51
|
Gombert Y, Roncoroni F, Sánchez-Ferrer A, Spencer ND. The hierarchical bulk molecular structure of poly(acrylamide) hydrogels: beyond the fishing net. SOFT MATTER 2020; 16:9789-9798. [PMID: 33001127 DOI: 10.1039/d0sm01536a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The polymeric structure of hydrogels is commonly presented in the literature as resembling a fishing net. However, this simple view cannot fully capture all the unique properties of these materials. Crucial for a detailed description of the bulk structure in free-radical polymerized vinylic hydrogels is a thorough understanding of the cross-linker distribution. This work focuses on the precise role of the tetra-functional cross-linker in the hydrogel system: acrylamide-N,N'-methylenebis(acrylamide). Clusters of crosslinker smaller than 4 nm and their agglomerates, as well as polymer domains with sizes from the 100 nm to the μm-range, have been identified by means of both X-ray and visible-light scattering. Placed in the context of the extensive literature on this system, these observations demonstrate the heterogeneous organisation of the polymer within the hydrogel network structure, and can be accounted for by the different polymerization behavior of the monomer and crosslinker. Together with polymer-network chain-length approximations based on swelling experiments and structural observations with scanning electron microscopy, these results indicate a hierarchical structure of the polymer network surrounding pockets of water.
Collapse
Affiliation(s)
- Yvonne Gombert
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
52
|
Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S, Guan J, Sun B, Zhu W, Chen S. Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chem Rev 2020; 120:10695-10743. [PMID: 32323975 PMCID: PMC7572843 DOI: 10.1021/acs.chemrev.9b00810] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the advent of additive manufacturing, known commonly as 3D printing, this technology has revolutionized the biofabrication landscape and driven numerous pivotal advancements in tissue engineering and regenerative medicine. Many 3D printing methods were developed in short course after Charles Hull first introduced the power of stereolithography to the world. However, materials development was not met with the same enthusiasm and remained the bottleneck in the field for some time. Only in the past decade has there been deliberate development to expand the materials toolbox for 3D printing applications to meet the true potential of 3D printing technologies. Herein, we review the development of biomaterials suited for light-based 3D printing modalities with an emphasis on bioprinting applications. We discuss the chemical mechanisms that govern photopolymerization and highlight the application of natural, synthetic, and composite biomaterials as 3D printed hydrogels. Because the quality of a 3D printed construct is highly dependent on both the material properties and processing technique, we included a final section on the theoretical and practical aspects behind light-based 3D printing as well as ways to employ that knowledge to troubleshoot and standardize the optimization of printing parameters.
Collapse
Affiliation(s)
- Claire Yu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Pengrui Wang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Kathleen L Miller
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xuanyi Ma
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Bingjie Sun
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wei Zhu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Chemical Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
53
|
Curing behavior, chain dynamics, and microstructure of high Tg thiol-acrylate networks with systematically varied network heterogeneity. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
54
|
Kawaguchi H. On Going to a New Era of Microgel Exhibiting Volume Phase Transition. Gels 2020; 6:gels6030026. [PMID: 32824458 PMCID: PMC7559898 DOI: 10.3390/gels6030026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
The discovery of phenomena of volume phase transition has had a great impact not only on bulk gels but also on the world of microgels. In particular, research on poly(N-isopropylacrylamide) (PNIPAM) microgels, whose transition temperature is close to body temperature, has made remarkable progress in almost 35 years. This review presents some breakthrough findings in microgels that exhibit volume phase transitions and outlines recent works on the synthesis, structural analysis, and research direction of microgels.
