51
|
Mirbagheri R, Elhamifar D, Hajati S. Ru-containing magnetic yolk-shell structured nanocomposite: a powerful, recoverable and highly durable nanocatalyst. RSC Adv 2021; 11:10243-10252. [PMID: 35423491 PMCID: PMC8695618 DOI: 10.1039/d0ra10304g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 01/02/2023] Open
Abstract
A novel method was used to prepare a magnetic phenylene-based periodic mesoporous organosilica nanocomposite with yolk-shell structure (Fe3O4@YSPMO). The Fe3O4@YSPMO nanomaterial was prepared by using easily accessible pluronic-P123 and cetyltrimethylammonium bromide (CTAB) surfactants under basic conditions. This material was employed for effective immobilization of potassium perruthenate to prepare an Fe3O4@YSPMO@Ru nanocatalyst for the aerobic oxidation of alcohols. The physiochemical properties of the designed Fe3O4@YSPMO@Ru nanocomposite were studied using PXRD, FT-IR, TGA, SEM, TEM, ICP, VSM and XPS analyses. Fe3O4@YSPMO@Ru was effectively employed as a highly recoverable nanocatalyst in the selective aerobic oxidation of alcohols.
Collapse
Affiliation(s)
- Reza Mirbagheri
- Department of Chemistry, Yasouj University Yasouj 75918-74831 Iran +98-74-33223048 +98-74-33223048
| | - Dawood Elhamifar
- Department of Chemistry, Yasouj University Yasouj 75918-74831 Iran +98-74-33223048 +98-74-33223048
| | - Shaaker Hajati
- Department of Chemistry, Yasouj University Yasouj 75918-74831 Iran +98-74-33223048 +98-74-33223048
- Department of Semiconductors, Materials and Energy Research Center (MERC) P.O. Box 31787-316 Tehran Iran
| |
Collapse
|
52
|
Wu L, Zhou X, Wan G, Tang Y, Shi S, Xu X, Wang G. Novel hierarchical CuNiAl LDH nanotubes with excellent peroxidase-like activity for wide-range detection of glucose. Dalton Trans 2021; 50:95-102. [PMID: 33284937 DOI: 10.1039/d0dt03288c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel hierarchical CuNiAl layered double hydroxide (CuNiAl LDH) nanotubes were prepared with in situ transformation of Al2O3 produced using the atomic layer deposition (ALD) method. Based on the characterizations using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR spectrometry, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), CuNiAl LDH displays a typical nanotube-like structure consisting of uniform ultrathin nanoflakes. It is also confirmed that nitrate precursors play a crucial role in the formation of the LDH hierarchical structure. The unique hierarchical tube-like structure for CuNiAl LDH can supply more active sites and higher surface areas, leading to outstanding peroxidase mimicking property. The kinetic analyses indicate that the catalytic behavior of CuNiAl LDH follows classic Michaelis-Menten models and the affinity of CuNiAl LDH to the substrate is significantly higher than horseradish peroxidase. A simple and label-free method was developed for the colorimetric detection of glucose. As low as 2.9 μM of glucose can be detected with a broad linear range from 10 to 200 μM. The established method is also proved to be suitable for glucose detection in juice samples.
Collapse
Affiliation(s)
- Lihong Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Haikou 570228, China.
| | | | | | | | | | | | | |
Collapse
|
53
|
Yang C, Gao N, Liu Y, Zhao H, Jing J, Zhang X. A silicon nanoparticle-based nanoprobe for ratiometric fluorescence and visual detection of glucose. NEW J CHEM 2021. [DOI: 10.1039/d1nj03826e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We synthesized SiNPs by a one-step method and established, for the first time, a novel SiNP-based nanoprobe (denoted as SiNPs/OPD/HRP/GOx) for ratiometric fluorescence and visual detection of glucose in serum samples.
Collapse
Affiliation(s)
- Chunlei Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Na Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yazhou Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hengzhi Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
54
|
|
55
|
Oropesa-Nuñez R, Zardán Gómez de la Torre T, Stopfel H, Svedlindh P, Strömberg M, Gunnarsson K. Insights into the Formation of DNA-Magnetic Nanoparticle Hybrid Structures: Correlations between Morphological Characterization and Output from Magnetic Biosensor Measurements. ACS Sens 2020; 5:3510-3519. [PMID: 33141554 PMCID: PMC7706118 DOI: 10.1021/acssensors.0c01623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Understanding
the binding mechanism between probe-functionalized
magnetic nanoparticles (MNPs) and DNA targets or amplification products
thereof is essential in the optimization of magnetic biosensors for
the detection of DNA. Herein, the molecular interaction forming hybrid
structures upon hybridization between DNA-functionalized magnetic
nanoparticles, exhibiting Brownian relaxation, and rolling circle
amplification products (DNA-coils) is investigated by the use of atomic
force microscopy in a liquid environment and magnetic biosensors measuring
the frequency-dependent magnetic response and the frequency-dependent
modulation of light transmission. This approach reveals the qualitative
and quantitative correlations between the morphological features of
the hybrid structures with their magnetic response. The suppression
of the high-frequency peak in the magnetic response and the appearance
of a new peak at lower frequencies match the formation of larger sized
assemblies upon increasing the concentration of DNA-coils. Furthermore,
an increase of the DNA-coil concentration induces an increase in the
number of MNPs per hybrid structure. This study provides new insights
into the DNA–MNP binding mechanism, and its versatility is
of considerable importance for the mechanistic characterization of
other DNA-nanoparticle biosensor systems.
Collapse
Affiliation(s)
- Reinier Oropesa-Nuñez
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Teresa Zardán Gómez de la Torre
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Henry Stopfel
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Mattias Strömberg
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Klas Gunnarsson
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| |
Collapse
|
56
|
Song Y, Qiao J, Liu W, Qi L. Norfloxacin detection based on the peroxidase-like activity enhancement of gold nanoclusters. Anal Bioanal Chem 2020; 413:979-985. [PMID: 33200243 DOI: 10.1007/s00216-020-03056-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
The use of nanomaterials as mimic enzymes provides a promising way to implement bio-molecule detection in living systems. However, to achieve highly efficient catalytic processes with gold nanocluster-based nanozymes is still challenging. In this study, a facile reduction method was utilized to synthesize gold nanoclusters with 1-methyl-D-tryptophan as the reducing and capping agent. The obtained gold nanoclusters exhibited a peroxidase-mimicking property in the redox reaction of 3,3',5,5'-tetramethylbenzidine to blue oxidized 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. The addition of norfloxacin endowed the nanozymes with a 10-fold enhancement in catalytic efficiency due to the surface charge-controlled electron transfer modulation. The colorimetric sensing system presented a high selectivity toward norfloxacin. The good linear relationship of norfloxacin monitoring was gained in the range of 1.25~8.0 μM (R2 = 0.996), with a detection limit of 0.2 μM. The practical application of the proposed protocol for the measurement of norfloxacin in capsules was realized. This demonstrates that on account of their significant catalytic efficiency enhancement, the gold nanocluster-based nanozymes hold great promise in realizing the selective detection of drugs. Graphical Abstract.
