storage, resveratrol losses were determined by reversed-phase high performance liquid chromatography (RP-HPLC) in nanoemulsions stabilized by bovine and caprine caseins individually and in combination with polysorbate-20. At 48 h oxidation, 88.33% and 89.08% was left of resveratrol in the nanoemulsions stabilized by caprine casein (αs1-I)/polysorbate-20 complex and caprine (αs1-II)/polysorbate-20 complex, while there was less resveratrol left in the nanoemulsions stabilized by bovine casein/polysorbate-20 complex, suggesting that oxygen degradation was involved. The findings of this study are crucial for the food industry since they imply the potential use of caprine casein/polysorbate-20 complex to preserve the biological properties of resveratrol.
Collapse
Affiliation(s)
- Adela Mora-Gutierrez
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
- Correspondence: ; Fax: +1-936-261-9975
| | - Rahmat Attaie
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Maryuri T. Núñez de González
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Yoonsung Jung
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Sixto A. Marquez
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
98
|
Verkempinck S, Pallares Pallares A, Hendrickx M, Grauwet T. Processing as a tool to manage digestive barriers in plant-based foods: recent advances. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
99
|
Zhang R, Zhang Z, McClements DJ. Nanoemulsions: An emerging platform for increasing the efficacy of nutraceuticals in foods. Colloids Surf B Biointerfaces 2020; 194:111202. [DOI: 10.1016/j.colsurfb.2020.111202] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
|
100
|
Enzymatic and chemical conversions taking place during in vitro gastric lipid digestion: The effect of emulsion droplet size behavior. Food Chem 2020; 326:126895. [DOI: 10.1016/j.foodchem.2020.126895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
|