Collapse
Affiliation(s)
- Haruma Kawaguchi
- Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 241-0814, Japan
| |
Collapse
|
55
|
Heida T, Otto O, Biedenweg D, Hauck N, Thiele J. Microfluidic Fabrication of Click Chemistry-Mediated Hyaluronic Acid Microgels: A Bottom-Up Material Guide to Tailor a Microgel's Physicochemical and Mechanical Properties. Polymers (Basel) 2020; 12:E1760. [PMID: 32781609 PMCID: PMC7464250 DOI: 10.3390/polym12081760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
The demand for tailored, micrometer-scaled biomaterials in cell biology and (cell-free) biotechnology has led to the development of tunable microgel systems based on natural polymers, such as hyaluronic acid (HA). To precisely tailor their physicochemical and mechanical properties and thus to address the need for well-defined microgel systems, in this study, a bottom-up material guide is presented that highlights the synergy between highly selective bio-orthogonal click chemistry strategies and the versatility of a droplet microfluidics (MF)-assisted microgel design. By employing MF, microgels based on modified HA-derivates and homobifunctional poly(ethylene glycol) (PEG)-crosslinkers are prepared via three different types of click reaction: Diels-Alder [4 + 2] cycloaddition, strain-promoted azide-alkyne cycloaddition (SPAAC), and UV-initiated thiol-ene reaction. First, chemical modification strategies of HA are screened in-depth. Beyond the microfluidic processing of HA-derivates yielding monodisperse microgels, in an analytical study, we show that their physicochemical and mechanical properties-e.g., permeability, (thermo)stability, and elasticity-can be systematically adapted with respect to the type of click reaction and PEG-crosslinker concentration. In addition, we highlight the versatility of our HA-microgel design by preparing non-spherical microgels and introduce, for the first time, a selective, hetero-trifunctional HA-based microgel system with multiple binding sites. As a result, a holistic material guide is provided to tailor fundamental properties of HA-microgels for their potential application in cell biology and (cell-free) biotechnology.
Collapse
Affiliation(s)
- Thomas Heida
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| | - Oliver Otto
- Center for Innovation Competence: Humoral Immune Reactions in Cardiovascular Disorders, University of Greifswald, Fleischmannstr. 42, 17489 Greifswald, Germany;
- German Center for Cardiovascular Research e. V., University Medicine Greifswald, Fleischmannstr. 42, 17489 Greifswald, Germany
| | - Doreen Biedenweg
- Clinic for Internal Medicine B, University Medicine Greifswald, Fleischmannstr. 8, 17475 Greifswald, Germany;
| | - Nicolas Hauck
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| |
Collapse
|
56
|
Panyukov S. Theory of Flexible Polymer Networks: Elasticity and Heterogeneities. Polymers (Basel) 2020; 12:E767. [PMID: 32244601 PMCID: PMC7240557 DOI: 10.3390/polym12040767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 11/16/2022] Open
Abstract
A review of the main elasticity models of flexible polymer networks is presented. Classical models of phantom networks suggest that the networks have a tree-like structure. The conformations of their strands are described by the model of a combined chain, which consists of the network strand and two virtual chains attached to its ends. The distribution of lengths of virtual chains in real polydisperse networks is calculated using the results of the presented replica model of polymer networks. This model describes actual networks having strongly overlapping and interconnected loops of finite sizes. The conformations of their strands are characterized by the generalized combined chain model. The model of a sliding tube is represented, which describes the general anisotropic deformations of an entangled network in the melt. I propose a generalization of this model to describe the crossover between the entangled and phantom regimes of a swollen network. The obtained dependence of the Mooney-Rivlin parameters C 1 and C 2 on the polymer volume fraction is in agreement with experiments. The main results of the theory of heterogeneities in polymer networks are also discussed.
Collapse
Affiliation(s)
- Sergey Panyukov
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924, Russia
| |
Collapse
|
57
|
Gao Y, Zhou D, Lyu J, A S, Xu Q, Newland B, Matyjaszewski K, Tai H, Wang W. Complex polymer architectures through free-radical polymerization of multivinyl monomers. Nat Rev Chem 2020; 4:194-212. [PMID: 37128047 DOI: 10.1038/s41570-020-0170-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 01/26/2023]
Abstract
The construction of complex polymer architectures with well-defined topology, composition and functionality has been extensively explored as the molecular basis for the development of modern polymer materials. The unique reaction kinetics of free-radical polymerization leads to the concurrent formation of crosslinks between polymer chains and rings within an individual chain and, thus, free-radical (co)polymerization of multivinyl monomers provides a facile method to manipulate chain topology and functionality. Regulating the relative contribution of these intermolecular and intramolecular chain-propagation reactions is the key to the construction of architecturally complex polymers. This can be achieved through the design of new monomers or by spatially or kinetically controlling crosslinking reactions. These mechanisms enable the synthesis of various polymer architectures, including linear, cyclized, branched and star polymer chains, as well as crosslinked networks. In this Review, we highlight some of the contemporary experimental strategies to prepare complex polymer architectures using radical polymerization of multivinyl monomers. We also examine the recent development of characterization techniques for sub-chain connections in such complex macromolecules. Finally, we discuss how these crosslinking reactions have been engineered to generate advanced polymer materials for use in a variety of biomedical applications.