Collapse
Affiliation(s)
- Yuying Song
- College of Pharmacy, Xinxiang Medical University, No. 601 Jinsui Rd., Xinxiang, 453003, Henan, China
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China
| | - Juan Qiao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing, 100049, China
| | - Wei Liu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jinsui Rd., Xinxiang, 453003, Henan, China.
| | - Li Qi
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing, 100049, China.
| |
Collapse
|
57
|
Huang S, Shi XR, Sun C, Duan Z, Ma P, Xu S. The Application of Metal-Organic Frameworks and Their Derivatives for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2268. [PMID: 33207732 PMCID: PMC7696577 DOI: 10.3390/nano10112268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/03/2023]
Abstract
Supercapacitors (SCs), one of the most popular types of energy-storage devices, present lots of advantages, such as large power density and fast charge/discharge capability. Being the promising SCs electrode materials, metal-organic frameworks (MOFs) and their derivatives have gained ever-increasing attention due to their large specific surface area, controllable porous structure and rich diversity. Herein, the recent development of MOFs-based materials and their application in SCs as the electrode are reviewed and summarized. The preparation method, the morphology of the materials and the electrical performance of various MOFs and their derivatives (such as carbon, metal oxide/hydroxide and metal sulfide) are briefly discussed. Most of recent works concentrate on Ni-, Co- and Mn-MOFs and their composites/derivatives. Conclusions and our outlook for the researches are also given, which would be a valuable guideline for the rational design of MOFs materials for SCs in the near future.
Collapse
Affiliation(s)
- Simin Huang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
- Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Chunyan Sun
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Zhichang Duan
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Pan Ma
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Shusheng Xu
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| |
Collapse
|
58
|
Xu W, Kang Y, Jiao L, Wu Y, Yan H, Li J, Gu W, Song W, Zhu C. Tuning Atomically Dispersed Fe Sites in Metal-Organic Frameworks Boosts Peroxidase-Like Activity for Sensitive Biosensing. NANO-MICRO LETTERS 2020; 12:184. [PMID: 34138213 PMCID: PMC7770903 DOI: 10.1007/s40820-020-00520-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 05/16/2023]
Abstract
Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges. Herein, two functional groups with opposite electron modulation abilities (nitro and amino) were introduced into the metal-organic frameworks (MIL-101(Fe)) to tune the atomically dispersed metal sites and thus regulate the enzyme-like activity. Notably, the functionalization of nitro can enhance the peroxidase (POD)-like activity of MIL-101(Fe), while the amino is poles apart. Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) with a low reaction energy barrier for the HO* formation exhibits a superior POD-like activity. As a concept of the application, a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2-50 mU mL-1 with a limit of detection of 0.14 mU mL-1. Moreover, the detection of organophosphorus pesticides was also achieved. This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
Collapse
Affiliation(s)
- Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yikun Kang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China.
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
59
|
Leng Y, Bu S, Li Z, Hao Z, Ma C, He X, Wan J. A Colorimetric Immunosensor Based on Hemin@MI Nanozyme Composites, with Peroxidase-like Activity for Point-of-care Testing of Pathogenic E. coli O157:H7. ANAL SCI 2020; 37:941-947. [PMID: 32893249 DOI: 10.2116/analsci.20p081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, nanozymes have become a topic of particular interest due to their high activity level, stability and biocompatibility. In this study, a visual, sensitive and selective point-of-care immunosensor was established to test the pathogen Escherichia coli O157:H7 (E. coli O157:H7). Hemin and magainin I (MI) hybrid nanocomposites (Hemin@MI) with peroxidase-mimicking activities were synthesized via a "one-pot" method, involving the simple mixing of an antimicrobial peptide (MI) against E. coli O157:H7 and hemin in a copper sulfate sodium phosphate saline buffer. Hemin@MI nanocomposites integrating target recognition and signal amplification were developed as signal probes for the point-of-care colorimetric detection of pathogenic E. coli O157:H7. Hemin@MI nanocomposites exhibit excellent peroxidase activity for the chromogenic reaction of ABTS, which allows for the visual point-of-care testing of E. coli O157:H7 in the range of 102 to 108 CFU/mL, with a limit of detection of 85 CFU/mL. These data suggest this immunosensor provides accessible and portable assessments of pathogenic E. coli O157:H7 in real samples.
Collapse
Affiliation(s)
- Yan Leng
- School of Life Science and Technology, Changchun University of Science and Technology.,Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Shengjun Bu
- Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Zhongyi Li
- Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Zhuo Hao
- Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Chengyou Ma
- College of Geo-Exploration Science and Technology, Jilin University
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology
| | - Jiayu Wan
- Institute of Military Veterinary, Academy of Military Medical Sciences
| |
Collapse
|
60
|
Song Y, Qiao J, Liu W, Qi L. Enhancement of gold nanoclusters-based peroxidase nanozymes for detection of tetracycline. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
61
|
Zhang C, Liu X, Xu Z, Liu D. Multichannel Stimulus-Responsive Nanoprobes for H2O2 Sensing in Diverse Biological Milieus. Anal Chem 2020; 92:12639-12646. [DOI: 10.1021/acs.analchem.0c02769] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cai Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Xinzhuo Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Zhiwen Xu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| |
Collapse
|
62
|
Stasyuk N, Smutok O, Demkiv O, Prokopiv T, Gayda G, Nisnevitch M, Gonchar M. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4509. [PMID: 32806607 PMCID: PMC7472306 DOI: 10.3390/s20164509] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The current review is devoted to nanozymes, i.e., nanostructured artificial enzymes which mimic the catalytic properties of natural enzymes. Use of the term "nanozyme" in the literature as indicating an enzyme is not always justified. For example, it is used inappropriately for nanomaterials bound with electrodes that possess catalytic activity only when applying an electric potential. If the enzyme-like activity of such a material is not proven in solution (without applying the potential), such a catalyst should be named an "electronanocatalyst", not a nanozyme. This paper presents a review of the classification of the nanozymes, their advantages vs. natural enzymes, and potential practical applications. Special attention is paid to nanozyme synthesis methods (hydrothermal and solvothermal, chemical reduction, sol-gel method, co-precipitation, polymerization/polycondensation, electrochemical deposition). The catalytic performance of nanozymes is characterized, a critical point of view on catalytic parameters of nanozymes described in scientific papers is presented and typical mistakes are analyzed. The central part of the review relates to characterization of nanozymes which mimic natural enzymes with analytical importance ("nanoperoxidase", "nanooxidases", "nanolaccase") and their use in the construction of electro-chemical (bio)sensors ("nanosensors").
