51
|
Ma W, Guo L, Tian Z, Zhang S, He X, Li J, Yang Y, Liu Z. Rhodamine-modified fluorescent half-sandwich iridium and ruthenium complexes: potential application as bioimaging and anticancer agents. Dalton Trans 2019; 48:4788-4793. [DOI: 10.1039/c9dt00999j] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most half-sandwich metal anticancer complexes are non-fluorescent, which results in an uncertain mechanism of action (MoA).
Collapse
Affiliation(s)
- Wenli Ma
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Xiangdong He
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - JuanJuan Li
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Yuliang Yang
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| |
Collapse
|
52
|
Turnbull WL, Murrell E, Bulcan-Gnirss M, Majeed M, Milne M, Luyt LG. A study of 99mTc/Re-tricarbonyl complexes of 4-amino-1,8-naphthalimides. Dalton Trans 2019; 48:14077-14084. [DOI: 10.1039/c9dt01752f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4-Amino-1,8-naphthalimide ligands were coordinated to fac-Re/99mTc(CO)3 giving complexes of varying charge for applications in fluorescence microscopy and as components of SPECT imaging agents.
Collapse
Affiliation(s)
| | - Emily Murrell
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | | | - Maryam Majeed
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | - Mark Milne
- London Regional Cancer Program
- London
- Canada
| | - Leonard G. Luyt
- Department of Chemistry
- University of Western Ontario
- London
- Canada
- London Regional Cancer Program
| |
Collapse
|
53
|
Shi Y, Meng X, Yang H, Song L, Liu S, Xu A, Chen Z, Huang W, Zhao Q. Lysosome-specific sensing and imaging of pH variations in vitro and in vivo utilizing a near-infrared boron complex. J Mater Chem B 2019. [DOI: 10.1039/c8tb03353f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A NIR lysosome-targeting boron complex has been developed based on hemicyanine for monitoring pH variations in vitro and in vivo.
Collapse
Affiliation(s)
- Yuxiang Shi
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Xiangchun Meng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Huiran Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Linna Song
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Aqiang Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Zejing Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| |
Collapse
|
54
|
Zhang H, Song Z, Pan F, He F. A surface-confined DNA assembly enabled target recycling amplification for multiplexed electrochemical DNA detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.09.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
Caracciolo G, Safavi-Sohi R, Malekzadeh R, Poustchi H, Vasighi M, Zenezini Chiozzi R, Capriotti AL, Laganà A, Hajipour M, Di Domenico M, Di Carlo A, Caputo D, Aghaverdi H, Papi M, Palmieri V, Santoni A, Palchetti S, Digiacomo L, Pozzi D, Suslick KS, Mahmoudi M. Disease-specific protein corona sensor arrays may have disease detection capacity. NANOSCALE HORIZONS 2019; 4:1063-1076. [DOI: 10.1039/c9nh00097f] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Protein corona sensor array technology identifies diseases through specific proteomics pattern recognition.
Collapse
|
56
|
Du Q, Zhao L, Guo L, Ge X, Zhang S, Xu Z, Liu Z. Lysosome-targeted Cyclometalated Iridium (III) Anticancer Complexes Bearing Phosphine-Sulfonate Ligands. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Qing Du
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Liping Zhao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Zhishan Xu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
- Department of Chemistry and Chemical Engineering; Shandong Normal University; Jinan 250014 China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| |
Collapse
|
57
|
Nam E, Derrick JS, Lee S, Kang J, Han J, Lee SJC, Chung SW, Lim MH. Regulatory Activities of Dopamine and Its Derivatives toward Metal-Free and Metal-Induced Amyloid-β Aggregation, Oxidative Stress, and Inflammation in Alzheimer's Disease. ACS Chem Neurosci 2018; 9:2655-2666. [PMID: 29782798 DOI: 10.1021/acschemneuro.8b00122] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A catecholamine neurotransmitter, dopamine (DA), is suggested to be linked to the pathology of dementia; however, the involvement of DA and its structural analogues in the pathogenesis of Alzheimer's disease (AD), the most common form of dementia, composed of multiple pathogenic factors has not been clear. Herein, we report that DA and its rationally designed structural derivatives (1-6) based on DA's oxidative transformation are able to modulate multiple pathological elements found in AD [i.e., metal ions, metal-free amyloid-β (Aβ), metal-bound Aβ (metal-Aβ), and reactive oxygen species (ROS)], with demonstration of detailed molecular-level mechanisms. Our multidisciplinary studies validate that the protective effects of DA and its derivatives on Aβ aggregation and Aβ-mediated toxicity are induced by their oxidative transformation with concomitant ROS generation under aerobic conditions. In particular, DA and the derivatives (i.e., 3 and 4) show their noticeable anti-amyloidogenic ability toward metal-free Aβ and/or metal-Aβ, verified to occur via their oxidative transformation that facilitates Aβ oxidation. Moreover, in primary pan-microglial marker (CD11b)-positive cells, the major producers of inflammatory mediators in the brain, DA and its derivatives significantly diminish inflammation and oxidative stress triggered by lipopolysaccharides and Aβ through the reduced induction of inflammatory mediators as well as upregulated expression of heme oxygenase-1, the enzyme responsible for production of antioxidants. Collectively, we illuminate how DA and its derivatives could prevent multiple pathological features found in AD. The overall studies could advance our understanding regarding distinct roles of neurotransmitters in AD and identify key interactions for alleviation of AD pathology.
Collapse
Affiliation(s)
- Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeffrey S. Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seunghee Lee
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jiyeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin Jung C. Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Su Wol Chung
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
58
|
Zhang HR, Jin XX, Zhou X, Zhang Y, Leung CF, Xiang J. Effect of Coordination Modes on the Tunable Luminescence of 1,10-Phenanthroline-Based Complexes. CRYSTAL RESEARCH AND TECHNOLOGY 2018. [DOI: 10.1002/crat.201800168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hong-Rui Zhang
- College of Agronomy; Henan Agricultural University; Zhengzhou 450002 China
| | - Xin-Xin Jin
- College of Chemistry and Environmental Engineering; Yangtze University; Jingzhou 434020 HuBei China
| | - Xin Zhou
- College of Chemistry and Environmental Engineering; Yangtze University; Jingzhou 434020 HuBei China
| | - Yunxia Zhang
- College of Life Science; Zhengzhou Normal University; Zhengzhou 450044 China
| | - Chi-Fai Leung
- Department of Science and Environmental Studies; The Education University of Hong Kong; 10 Lo Ping Road Tai Po Hong Kong 999077 China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering; Yangtze University; Jingzhou 434020 HuBei China
| |
Collapse
|
59
|
Laha P, De U, Chandra F, Dehury N, Khullar S, Kim HS, Patra S. Alkyl chain-modified cyclometalated iridium complexes as tunable anticancer and imaging agents. Dalton Trans 2018; 47:15873-15881. [PMID: 30358775 DOI: 10.1039/c8dt02461h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Five mononuclear cyclometalated iridium complexes [1](PF6)-[5](PF6) were prepared using imidazole-based ligands of varying alkyl chain length. The complexes were characterised by various analytical techniques. The single crystal X-ray structures of [2](PF6), [3](PF6) and [4](PF6) revealed the expected distorted Oh structures around the metal centre; however, the chain length was found to play a crucial role in deciding the overall geometry. Theoretical investigations demonstrated that the HOMOs were mainly contributed by iridium and cyclometalated ligands, whereas the LUMOs were constituted from bpy/phen units. The complexes were found to be luminescent with a moderate emission quantum yield and lifetime in CH3CN. The in vitro growth inhibition assay of the complexes with a shorter alkyl chain ([4]+ and [5]+) displayed higher anticancer activity (IC50 < 0.5 μM) compared to the complexes with a longer alkyl chain ([1]+-[3]+) (IC50 < 30 μM) against human breast cancer (MCF-7) cells. The complexes [4]+ and [5]+ also displayed moderate cancer cell selectivity (∼3 times) over normal breast (MCF-10) cells. The flow cytometry assay and fluorescence microscopy analysis suggested that cellular accumulation was primarily responsible for the variation in anticancer activity. Interestingly, without possessing any anticancer activity or toxicity ((IC50 > 50 μM), the complex [1]+ mainly accumulated near the cell membrane outside the cell and displayed a clear image of the cell membrane. The light microscopy images and western blot analysis reveal that complex [4]+ induced combined apoptosis and paraptosis. Thus, tuning the anticancer activity and cellular imaging property mediated by the alkyl chain would be of great importance and would be useful in anticancer research.