Collapse
|
58
|
Zehm D, Lieske A, Stoll A. On the Thermoresponsivity and Scalability of
N
,
N
‐Dimethylacrylamide Modified NIPAM Microgels. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Daniel Zehm
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 Potsdam‐Golm 14476 Germany
| | - Antje Lieske
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 Potsdam‐Golm 14476 Germany
| | - Andrea Stoll
- Research Institute of Leather and Plastic Sheeting – FILK Meißner Ring 1–5 Freiberg 09599 Germany
| |
Collapse
|
59
|
Zhang YM, Zhu W, Zhao Q, Qu WJ, Yao H, Wei TB, Lin Q. Th 4+ tuned aggregation-induced emission: A novel strategy for sequential ultrasensitive detection and separation of Th 4+ and Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117926. [PMID: 31855813 DOI: 10.1016/j.saa.2019.117926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
A novel strategy, Th4+ tuned aggregation-induced emission, for sequential ultrasensitive detection and separation of Th4+ and Hg2+ was developed successfully. For demonstration this strategy, we designed and synthesized two tripodal gelators TH (tri-(isoniazid-4-yl)-functionalized trimesic acylhydrazine) and TA (tri-(pyridine-4-yl)-functionalized trimesic amide). The TH and TA could assemble into a stable supramolecular polymer hydrogel THTA-G in DMSO/H2O (3.3:6.7, v/v) binary-solution. The THTA-G does not show aggregation-induced emission (AIE) effect. However, after addition of Th4+ into the THTA-G, the obtained metallogel THTA-GTh shows strong green AIE effect, which indicated that Th4+ could tune the gel generation of AIE effect. Interestingly, the THTA-G could ultrasensitive fluorescently detect Th4+, and the corresponding metallogel THTA-GTh could ultrasensitively detect Hg2+. The detection limits of THTA-G and THTA-GTh for Th4+ and Hg2+ are 8.61 × 10-11 mol/L and 1.08 × 10-11 mol/L, respectively. Additionally, the xerogels of THTA-G and THTA-GTh could separate Th4+ and Hg2+ from aqueous solution with excellent ingestion capacity, and the THTA-G could be used as a writable smart light-emitting material.
Collapse
Affiliation(s)
- You-Ming Zhang
- College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu 730070, PR China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Wei Zhu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Qi Zhao
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Wen-Juan Qu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Hong Yao
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Tai-Bao Wei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Qi Lin
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| |
Collapse
|
60
|
Tanc B, Orakdogen N. Influence of gel preparation concentration on statistical mechanics of poly(dialkylaminoethyl methacrylate) gels on the basis of scaling concept: Toward tunable elasticity and thermomechanical parameters. J Appl Polym Sci 2020. [DOI: 10.1002/app.48350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Beril Tanc
- Department of Chemistry, Soft Materials Research LaboratoryIstanbul Technical University 34469 Maslak Istanbul Turkey
| | - Nermin Orakdogen
- Department of Chemistry, Soft Materials Research LaboratoryIstanbul Technical University 34469 Maslak Istanbul Turkey
| |
Collapse
|
61
|
Zhou X, Li C, Zhu L, Zhou X. Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation. Chem Commun (Camb) 2020; 56:13731-13747. [DOI: 10.1039/d0cc05130f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The soaking strategy could not only strengthen hydrogels with superior mechanical properties but also provide the hydrogels with environmentally adapting properties.