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Oleh Smutok
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| | - Olha Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Faculty of Veterinary Hygiene, Ecology and Law, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79000 Lviv, Ukraine
| | - Tetiana Prokopiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Galina Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel;
| | - Mykhailo Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| |
Collapse
|
63
|
Tian K, Wang J, Guo W, Li R, Cao L, Xu Z, Wang H. Yolk-Shell Fe 3 O 4 @Void@N-Carbon Nanostructures Based on One-Step Deposition of SiO 2 and Resorcinol-3-Aminophenol-Formaldehyde (R-APF) Cocondensed Resin Dual Layers onto Fe 3 O 4 Nanoclusters. Macromol Rapid Commun 2020; 41:e2000307. [PMID: 32767468 DOI: 10.1002/marc.202000307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/23/2020] [Indexed: 11/07/2022]
Abstract
Yolk-shell magnetic nanoparticles@nitrogen-enriched Carbon nanostructures with a magnetic core and a hollow nitrogen-enriched carbon shell exhibit considerable promise in various applications, such as drug delivery, heterogenous catalysts, removal of metal ions and organic pollutants, and screening of biomolecules, due to their strong magnetic response, unique cavities, and the selective absorption ability of nitrogen-enriched groups. However, their complicated synthesis always involves possible surface modification, layer-by-layer deposition of a sacrificial middle layer and an outer nitrogen-enriched layer on magnetic nanoparticles, subsequent carbonization, and final removal of the sacrificial middle layer. Herein, yolk-shell Fe3 O4 @nitrogen-enriched carbon nanostructures are constructed based on NH4 + ion-induced one-step deposition of SiO2 and Resorcinol-3-aminophenol-formaldehyde cocondensed resin (R-APF) dual layers onto poly acrylic acid-modified Fe3 O4 nanoclusters without any extra surface modification. The N-Carbon shell thickness of the yolk-shell Fe3 O4 @Void@N-Carbon nanostructure can be finely tailored though tailoring the feeding amount of aminophenol and resorcinol to tune the thickness of the outer R-APF resin shell onto Fe3 O4 @SiO2 intermediate particles. This NH4 + ion-induced one-pot deposition of double layers can effectively promote synthesis efficiency of this kind of yolk-shell nanostructure.
Collapse
Affiliation(s)
- Kesong Tian
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Junyan Wang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Wanchun Guo
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Ruifei Li
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Ling Cao
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Zhaopeng Xu
- Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Haiyan Wang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| |
Collapse
|
64
|
A colorimetric and ratiometric glucose sensor based on conformational switch of i-motif DNA. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
65
|
Peng H, Zhang J, Zeng C, Zhou C, Li Q, Lu N, Wang L. One-Dimensional Synergistic Core–Shell Nanozymes with Superior Peroxidase-like Activity for Ultrasensitive Colorimetric Detection of Blood Cholesterol. ACS APPLIED BIO MATERIALS 2020; 3:5111-5119. [DOI: 10.1021/acsabm.0c00588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongzhen Peng
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiaxing Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Caixia Zeng
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chaoqun Zhou
- Pennsylvania State University, 128 Stamford Heights, State College, Pennsylvania 16803; United States
| | - Qingnuan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
66
|
Hu J, Zhang M, Liu L, Zheng J, Alsulami H, Kutbi MA, Xu J. Structural Evolution of Cu2O-Derived Hybrids Comprised of Copper Cores, a Silica Interlayer, and Carbon as the Outlayer. Inorg Chem 2020; 59:9356-9363. [DOI: 10.1021/acs.inorgchem.0c01227] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiamin Hu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Libin Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Hamed Alsulami
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Marwan Amin Kutbi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| |
Collapse
|
67
|
Gulati U, Rajesh UC, Rawat DS, Zaleski JM. Development of Magnesium Oxide-Silver Hybrid Nanocatalysts for Synergistic Carbon Dioxide Activation to Afford Esters and Heterocycles at Ambient Pressure. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2020; 22:3170-3177. [PMID: 33795971 PMCID: PMC8009290 DOI: 10.1039/c9gc04040d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multi-metallic hybrid nancatalysts consisting of a porous metal oxide host and metal satellite guests serve as a scaffold for multi-step transformations of divergent and energy-challenging substrates. Here we have developed a 3D porous MgO framework (Lewis basic host) with Ag0 nanoparticles (noble metal guest) for ambient pressure activation and insertion of CO2 into unsaturated alkyne substrates. The hybrid MgO@Ag-x (x = 2, 5, 7, 8 at % Ag) catalysts are synthesized by impregnating Ag+ ions in porous MgO cubes followed by reduction using NaBH4. Morphological (SEM, TEM, EDX mapping) and structural (PXRD, XPS) characterization reveal that the micron-sized hybrid cubes derive from self-assembly of ~100 nm (edge length) MgO cubes decorated with ~ 5 to 25 nm Ag0 NPs. Detailed XPS analysis illustrates Ag0 is present in two forms, <10 nm NPs and ~25 nm aggregates. The MgO@Ag-7 catalyst is effective for inserting CO2 into aryl alkynes followed by SN2 coupling with allylic chlorides to afford a wide range of ester and lactone heterocycles in excellent yields (61-93%) and with low E-factor (2.8). The proposed mechanism suggests a CO2 capture and substrate assembly role for 3D porous MgO while Ag0 performs the key activation of alkyne and CO2 insertion steps. The catalyst is recyclable (5x) with no significant loss of product yield. Overall, these results demonstrate viable approaches to hybrid catalyst development for challenging conversions such as CO2 utilization in a green and sustainable manner.
Collapse
Affiliation(s)
- Upasana Gulati
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - U Chinna Rajesh
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Jeffrey M Zaleski
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
68
|
Shi XR, Huang S, Huang Y, Zhang Y, Zong S, Xu S, Chen Y, Ma P. Atomic structures and electronic properties of Ni or N modified Cu/diamond interface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:225001. [PMID: 31910398 DOI: 10.1088/1361-648x/ab686b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interfacial stability of copper/diamond directly affects its mechanical properties and thermal conductivity. The atomic structures and electronic properties of Cu/diamond and Cu/X/diamond interfaces have been identified to investigate the effect of interfacial additive X (X = Ni or N) on the low-index interfacial adhesion of copper/diamond composites. For unmodified composites, the interfacial stability decreases in the order of Cu(0 0 1)/diamond(0 0 1) > Cu(1 1 1)/diamond(1 1 1) > Cu(0 1 1)/diamond(0 1 1). The metallic interfacial additive Ni is found to enhance the Cu(0 1 1)/diamond(0 1 1) interfacial stability and exchange the interfacial stability sequence of (0 1 1) and (1 1 1) composites. The nonmetallic element N will promote the stability of Cu(1 1 1)/diamond(1 1 1) but not alter the stability order of the composites at different interfaces. To explain the origin of interfacial stability, a series of analyses on atomic structures and electronic properties have been carried out, including the identification of the type of formed interfacial boundaries, the measurement of interfacial bond lengths, and the calculations of density of states, bond populations, and atomic charge. The stability of the interface is found to be related to the type of formed interfacial boundary and bond, the interfacial bond populations, and the interfacial bond numbers. The layer-projected density of states reveals that all of the considered interfaces exhibit metal characteristics. The interfacial Ni additive is found to be an electron donor contributing the electrons to its bonded Cu and C atoms while the interfacial N atom is an electron acceptor where it mainly accepts the electrons from its bonded Cu and C.