Collapse
Affiliation(s)
- Xiaohu Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Chun Li
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Lifei Zhu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| |
Collapse
|
62
|
Cavalli F, Pfeifer C, Arens L, Barner L, Wilhelm M. Analysis of the Local Mobility of RAFT Mediated Poly(acrylic acid) Networks via Low Field
1
H‐NMR Techniques for Investigation of the Network Topology. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Federica Cavalli
- Soft Matter Synthesis Laboratories Institute for Biological Interfaces Karlsruhe Institute of Technology Hermann‐von‐Helmholtz Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Christoph Pfeifer
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstrasse 18 76131 Karlsruhe Germany
| | - Lukas Arens
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstrasse 18 76131 Karlsruhe Germany
| | - Leonie Barner
- Soft Matter Synthesis Laboratories Institute for Biological Interfaces Karlsruhe Institute of Technology Hermann‐von‐Helmholtz Platz 1 76344 Eggenstein‐Leopoldshafen Germany
- Institute for Future Environments Queensland University of Technology 2 George St Brisbane Queensland 4000 Australia
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstrasse 18 76131 Karlsruhe Germany
| |
Collapse
|
63
|
Miyajima T, Matsubara Y, Komatsu H, Miyamoto M, Suzuki K. Development of a superabsorbent polymer using iodine transfer polymerization. Polym J 2019. [DOI: 10.1038/s41428-019-0292-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
64
|
Barszczewska-Rybarek IM. A Guide through the Dental Dimethacrylate Polymer Network Structural Characterization and Interpretation of Physico-Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4057. [PMID: 31817410 PMCID: PMC6947234 DOI: 10.3390/ma12244057] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Material characterization by the determination of relationships between structure and properties at different scales is essential for contemporary material engineering. This review article provides a summary of such studies on dimethacrylate polymer networks. These polymers serve as photocuring organic matrices in the composite dental restorative materials. The polymer network structure was discussed from the perspective of the following three aspects: the chemical structure, molecular structure (characterized by the degree of conversion and crosslink density (chemical as well as physical)), and supramolecular structure (characterized by the microgel agglomerate dimensions). Instrumental techniques and methodologies currently used for the determination of particular structural parameters were summarized. The influence of those parameters as well as the role of hydrogen bonding on basic mechanical properties of dimethacrylate polymer networks were finally demonstrated. Mechanical strength, modulus of elasticity, hardness, and impact resistance were discussed. The issue of the relationship between chemical structure and water sorption was also addressed.
Collapse
|
65
|
Borro BC, Toussaint MS, Bucciarelli S, Malmsten M. Effects of charge contrast and composition on microgel formation and interactions with bacteria-mimicking liposomes. Biochim Biophys Acta Gen Subj 2019; 1865:129485. [PMID: 31734459 DOI: 10.1016/j.bbagen.2019.129485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 11/15/2022]
Abstract
Microgels offer opportunities for improved delivery of antimicrobial peptides (AMP). To contribute to a foundation for rational design of such systems, we here study the effects of electrostatics on the generation of peptide-carrying microgels. For this, alginate microgels loaded with polymyxin B and cross-linked by Ca2+, were formed by electrostatic complexation using a hydrodynamic focusing three-dimensional (3D)-printed micromixer, varying pH and component concentrations. The structure of the resulting composite nanoparticles was investigated by small-angle X-ray scattering, dynamic light scattering, and z-potential measurements, whereas peptide encapsulation and release was monitored spectrophotometrically. Furthermore, membrane interactions of these systems were assessed by dye leakage assays in model lipid vesicles. Our results indicate that charge contrast between polymyxin B and alginate during microgel formation affects particle size and network dimensions. In particular, while microgels prepared at maximum polymyxin B-alginate charge contrast at pH 5 and 7.4 are characterized by sharp interfaces, those formed at pH 9 are characterized by a more diffuse core, likely caused by a weaker peptide-polymer affinity, and a shell dominated by alginate that shrinks at high CaCl2 concentrations. Quantitatively, however, these effects were relatively minor, as were differences in peptide encapsulation efficiency and electrolyte-induced peptide release. This demonstrates that rather wide charge contrasts allow efficient complexation and particle formation, with polymyxin B encapsulated within the particle interior at low ionic strength, but released at high electrolyte concentration. As a consequence of this, peptide-mediated membrane destabilization were suppressed by microgel incorporation at low ionic strength, but regained after microgel disruption. After particle disruption at high ionic strength, however, some polymyxin B was found to remain bound to alginate chains from the disrupted composite microgel particles, resulting in partial loss in membrane interactions, compared to the free peptide.
Collapse
Affiliation(s)
- Bruno C Borro
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | - Marie S Toussaint
- Department of Biological Engineering, Polytech Clermont-Ferrand, Aubiére, France
| | - Saskia Bucciarelli
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden
| |
Collapse
|
66
|
Ahmadi M, Löser L, Fischer K, Saalwächter K, Seiffert S. Connectivity Defects and Collective Assemblies in Model Metallo‐Supramolecular Dual‐Network Hydrogels. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mostafa Ahmadi
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
- Institute of Physical Chemistry Johannes Gutenberg‐Universität Mainz Duesbergweg 10‐14 D‐55128 Mainz Germany
| | - Lucas Löser
- Institut für Physik‐NMR Martin‐Luther‐Universität Halle‐Wittenberg Betty‐Heimann‐Str. 7 D‐06120 Halle Germany
| | - Karl Fischer
- Institute of Physical Chemistry Johannes Gutenberg‐Universität Mainz Duesbergweg 10‐14 D‐55128 Mainz Germany
| | - Kay Saalwächter
- Institut für Physik‐NMR Martin‐Luther‐Universität Halle‐Wittenberg Betty‐Heimann‐Str. 7 D‐06120 Halle Germany
| | - Sebastian Seiffert
- Institute of Physical Chemistry Johannes Gutenberg‐Universität Mainz Duesbergweg 10‐14 D‐55128 Mainz Germany
| |
Collapse
|
67
|
Sun H, Wang Z, He Y. Direct Observation of Spatiotemporal Heterogeneous Gelation by Rotational Tracking of a Single Anisotropic Nanoprobe. ACS NANO 2019; 13:11334-11342. [PMID: 31589398 DOI: 10.1021/acsnano.9b04491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymer network gels usually exhibit spatial heterogeneity of local defects and cross-link density, which can affect their elasticity on the microscopic scale differently. The ability to evaluate the formation and distribution of these heterogeneities is important for guiding the application of gels in biology, medicine, and separation science. Previously, it has been reported that single-particle tracking based microrheology could provide local properties of gel networks with high resolution; however, the particle probes have been limited to spherical micro/nanotracers undergoing translational motions. In this work, we used single gold nanorods (AuNRs) as rotational microrheology probes to study the polyacrylamide gelation process by dual-channel polarization dark-field microscopy. The AuNRs were in Brownian motion during the initial stages of the gelation. As the reaction continues, individual AuNRs are confined locally and almost lost translational motion, but still maintained rotational motion. As the reaction proceeded further, the rotation state of the AuNRs gradually changed from free rotation in 3D to restricted rotation in 2D and eventually stopped completely. The appearance of the intermediate 2D plane indicated the existence of localized anisotropic compression of the gel during the heterogeneous gelation process. Our method can be further applied to investigate the formation of different polymer gels and a wide variety of heterogeneous biophysical and soft material systems.
Collapse
Affiliation(s)
- Hua Sun
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials , Qingdao University , Qingdao , 266071 , China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing , 100084 , China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials , Qingdao University , Qingdao , 266071 , China
| | - Yan He
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing , 100084 , China
| |
Collapse
|
68
|
Network structure and enzymatic degradation of chitosan hydrogels determined by crosslinking methods. Carbohydr Polym 2019; 217:160-167. [DOI: 10.1016/j.carbpol.2019.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 01/29/2023]
|
69
|
Alamé G, Brassart L. Relative contributions of chain density and topology to the elasticity of two-dimensional polymer networks. SOFT MATTER 2019; 15:5703-5713. [PMID: 31259347 DOI: 10.1039/c9sm00796b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the relationships between the structure of polymer networks and their mechanical properties is important for the design of advanced soft materials with optimal properties. However, classical rubber elasticity theories often fall short in their description of the network structure, while simulation techniques at molecular scale remain impractical at that length scale. Here we develop a computational approach based on random discrete networks, in which the polymer network is represented as an assembly of non-linear springs connected at crosslinking points. The density of elastically-effective chains, average network coordination and chain contour lengths are varied independently in order to identify their respective contributions to the network elasticity. Numerical results suggest scaling relations between network parameters and elastic properties that are markedly different from the predictions of classical rubber elasticity theories. In particular, the elastic modulus of 2D random networks is found to be independent of density at constant topology, and proportional to the average coordination at constant density. The discrepancy is due to the pre-straining of the chains in the discrete network, which is not accounted for in classical models of rubber elasticity. Our results have implications for the interpretation of experimental data for ideal network gels that are formed by the cross-coupling of macromolecular building blocks in solution.