Collapse
Affiliation(s)
- Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Bimetallic Fe/Mn metal-organic-frameworks and Au nanoparticles anchored carbon nanotubes as a peroxidase-like detection platform with increased active sites and enhanced electron transfer. Talanta 2020; 210:120678. [DOI: 10.1016/j.talanta.2019.120678] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 01/08/2023]
|
70
|
Zhang J, Lu N, Peng H, Li J, Yan R, Shi X, Ma P, Lv M, Wang L, Tang Z, Zhang M. Multi-triggered and enzyme-mimicking graphene oxide/polyvinyl alcohol/G-quartet supramolecular hydrogels. NANOSCALE 2020; 12:5186-5195. [PMID: 32073092 DOI: 10.1039/c9nr10779g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular hydrogels with stimuli-responsive behaviors under aqueous environments are attractive for their potential applications in controlled drug delivery, clinical diagnostics, and tissue engineering. However, there still remain challenges in developing multicomponent hydrogels as a new generation of "smart" soft materials with multiple intelligent functions toward complex biochemical stimuli. In this work, a three dimensional (3D)-nanostructured supramolecular hydrogel was fabricated using a simple and facile strategy via the self-assembly of graphene oxide (GO) nanosheets, poly(vinyl alcohol) (PVA) chains, and G-quartet/hemin (G4/H) motifs. The as-prepared GO/PVA/G4/H hydrogel exhibited a honeycomb-like 3D GO network architecture as well as excellent mechanical properties. Importantly, the hydrogel demonstrated pH-inducing reversible and cyclic phase transitions between solution and hydrogel states, which could be used as "ink" for injectable 3D printing of different shaped patterns. Also, binary AND and OR logic gates were successfully built by encapsulating enzymes into the hydrogels, which responded to a variety of biochemicals. In addition, the hydrogels showed excellent peroxidase-like activity, achieving the ultrasensitive detection of H2O2 at a concentration as low as 100 nM by their deposition on an electrochemical electrode. The design of multicomponent hydrogels opens up an avenue to fabricate novel "smart" soft matter for biological and medical applications.
Collapse
Affiliation(s)
- Jiaxing Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Hongzhen Peng
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Ruohong Yan
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xuerong Shi
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Pan Ma
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Lv
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China and National Clinical Research Center of Oral Diseases, Shanghai 200011, China and Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
71
|
Li X, Zhao C, Deng G, Liu W, Shao J, Zhou Z, Liu F, Yang H, Yang S. Nanozyme-Augmented Tumor Catalytic Therapy by Self-Supplied H2O2 Generation. ACS APPLIED BIO MATERIALS 2020; 3:1769-1778. [DOI: 10.1021/acsabm.0c00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoling Li
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Chang Zhao
- First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Guang Deng
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Wei Liu
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Jing Shao
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Zhiguo Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Fang Liu
- First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
72
|
Ling P, Qian C, Yu J, Gao F. Artificial nanozyme based on platinum nanoparticles anchored metal-organic frameworks with enhanced electrocatalytic activity for detection of telomeres activity. Biosens Bioelectron 2020; 149:111838. [DOI: 10.1016/j.bios.2019.111838] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/19/2019] [Accepted: 10/31/2019] [Indexed: 01/04/2023]
|
73
|
Yin D, Cao X, Liu X, Yang Z, Liu Z, Wang D, Liu Q, Zhang X, Zhang X. Rapid colorimetric sensing of ascorbic acid based on the excellent peroxidase-like activity of Pt deposited on ZnCo2O4 spheres. NEW J CHEM 2020. [DOI: 10.1039/d0nj02795b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pt/ZnCo2O4 composites were firstly found to act as artificial peroxidases and used to construct colorimetric sensing platforms for detecting H2O2 and ascorbic acid.
Collapse
Affiliation(s)
- Dexin Yin
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xiaoyan Cao
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xiangwei Liu
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Zhou Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zhenxue Liu
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Dongmei Wang
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Qingyun Liu
- College of Chemical and Biological Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology
- School of Chemistry and Chemical Engineering, Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Xiao Zhang
- Shandong Key Laboratory of Biochemical Analysis
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
74
|
Tang RY, Lei Z, Weng YJ, Xia XM, Zhang X. Self-assembly synthesis of Ag@PANI nanocomposites as a tandem enzyme utilizing a highly efficient label-free SERS method to detect saccharides. NEW J CHEM 2020. [DOI: 10.1039/d0nj02073g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Surface Enhanced Raman Scattering (SERS), with good reproducibility and stability, is an analytical testing technique that uses metals or metal nanoparticles as detection substrates, and it can also be used to characterize the information from molecular vibration.
Collapse
Affiliation(s)
- Ru-Yi Tang
- School of Materials Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Zhang Lei
- School of Materials Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Yi-Jin Weng
- School of Materials Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Xue-Min Xia
- School of Materials Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Xia Zhang
- School of Materials Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| |
Collapse
|
75
|
Zhang L, Zhang M, Liu L, Wang Y, Zheng J, Xu J. Carbon-supported Ni and MoO2 nanoparticles with Fe3O4 cores as a protein adsorbent. NEW J CHEM 2020. [DOI: 10.1039/d0nj02916e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we have fabricated hierarchical structures of Fe3O4@MoO2∩C–Ni and Fe3O4@C∩MoO2–Ni composites using two different synthetic strategies, which can be used for histidine-rich protein separation.
Collapse
Affiliation(s)
- Lina Zhang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Min Zhang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Libin Liu
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
| | - Yanqin Wang
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| |
Collapse
|
76
|
Yuan Y, Fu Z, Wang K, Zhao Z, Li H, Wang Z, Wang L. The design and characterization of a hypersensitive glucose sensor: two enzymes co-fixed on a copper phosphate skeleton. J Mater Chem B 2020; 8:244-250. [DOI: 10.1039/c9tb02294e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new glucose sensor GOx&DhHP-6–Cu3(PO4)2 showed the best catalytic ability at a neutral temperature and pH.
Collapse
Affiliation(s)
- Ye Yuan
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Zhendong Fu
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Kai Wang
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Zhenyu Zhao
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Hui Li
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Zhi Wang
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
- Key Laboratory for Molecular Enzymology and Engineering
| | - Liping Wang
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
- Key Laboratory for Molecular Enzymology and Engineering
| |
Collapse
|
77
|
Ling Y, Cao T, Liu L, Xu J, Zheng J, Li J, Zhang M. Fabrication of noble metal nanoparticles decorated on one dimensional hierarchical polypyrrole@MoS2 microtubes. J Mater Chem B 2020; 8:7801-7811. [DOI: 10.1039/d0tb01387k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we present a facile strategy to fabricate noble metal (Ag, Au, Pd) decorated on PPy@MoS2 microtubes. As a proof of application, the ternary PPy@MoS2@Au hybrids reveal excellent enzyme-like catalytic performance.