Collapse
Affiliation(s)
- Ghadeer Alamé
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Laurence Brassart
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
70
|
Hamajima S, Mitomo H, Tani T, Matsuo Y, Niikura K, Naya M, Ijiro K. Nanoscale uniformity in the active tuning of a plasmonic array by polymer gel volume change. NANOSCALE ADVANCES 2019; 1:1731-1739. [PMID: 36134230 PMCID: PMC9418027 DOI: 10.1039/c8na00404h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/22/2019] [Indexed: 05/26/2023]
Abstract
Active plasmonic tuning is an attractive but challenging research subject, leading to various promising applications. As one of the approaches, nanostructures are placed in or on soft matter, such as elastomers and gels, and their gap distances are tuned by the mechanical extension or volume change of the supporting matrices. As hydrogels possess various types of stimuli-responsiveness with large volume change and biocompatibility, they are good candidates as supporting materials for active nanostructure tuning. However, it remains unclear how accurately we can control their nanogap distance changes using polymer gels with a low deviation due to major difficulties in the precise observation of nanostructures on the gels. Here, we prepared gold arrays with sub-100 nm dots on silicon substrates by electron beam lithography and transferred them onto the hydrogel surface. Then, their nanopattern was actively tuned by the changes in gel size in water and their structural changes were confirmed by optical microscopy, microspectroscopy, and atomic force microscopy (AFM). Further, we successfully prepared ionic liquid (IL) gels with various degrees of swelling via solvent exchange. Scanning electron microscopy (SEM) observation of the IL gels provided clear pictures at nanoscale resolution. Finally, we calculated the plasmonic spectra using a finite difference time domain (FDTD) simulation based on the SEM images and compared them with the measured spectra. The results in this study totally support the notion that active changes in plasmonic nanodot patterns via volume changes in the hydrogel are quite homogenous on a several nanometer scale, making them ideal for precise active surface plasmon tuning.
Collapse
Affiliation(s)
- Satoru Hamajima
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13, Nishi 8, Kita-Ku Sapporo 060-8628 Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University Kita 21, Nishi 10, Kita-Ku Sapporo 001-0021 Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University Kita 21, Nishi 11, Kita-Ku Sapporo 001-0021 Japan
| | - Takeharu Tani
- FUJIFILM Corporation Ushijima, Kaisei-Machi, Ashigarakami-gun Kanagawa 258-8577 Japan
| | - Yasutaka Matsuo
- Research Institute for Electronic Science, Hokkaido University Kita 21, Nishi 10, Kita-Ku Sapporo 001-0021 Japan
| | - Kenichi Niikura
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology Miyashiro Saitama 345-8501 Japan
| | - Masayuki Naya
- FUJIFILM Corporation Ushijima, Kaisei-Machi, Ashigarakami-gun Kanagawa 258-8577 Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University Kita 21, Nishi 10, Kita-Ku Sapporo 001-0021 Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University Kita 21, Nishi 11, Kita-Ku Sapporo 001-0021 Japan
| |
Collapse
|
71
|
|
72
|
Borro BC, Bohr A, Bucciarelli S, Boetker JP, Foged C, Rantanen J, Malmsten M. Microfluidics-based self-assembly of peptide-loaded microgels: Effect of three dimensional (3D) printed micromixer design. J Colloid Interface Sci 2019; 538:559-568. [DOI: 10.1016/j.jcis.2018.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
|
73
|
Hess M, Roeben E, Habicht A, Seiffert S, Schmidt AM. Local dynamics in supramolecular polymer networks probed by magnetic particle nanorheology. SOFT MATTER 2019; 15:842-850. [PMID: 30608500 DOI: 10.1039/c8sm01802b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transient supramolecular polymer networks are promising candidates as soft self-healing or stimuli-sensitive materials. In this paper, we employ a novel nanorheological approach, magnetic particle nanorheology (MPN), in order to better understand the local dynamic properties of model supramolecular networks from a molecular point of view. Hence, the bond strength between four-arm star-shaped polyethylene glycol (PEG) functionalized at the four extremities with terpyridine ligands is tuned by implementing different metal ions with variable complexation affinities for the ligand. We show that MNP allows for the evaluation of the strength and connectivity of the polymer networks by the estimation of relaxation times, mesh size, and also the viscoelastic properties of these materials. These results are compared and complemented to former outcomes on these systems that were obtained by macroscopic analytical methods. A clear dependence between the strength of the metal-ligand complex and the local dynamics of the polymeric network is observed by the nanorheological approach, which is in good agreement with previous predictions related to the complex formation constants.