Collapse
Affiliation(s)
- Yang Ling
- College of Chemistry and Chemical Enginerring
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
- Institute for Sustainable Energy/College of Sciences
| | - Tiantian Cao
- College of Chemistry and Chemical Enginerring
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Libin Liu
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
| | - Jingli Xu
- College of Chemistry and Chemical Enginerring
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Jing Zheng
- College of Chemistry and Chemical Enginerring
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Jiaxing Li
- Institute of Plasma Physics
- Chinese Academy of Sciences
- 230031 Hefei
- P. R. China
| | - Min Zhang
- College of Chemistry and Chemical Enginerring
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| |
Collapse
|
78
|
Zong S, Huang S, Shi XR, Sun C, Xu S, Ma P, Wang J. Impact of linker functionalization on the adsorption of nitrogen-containing compounds in HKUST-1. Dalton Trans 2020; 49:12610-12621. [PMID: 32869805 DOI: 10.1039/d0dt02165b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalization of metal-organic framework (MOF) ligands can tune the adsorption properties of MOFs. The adsorptions of NO, NO2, NH3, C5H5N, C4H5N, and C4H4O on pristine and five X-functionalized HKUST-1, i.e. Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) (X = CH3, CH3O, NH2, NO2, and Br) are evaluated by van der Waals corrected density functional theory calculations. Despite the fact that the open metal center is the energetically preferred adsorption site for most of them, the functional group site can yield a comparable adsorption ability with the open metal center. This is particularly true for pyrrole C4H5N adsorption on CH3O-functionalized HKUST-1 where the functional group site shows stronger adsorption stability than the open metal center site, probably due to the formed hydrogen bond between pyrrole and the CH3O functional group. While the CH3- or CH3O-functionalized organic linker in these MOFs strengthens the adsorption of all the considered species, that of NO2-, Br-, or NH2-functional groups reduces, which is associated with their topologies. Among them, only CH3- or CH3O-functionalized HKUST-1 presents the fmj (orthorhombic crystal system) topology while all the others are isostructural to the pristine HKUST-1 with the tbo (twisted boracite-type, cubic) topological structure. Among six adsorbates, two basic adsorbates, C5H5N and NH3, always yield the strongest bonding strength upon adsorption on the pristine and five functionalized HKUST-1. Electronic properties including the Bader charges, electron density differences, and electron localization function were investigated to comprehend their adsorption behaviors. This work provides guidance for the proper functionalization of HKUST-1 with improved adsorption properties for specific adsorbates.
Collapse
Affiliation(s)
- Shibiao Zong
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, China.
| | - Simin Huang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, China.
| | - Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, China.
| | - Chunyan Sun
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, China.
| | - Shusheng Xu
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, China.
| | - Pan Ma
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, China.
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan 030001, China
| |
Collapse
|
79
|
Yuan A, Lu Y, Zhang X, Chen Q, Huang Y. Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing. J Mater Chem B 2020; 8:9295-9303. [DOI: 10.1039/d0tb01598a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A 2D Fe-BTC nanosheet was preparedviaa cation exchange route. Its peroxidase-like activity is 2.2 times that of 3D MIL-100(Fe) due to highly accessible surface active sites. This is helpful for substrate contact with the catalyst during the catalytic reaction.
Collapse
Affiliation(s)
- Ai Yuan
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| | - Yuwan Lu
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| | - Xiaodan Zhang
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| | - Qiumeng Chen
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| | - Yuming Huang
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| |
Collapse
|
80
|
Niu Q, Zheng J, Liu L, Xu J, Alsulami H, Amin Kutbi M, Zhang M. Nanostructured MnO 2 nanosheets grown on nickel foam: an efficient and readily recyclable 3D artificial oxidase for the colorimetric detection of ascorbic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj01909g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
.An efficient and readily recyclable 3D artificial oxidase (NF@MnO2) for the colorimetric detection of ascorbic acid was well constructed with nickel foam as the substrate.
Collapse
Affiliation(s)
- Qian Niu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Libin Liu
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Hamed Alsulami
- Department of Mathematics
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Marwan Amin Kutbi
- Department of Mathematics
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| |
Collapse
|
81
|
|
82
|
Liu H, Hua Y, Cai Y, Feng L, Li S, Wang H. Mineralizing gold-silver bimetals into hemin-melamine matrix: A nanocomposite nanozyme for visual colorimetric analysis of H2O2 and glucose. Anal Chim Acta 2019; 1092:57-65. [PMID: 31708033 DOI: 10.1016/j.aca.2019.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022]
|
83
|
Zhong Y, Yu X, Fu W, Chen Y, Shan G, Liu Y. Colorimetric and Raman spectroscopic array for detection of hydrogen peroxide and glucose based on etching the silver shell of Au@Ag core-shell nanoparticles. Mikrochim Acta 2019; 186:802. [DOI: 10.1007/s00604-019-3991-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/28/2019] [Indexed: 01/25/2023]
|
84
|
Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Biosens Bioelectron 2019; 150:111881. [PMID: 31780408 DOI: 10.1016/j.bios.2019.111881] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/27/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
In enzyme-based immunoassys, the use of natural enzyme has been remarkably restricted by the inconvenience in preparation and storage, especially for point-of-care testing. Nanozymes, which can mimic the functions of natural enzymes, have been regarded as promising alternatives due to their robust stability and convenience in fabrication. Here we fabricated one-dimensional Fe3O4@C core-shell nanostructures via a solvent-thermal method. Thus prepared nanocomposites showed excellent peroxidase-like activity, capable of catalyzing chromogenic substrates into colored products in the presence of H2O2. We then developed a nanozyme-linked aptamer sorbent assay (NLASA) in a sandwich format, in which the as-prepared Fe3O4@C nanowires were employed as catalytic labels for colorimetric detection by naked eyes. In the detection of platelet-derived growth factor BB (PDGF-BB), this assay reliably exhibited detection limits as low as 10 fM, with a working range from 10 fM to 100 nM. By incorporating G-quadruplex-hemin DNAzyme with Fe3O4@C nanowires, the detection limit could be further lowered to 50 aM. The detection limit of PDGF-BB in 50% human serum was 100 fM. This ultrasensitive, cost-effective and easy-to-operate sensing platform offers new opportunities for protein detection in clinical diagnosis.
Collapse
|
85
|
Fan C, Liu J, Zhao H, Li L, Liu M, Gao J, Ma L. Molecular imprinting on PtPd nanoflowers for selective recognition and determination of hydrogen peroxide and glucose. RSC Adv 2019; 9:33678-33683. [PMID: 35528877 PMCID: PMC9073546 DOI: 10.1039/c9ra05677g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
PtPd nanoflowers (PtPd NFs) exhibit intrinsic peroxidase-like activity as nanozymes, but the nanozymes lack substrate specificity and have low catalytic activity. Herein, a molecularly imprinted nanogel on PtPd NFs was prepared by using 3,3',5,5'-tetramethylbenzidine (TMB) as the template through the aqueous precipitation polymerization method. After the TMB was washed out, many substrate binding pockets were retained in the PtPd NFs. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) were employed to characterize the molecularly imprinted polymer (MIP) PtPd nanoflowers (T-MIP-PtPd NFs). The obtained T-MIP-PtPd NFs exhibited enhanced catalytic activity and specific recognition for TMB. Compared with PtPd NFs, T-MIP-PtPd NFs showed a linear range from 0.01-5000 μM and a detection limit of 0.005 μM toward the detection of H2O2. Glucose can also be sensitively detected through cascade reaction by the T-MIP-PtPd NFs and glucose oxidase. Therefore, molecular imprinting on nanozymes technology shows promising application in biocatalysis and sensing fields.
Collapse
Affiliation(s)
- Caini Fan
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Junjia Liu
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Haiying Zhao
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Ling Li
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Min Liu
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| |
Collapse
|
86
|
Jlassi K, Sliem MH, Eid K, Krupa I, Chehimi MM, Abdullah AM. Novel Enzyme-Free Multifunctional Bentonite/Polypyrrole/Silver Nanocomposite Sensor for Hydrogen Peroxide Detection over a Wide pH Range. SENSORS 2019; 19:s19204442. [PMID: 31615006 PMCID: PMC6832523 DOI: 10.3390/s19204442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
Abstract
Precise designs of low-cost and efficient catalysts for the detection of hydrogen peroxide (H2O2) over wide ranges of pH are important in various environmental applications. Herein, a versatile and ecofriendly approach is presented for the rational design of ternary bentonite-silylpropyl-polypyrrole/silver nanoarchitectures (denoted as BP-PS-PPy/Ag) via the in-situ photo polymerization of pyrrole with salinized bentonite (BP-PS) in the presence of silver nitrate. The Pyrrolyl-functionalized silane (PS) is used as a coupling agent for tailoring the formation of highly exfoliated BP-PS-PPy sheet-like nanostructures ornamented with monodispersed Ag nanoparticles (NPs). Taking advantage of the combination between the unique physicochemical properties of BP-PS-PPy and the outstanding catalytic merits of Ag nanoparticles (NPs), the as-synthesized BP-PS-PPy/Ag shows a superior electrocatalytic reduction and high-detection activity towards H2O2 under different pH conditions (from 3 to 10). Intriguingly, the UV-light irradiation significantly enhances the electroreduction activity of H2O2 substantially, compared with the dark conditions, due to the high photoelectric response properties of Ag NPs. Moreover, BP-PS-PPy/Ag achived a quick current response with a detection limit at 1 μM within only 1 s. Our present approach is green, facile, scalable and renewable.
Collapse
Affiliation(s)
- Khouloud Jlassi
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar.
| | - Mostafa H Sliem
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar.
| | - Kamel Eid
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar.
| | - Igor Krupa
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar.
| | - Mohamed M Chehimi
- University Paris Est, CNRS, UMR7182, ICMPE, UPEC, F-94320 Thais, France.
| | | |
Collapse
|
87
|
Wang N, Zhang M, Liu L, Zheng J, Xu J, Hayat T, Alharbi NS. Space-confined pyrolysis for fabrication of peacods-like Fe 3O 4@C-Ni nanostructures for catalysis and protein adsorption. NANOTECHNOLOGY 2019; 30:415602. [PMID: 31284272 DOI: 10.1088/1361-6528/ab2ff0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A unique nanostructure of Fe3O4 nanoparticles (NPs)-in/carbon layer/out-Ni NPs was developed and proved to be an efficient catalyst and protein adsorbent. This kind of nanostructure was formed through a space-confined pyrolysis procedure using polydopamine-Ni2+ coated Fe-NTA nanowires as the precursor. A N-doped carbon interlayer derived from polydopamine (PDA) supported a large amount of Ni NPs and entrapped well-defined Fe3O4 NPs, which were obtained through reduction of Ni2+, Fe3+ by carbonized NTA groups and a PDA layer. The contributions of the unique configuration along with the high density of Ni NPs in Fe3O4@C-Ni are significant for improving catalysis and protein adsorption performance, which is expected to be a promising alternative to other conventional catalysts and protein adsorbents. Due to the unique novel nanostructure, this nanocomposite possesses a wide range of applications, not only for catalytic reactions but also for other inhomogeneous reactions.
Collapse
Affiliation(s)
- Na Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
88
|
Trace determination and characterization of ginsenosides in rat plasma through magnetic dispersive solid-phase extraction based on core-shell polydopamine-coated magnetic nanoparticles. J Pharm Anal 2019; 10:86-95. [PMID: 32123603 PMCID: PMC7037655 DOI: 10.1016/j.jpha.2019.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Enrichment of trace bioactive constituents and metabolites from complex biological samples is challenging. This study presented a one-pot synthesis of magnetic polydopamine nanoparticles (Fe3O4@SiO2@PDA NPs) with multiple recognition sites for the magnetic dispersive solid-phase extraction (MDSPE) of ginsenosides from rat plasma treated with white ginseng. The extracted ginsenosides were characterized by combining an ultra-high-performance liquid chromatography coupled to a high-resolution mass spectrometry with supplemental UNIFI libraries. Response surface methodology was statistically used to optimize the extraction procedure of the ginsenosides. The reusability of Fe3O4@SiO2@PDA NPs was also examined and the results showed that the recovery rate exceeded 80% after recycling 6 times. Furthermore, the proposed method showed greater enrichment efficiency and could rapidly determine and characterize 23 ginsenoside prototypes and metabolites from plasma. In comparison, conventional methanol method can only detect 8 ginsenosides from the same plasma samples. The proposed approach can provide methodological reference for the trace determination and characterization of different bioactive ingredients and metabolites of traditional Chinese medicines and food. The Fe3O4@SiO2@PDA NPs were synthesized through one-pot method. The RSM was designed to promote the extraction of trace active ingredients. The MDSPE, UPLC-MS and UNIFI software were integrated into an analytical platform. The synergetic strategy was applied to enrich ginsenosides from rat plasma. The synergetic strategy provided an easy, rapid and sensitive method for analytes.
Collapse
|
89
|
A morphology-based ultrasensitive multicolor colorimetric assay for detection of blood glucose by enzymatic etching of plasmonic gold nanobipyramids. Anal Chim Acta 2019; 1071:53-58. [DOI: 10.1016/j.aca.2019.04.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 11/19/2022]
|
90
|
Zhou Y, Yang J, Yin X, Zheng J, Lu N, Zhang M. Enhanced synergistic effects from multiple iron oxide nanoparticles encapsulated within nitrogen-doped carbon nanocages for simple and label-free visual detection of blood glucose. NANOTECHNOLOGY 2019; 30:355501. [PMID: 31067520 DOI: 10.1088/1361-6528/ab2026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hollow-structured carbon materials play a crucial role in research of biosensors, energy storage and nanomedicine as a kind of material with advantages like high surface area, tunable pore volume, excellent mechanical properties, and good biocompatibility. Herein, we developed a simple, facile and controllable method for synthesis of Fe3O4 nanoparticles encapsulated in hollow carbon nanocages (FNHCs) with SiO2 nanospheres as a sacrificial template. Owing to the unique structure of multiple Fe3O4 nanoparticles cores integrated with N-doped carbon nanocages, the as-synthesized FNHCs exhibited greatly enhanced peroxidase mimicking activity with extremely high signal-to-noise ratio of ∼91 fold. Also, it was found that the FNHCs possessed a higher peroxidase-like activity than that of other similar-structured Fe3O4 architectures (e.g. Fe3O4@C NPs). The resulting steady-state kinetic curve demonstrated the enzymatic activity of FNHCs with classic Michaelis-Menton kinetics following a ping-pong mechanism. On the basis of the superior enzymatic activity, the FNHCs performed as a high-efficiency peroxidase mimic, realizing facile, label-free, highly sensitive/selective colorimetric detection of H2O2 and glucose. Furthermore, the colorimetric sensor successfully determined glucose in patients' serum samples with high accuracy and precision, suggesting great potential for real applications.