Collapse
Affiliation(s)
- Melissa Hess
- Institute of Physical Chemistry, Chemistry Department, Faculty of Mathematics and Natural Sciences, University of Cologne, Luxemburger Str. 116, D-50939 Köln, Germany.
| | | | | | | | | |
Collapse
|
74
|
Shen J, Lin X, Liu J, Li X. Effects of Cross-Link Density and Distribution on Static and Dynamic Properties of Chemically Cross-Linked Polymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01389] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jianxiang Shen
- Department of Polymer Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Xiangsong Lin
- Department of Polymer Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xue Li
- Department of Chemical and Textile Engineering, Jiaxing University Nanhu College, Jiaxing 314001, P. R. China
| |
Collapse
|
75
|
Cenci L, Tatti R, Tognato R, Ambrosi E, Piotto C, Bossi AM. Synthesis and characterization of peptide-imprinted nanogels of controllable size and affinity. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
76
|
Rattan S, Li L, Lau HK, Crosby AJ, Kiick KL. Micromechanical characterization of soft, biopolymeric hydrogels: stiffness, resilience, and failure. SOFT MATTER 2018; 14:3478-3489. [PMID: 29700541 DOI: 10.1039/c8sm00501j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detailed understanding of the local structure-property relationships in soft biopolymeric hydrogels can be instrumental for applications in regenerative tissue engineering. Resilin-like polypeptide (RLP) hydrogels have been previously demonstrated as useful biomaterials with a unique combination of low elastic moduli, excellent resilience, and cell-adhesive properties. However, comprehensive mechanical characterization of RLP hydrogels under both low-strain and high-strain conditions has not yet been conducted, despite the unique information such measurements can provide about the local structure and macromolecular behavior underpinning mechanical properties. In this study, mechanical properties (elastic modulus, resilience, and fracture initiation toughness) of equilibrium swollen resilin-based hydrogels were characterized via oscillatory shear rheology, small-strain microindentation, and large-strain puncture tests as a function of polypeptide concentration. These methods allowed characterization, for the first time, of the resilience and failure in hydrogels with low polypeptide concentrations (<20 wt%), as the employed methods obviate the handling difficulties inherent in the characterization of such soft materials via standard mechanical techniques, allowing characterization without any special sample preparation and requiring minimal volumes (as low as 50 μL). Elastic moduli measured from small-strain microindentation showed good correlation with elastic storage moduli obtained from oscillatory shear rheology at a comparable applied strain rate, and evaluation of multiple loading-unloading cycles revealed decreased resilience values at lower hydrogel concentrations. In addition, large-strain indentation-to-failure (or puncture) tests were performed to measure large-strain mechanical response and fracture toughness on length scales similar to biological cells (∼10-50 μm) at various polypeptide concentrations, indicating very high fracture initiation toughness for high-concentration hydrogels. Our results establish the utility of employing microscale mechanical methods for the characterization of the local mechanical properties of biopolymeric hydrogels of low concentrations (<20 wt%), and show how the combination of small and large-strain measurements can provide unique insight into structure-property relationships for biopolymeric elastomers. Overall, this study provides new insight into the effects on local mechanical properties of polypeptide concentration near the overlap polymer concentration c* for resilin-based hydrogels, confirming their unique elastomeric features for applications in regenerative medicine.