Collapse
Affiliation(s)
- Youquan Zhou
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | | | | | | | | | | |
Collapse
|
91
|
Arroyave M, Springer V, Centurión ME. Novel Synthesis Without Separation and Purification Processes of Carbon Dots and Silver/Carbon Hybrid Nanoparticles. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01266-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
92
|
Zhang L, Qi Z, Zou Y, Zhang J, Xia W, Zhang R, He Z, Cai X, Lin Y, Duan SZ, Li J, Wang L, Lu N, Tang Z. Engineering DNA–Nanozyme Interfaces for Rapid Detection of Dental Bacteria. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30640-30647. [PMID: 31318203 DOI: 10.1021/acsami.9b10718] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ling Zhang
- National Clinical Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhengnan Qi
- Department of Oral Medicine, Shanghai Stomatological Hospital, Fudan University, Shanghai 200031, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai 200031, China
| | - Yan Zou
- National Clinical Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jiaxing Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Wenjun Xia
- National Clinical Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Rui Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhiyan He
- National Clinical Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Sheng-Zhong Duan
- National Clinical Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jiang Li
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zisheng Tang
- National Clinical Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
93
|
Huang Y, Liang G, Lin T, Hou L, Ye F, Zhao S. Magnetic Cu/Fe 3O 4@FeOOH with intrinsic HRP-like activity at nearly neutral pH for one-step biosensing. Anal Bioanal Chem 2019; 411:3801-3810. [PMID: 31172237 DOI: 10.1007/s00216-019-01841-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 11/26/2022]
Abstract
The convenience of colorimetric sensors is useful for practical applications. In this work, we constructed a novel colorimetric sensor with magnetic separation ability that can be operated in nearly neutral conditions and achieve one-step detection of metabolites. Magnetic Cu doped Fe3O4@FeOOH magnetic nanocomposite (Cu/Fe3O4@FeOOH) with an oxygen vacancy was prepared by a one-step self-assembly hydrothermal method, and fully characterized by different methods. The oxygen vacancy generated by the incorporation of Cu2+ cations into the Fe3O4@FeOOH structure was confirmed to be a vital reactive site for enhancing the catalytic activity, which opens up a new way of designing highly efficient enzyme mimics. Benefiting from its inherent horseradish-peroxidase-like activity, a simple and selective enzyme-based colorimetric sensor was developed for one-step detection of H2O2 and cholesterol, and 3,3',5,5'-tetramethylbenzidine was catalyzed by H2O2 to generate a colored product of oxidized 3,3',5,5'-tetramethylbenzidine for signaling. H2O2 and cholesterol can be linearly detected in the same range from 0.01 to 0.4 mmol L-1 with detection limits of 0.0075 mmol L-1 and 0.0082 mmol L-1, respectively. The proposed colorimetric sensor has satisfactory reusability, accuracy, and practicability in human serum samples, indicating its potential application for the detection of different metabolites in the fields of life science and analytical science. Graphical abstract.
Collapse
Affiliation(s)
- Yuanlin Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Guangzhao Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Tianran Lin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China.
| | - Li Hou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
94
|
Wang Y, Xu L, Xie W. Rapid and sensitive colorimetric sensor for H2O2 and Hg2+ detection based on homogeneous iodide with high peroxidase-mimicking activity. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
95
|
Ding S, Chen R, Chen G, Li M, Wang J, Zou J, Du F, Dong J, Cui X, Huang X, Deng Y, Tang Z. One-step colorimetric genotyping of single nucleotide polymorphism using probe-enhanced loop-mediated isothermal amplification (PE-LAMP). Am J Cancer Res 2019; 9:3723-3731. [PMID: 31281509 PMCID: PMC6587344 DOI: 10.7150/thno.33980] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Single nucleotide polymorphism (SNP) is the most abundant molecular marker associated with many physiologic and pathologic phenotypes. An isothermal, accurate and cost-effective SNP detection could make a great difference in point-of-care testing (POCT) or on-site diagnosis. However, there are two challenges, the expensive instrument and labor-intensive process, faced by the development of on-site SNP detection. We reported a novel SNP typing method based on the probe-enhanced loop-mediated isothermal amplification (PE-LAMP), which combines the oligonucleotide probe with a conventional LAMP to realize the SNP discrimination by analyzing the great discrepancy in amplification efficiency. Methods: We firstly constructed the genotyping method by combining the hybridization of the specific probe with the powerful amplification of LAMP. Then we validated the method by genotyping the SNP rs3741219 and we sought to realize one-step visualized typing. Finally, we applied the method to pharmacogenomic testing by genotyping CYP2C19*2 and MDR1 C3435T. Results: The PE-LAMP was successfully constructed to detect SNP and the sensitivity of our method is as low as 1000 copies of target DNA, which is sufficient to routine diagnosis. The high specificity in detecting mutant in the presence of excess wild-type allele could be achieved. It has shown good performance in helping predict the individual response of antiplatelet drug Clopidogrel through typing simply treated saliva samples. Conclusions: The proposed method is one-step, colorimetric, specific and sensitive enough to detect crudely treated samples, showing great potential in the pharmacogenomic study and POCT use.
Collapse
|
96
|
Xian J, Weng Y, Guo H, Li Y, Yao B, Weng W. One-pot fabrication of Fe-doped carbon nitride nanoparticles as peroxidase mimetics for H 2O 2 and glucose detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:218-224. [PMID: 30826580 DOI: 10.1016/j.saa.2019.02.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/03/2019] [Accepted: 02/16/2019] [Indexed: 05/25/2023]
Abstract
Iron-doped carbon nitride nanoparticles (Fe-CNNPs) were prepared from citric acid, urea and ferric chloride through a convenient one-pot solvothermal method. Oleic acid was used as the reaction medium. The morphology and chemical composition of the obtained Fe-CNNPs were characterized by multiple methods including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). It is interesting to find that the Fe-CNNPs showed higher catalytic activity than horseradish peroxidase (HRP), and tetramethylbenzidine (TMB) can be catalytically oxidized in the presence of H2O2 to produce a color change in aqueous solution. As H2O2 can be generated in the oxidation process of glucose catalyzed by glucose oxidase (GOD), a novel sensitive method for the detection of glucose with a limit of detection (LOD) of 0.29 μM has been developed combined with the catalytic properties of GOD and Fe-CNNPs. The Fe-CNNPs with peroxidase mimetics activity may have potential applications in biotechnology field.