Collapse
Affiliation(s)
- Shruti Rattan
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, USA.
| | | | | | | | | |
Collapse
|
77
|
Saalwächter K, Seiffert S. Dynamics-based assessment of nanoscopic polymer-network mesh structures and their defects. SOFT MATTER 2018; 14:1976-1991. [PMID: 29504001 DOI: 10.1039/c7sm02444d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polymer-network gels often exhibit complex nanoscopic architectures. First, the polymer-network mesh topology on scales of 1-10 nm is usually not uniform and regular, but disordered and irregular. Second, on top of that, many swollen polymer networks display spatial inhomogeneity of their polymer segmental density and crosslinking density on scales of 10-100 nm. This multi-scale structural complexity affects the permeability, mechanical strength, and optical clarity of the polymer gels, which is of central relevance for their performance in popular applications. As a result, there is a need to characterize the polymer network structures on multiple scales. On the scale of the spatial inhomogeneity of crosslinking, 10-100 nm, scattering of neutrons, X-rays, and light has extraordinary utility and is well established. On the scale of the mesh topology, 1-10 nm, in contrast, experimental techniques are less established. This review intends to close this gap by reviewing two intrinsically dynamic methods that yield information on polymer network mesh structures. First, NMR-based assessment of residual dipolar proton-spin couplings, which arise upon the introduction of crosslinks into a liquidlike polymer system to impart partial solidlike characteristics, is suitable to quantitatively assess network meshes and local network defects. Second, diffusive penetration of molecular, macromolecular, and mesoscopic colloidal probes through a polymer gel provides insight into its obstructing network mesh structure and its potential irregularity. Either method is highly synergistic to scattering-based assessment of the network structures on larger scales, and in concert, a rich picture on the nano- and mesoscopic gel topology is obtained.
Collapse
Affiliation(s)
- Kay Saalwächter
- Martin-Luther-University Halle-Wittenberg, Institute of Physics - NMR Group, Betty-Heimann-Str. 7, D-06120 Halle/Saale, Germany.
| | | |
Collapse
|
78
|
Yi HL, Hua CC. PBTTT-C 16 sol-gel transition by hierarchical colloidal bridging. SOFT MATTER 2018; 14:1270-1280. [PMID: 29367967 DOI: 10.1039/c7sm02493b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A versatile conjugated polymer, poly(2,5-bis(3-hexadecyllthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT-C16, with Mw = 61 309 g mol-1), in a relatively good solvent (chlorobenzene, CB) medium is shown to produce gels through hierarchical colloidal bridging. Multiscale static/dynamic light and X-ray scattering analysis schemes along with complementary microscopy imaging techniques clearly reveal that upon cooling from the solution state at 80 °C to various gelation temperatures (5, 10, and 15 °C), rod-like colloidal pBTTT-C16 aggregates morph into spherical ones, triggering hierarchical colloid formation and bridging that eventually turn the solution into a gel after about one-day aging. A certain fraction of primal packing units-spherical gelators (∼1 nm in mean radius)-constitute the spherical building particles (∼10 nm) noted above, which in turn constitute loose-packing aggregate clusters (∼300 nm) in the sol state. As gelation proceeds, the aggregate cluster interiors tighten substantially, and micrometer-sized clusters (∼3 μm) formed by them begin to take shape and further interconnect to form the gel network (mean porosity size ∼240 nm and spatial inhomogeneity length ∼20 μm). Rheological measurements and kinetic analysis reveal that the gelation temperature can also have a notable impact on gel microstructure, gelation rate, and mechanical strength, resulting in, for instance, a prominently nonergodic and porous structure for the soft gel incubated at a higher temperature T = 15 °C. The ac conductivity exhibits a notable upturn near pBTTT-C16/CB gelation, well above those achieved by the counterpart pBTTT-C14 solutions, which, in interesting contrast, cannot be brought to the gel phase under similar experimental conditions.
Collapse
Affiliation(s)
- Han-Liou Yi
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan.
| | | |
Collapse
|
79
|
Orakdogen N, Sanay B. Tunable elasticity and thermodynamic parameters of hydroxypropyl methacrylate-based gels with varying extents of monomer concentration: Statistical mechanics treatments of physical observations. J Appl Polym Sci 2017. [DOI: 10.1002/app.45889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nermin Orakdogen
- Department of Chemistry, Soft Materials Research Laboratory; Istanbul Technical University; Maslak Istanbul 34469 Turkey
| | - Berran Sanay
- Department of Chemistry, Soft Materials Research Laboratory; Istanbul Technical University; Maslak Istanbul 34469 Turkey
| |
Collapse
|