Collapse
Affiliation(s)
- Jiaqi Xian
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Yuhui Weng
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Hantao Guo
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Yan Li
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Bixia Yao
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Zhangzhou 363000, China
| | - Wen Weng
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Zhangzhou 363000, China.
| |
Collapse
|
97
|
Zhang P, Sun D, Cho A, Weon S, Lee S, Lee J, Han JW, Kim DP, Choi W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat Commun 2019; 10:940. [PMID: 30808912 PMCID: PMC6391499 DOI: 10.1038/s41467-019-08731-y] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
Nanomaterials-based biomimetic catalysts with multiple functions are necessary to address challenges in artificial enzymes mimicking physiological processes. Here we report a metal-free nanozyme of modified graphitic carbon nitride and demonstrate its bifunctional enzyme-mimicking roles. With oxidase mimicking, hydrogen peroxide is generated from the coupled photocatalysis of glucose oxidation and dioxygen reduction under visible-light irradiation with a near 100% apparent quantum efficiency. Then, the in situ generated hydrogen peroxide serves for the subsequent peroxidase-mimicking reaction that oxidises a chromogenic substrate on the same catalysts in dark to complete the bifunctional oxidase-peroxidase for biomimetic detection of glucose. The bifunctional cascade catalysis is successfully demonstrated in microfluidics for the real-time colorimetric detection of glucose with a low detection limit of 0.8 μM within 30 s. The artificial nanozymes with physiological functions provide the feasible strategies for mimicking the natural enzymes and realizing the biomedical diagnostics with a smart and miniature device.
Collapse
Affiliation(s)
- Peng Zhang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dengrong Sun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Ara Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Seunghyun Weon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jinwoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dong-Pyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Wonyong Choi
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea. .,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
| |
Collapse
|
98
|
Li M, Lao YH, Mintz RL, Chen Z, Shao D, Hu H, Wang HX, Tao Y, Leong KW. A multifunctional mesoporous silica-gold nanocluster hybrid platform for selective breast cancer cell detection using a catalytic amplification-based colorimetric assay. NANOSCALE 2019; 11:2631-2636. [PMID: 30694277 DOI: 10.1039/c8nr08337a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Breast cancer is the most common malignancy and also the second leading cause of cancer mortality in women globally. Strategies for early and precise detection of breast cancer cells are highly desired in breast cancer diagnosis and treatment. Here, we report on the efficient detection of HER2-positive (HER2+) breast cancer cells using an amplified signal scheme enabled by gold nanoclusters entrapped in mesoporous silica nanoparticles (MSNs). The utilization of MSNs as an excellent enzyme immobilization support and gold nanoclusters as an effective peroxidase mimic imparts high sensitivity to this detection platform. In addition, the inclusion of target-specific HER2 antibodies adds excellent selectivity. Determination of HER2+ cancer cells in breast cancer tissue demonstrates the potential application of this biosensor design in clinical diagnosis in particular, and bioanalysis in general.
Collapse
Affiliation(s)
- Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Guangdong Provincial Key Laboratory of Liver Disease, Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Liu H, Wang C, Wang P, Liu N, Du Q. A Two-Step Strategy for Fabrication of Biocompatible 3D Magnetically Responsive Photonic Crystals. Front Chem 2019; 7:26. [PMID: 30775360 PMCID: PMC6367226 DOI: 10.3389/fchem.2019.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/11/2019] [Indexed: 11/13/2022] Open
Abstract
Extremely stable and biocompatible 3D magnetically responsive photonic crystals (MRPCs) are successfully prepared in aqueous solution. Classic hydrothermal synthesis was applied for preparation of the Fe3O4@C core. Modified Stöber method was then employed for synthesis of the different size of Fe3O4@C@SiO2. Unlike the traditional magnetic nanoparticles, the highly negative charged superparamagnetic nanospheres (SMNs), i.e., the double-shell structure Fe3O4@C@SiO2 are capable of rapidly self-assembling into 3D MRPCs with full visible and various colors that can be periodically and reversibly tuned under different kinds of external magnetic fields (EMFs) within 1 s. The assembling behavior and mechanism of the 3D MRPCs under EMF were monitored and analyzed. The preparation is simple and the size of the SMN is easily controllable by adjusting the amount of catalyst. Compared with the previous works, the synthesized 3D MRPCs are hydrophilic, and exhibit extremely high stability after 6-month storage. To conclude, our study provides an effective two-step strategy for fabrication of biocompatible 3D MRPCs and it reveals great potentials in biological fields.
Collapse
Affiliation(s)
- Hui Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Caiqin Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Peixi Wang
- General Practice Center, Nanhai Hospital, Southern Medical University, Foshan, China
| | - Nan Liu
- School of Public Health, Lanzhou University, Lanzhou, China
- General Practice Center, Nanhai Hospital, Southern Medical University, Foshan, China
- *Correspondence: Nan Liu orcid.org/0000-0002-8895-3169
| | - Qingfeng Du
- General Practice Center, Nanhai Hospital, Southern Medical University, Foshan, China
- Qingfeng Du
| |
Collapse
|
100
|
Zeng C, Lu N, Wen Y, Liu G, Zhang R, Zhang J, Wang F, Liu X, Li Q, Tang Z, Zhang M. Engineering Nanozymes Using DNA for Catalytic Regulation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1790-1799. [PMID: 30582796 DOI: 10.1021/acsami.8b16075] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA treatment of metal nanoparticles provides a potent tool for tuning their native properties and constructing advanced materials. However, there have been limited studies on interactions between DNA and nanomaterial-based artificial enzymes (nanozymes) to influence their intrinsic peroxidase-like properties. Here, we present the utilization of DNA as a capping ligand to engineer various bio-nanointerfaces for high-precise and adjustable regulation of catalytic behaviors of nanozymes toward the oxidation of substrates. The treatment of stiff double-stranded DNA only induced a negligible enhancement of the catalytic activity of nanozymes, and both coil-like single-stranded DNA and hairpin DNA-capped nanoparticles produced a medium signal increase. Interestingly, hybridization chain reaction (HCR) product-treated nanoparticles showed the highest peroxidase-like activities among four DNA structures. Furthermore, significant parameters that influence HCR process and the modulation of catalysis, such as the concentration of the hairpin DNA, the ionic strength, and the amount of nanozyme, were also systematically investigated. On the basis of HCR amplification and iron oxide (Fe3O4) nanoparticles, we develop a simple, fast, label-free, and sensitive colorimetric strategy for sensing of a Yersinia pestis-relevant DNA sequence with a detection limit as low as 100 pM as well as single nucleotide polymorphism discrimination. These results highlight DNA engineering as a facile strategy to regulate the catalytic activities of nanozymes and understand the interactions between metallic nanoparticles and nucleic acids for biosensing applications.
Collapse
Affiliation(s)
- Caixia Zeng
- School of Materials Engineering , Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Na Lu
- School of Materials Engineering , Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Yanli Wen
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology , Shanghai Institute of Measurement and Testing Technology , Shanghai 201203 , China
| | - Gang Liu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology , Shanghai Institute of Measurement and Testing Technology , Shanghai 201203 , China
| | - Rui Zhang
- School of Materials Engineering , Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Jiaxing Zhang
- School of Materials Engineering , Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , China
- National Clinical Research Center of Oral Diseases , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , Shanghai 200011 , China
| | - Min Zhang
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , China
| |
Collapse
|