Collapse
Affiliation(s)
- Paltan Laha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni-752050, Odisha, India.
| | | | | | | | | | | | | |
Collapse
|
60
|
Huang T, Yu Q, Liu S, Zhang KY, Huang W, Zhao Q. Rational Design of Phosphorescent Iridium(III) Complexes for Selective Glutathione Sensing and Amplified Photodynamic Therapy. Chembiochem 2018; 20:576-586. [DOI: 10.1002/cbic.201800507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tianci Huang
- Key Laboratory for Organic Electronics and Information Displays &, Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays &, Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays &, Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays &, Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays &, Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU) Xi'an 710072 Shaanxi P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays &, Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
| |
Collapse
|
61
|
Han Y, Liu X, Tian Z, Ge X, Li J, Gao M, Li Y, Liu Y, Liu Z. Half-sandwich Iridium(III) Benzimidazole-Appended Imidazolium-Based N-heterocyclic Carbene Complexes and Antitumor Application. Chem Asian J 2018; 13:3697-3705. [PMID: 30276978 DOI: 10.1002/asia.201801323] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/29/2018] [Indexed: 11/08/2022]
Abstract
A series of half-sandwich iridium(III) benzimidazole-appended imidazolium-based N-heterocyclic carbene (NHC) antitumor complexes [(η5 -Cpx )Ir(C^N)Cl]Cl, where Cpx is pentamethylcyclopentadienyl (Cp*) or its biphenyl derivative (Cpxbiph ) and C^N is a NHC chelating ligand, were successfully synthesized and characterized. The IrIII complexes showed potential antitumor activity against A549 cells, at most three times more potent than cis-platin under the same conditions. Complexes could bind to BSA by a static quenching mode, catalyzing the change of NADH to NAD+ and inducing the production of reactive oxygen species (maximum turnover number, 9.8), which play an important role in regulating cell apoptosis. Confocal microscopy showed that the complexes could specifically target lysosomes in cells with a Pearson's co-localization coefficient 0.76 and 0.72 after 1 h and 6 h, respectively, followed an energy-dependent cellular uptake mechanism and damaged the integrity of lysosomes. At the same time, complexes caused a marked loss of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Yali Han
- Institute of Antitumor Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of, Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xicheng Liu
- Institute of Antitumor Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of, Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Zhenzhen Tian
- Institute of Antitumor Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of, Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xingxing Ge
- Institute of Antitumor Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of, Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Juanjuan Li
- Institute of Antitumor Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of, Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Min Gao
- Institute of Antitumor Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of, Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yanru Li
- Institute of Antitumor Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of, Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yi Liu
- Institute of Antitumor Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of, Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Zhe Liu
- Institute of Antitumor Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of, Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
62
|
Majumder I, Chakraborty P, Álvarez R, Gonzalez-Diaz M, Peláez R, Ellahioui Y, Bauza A, Frontera A, Zangrando E, Gómez-Ruiz S, Das D. Bioactive Heterometallic Cu II-Zn II Complexes with Potential Biomedical Applications. ACS OMEGA 2018; 3:13343-13353. [PMID: 30411036 PMCID: PMC6217631 DOI: 10.1021/acsomega.8b01260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/03/2018] [Indexed: 05/09/2023]
Abstract
A series of multinuclear heterometallic Cu-Zn complexes of molecular formula [(CuL)2Zn(dca)2] (1), [(CuL)2Zn(NO3)2] (2), [(CuL)2Zn2(Cl)4] (3), and [(CuL)2Zn2(NO2)4] (4) have been synthesized by reacting [CuL] as a "metalloligand (ML)" (where HL = N,N'-bis(5-chloro-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine) and by varying the anions or coligands using the same molar ratios of the reactants. All of the four products including the ML have been characterized by infrared and UV-vis spectroscopies and elemental and single-crystal X-ray diffraction analyses. By varying the anions, different structures and topologies are obtained which we have tried to rationalize by means of thorough density functional theory calculations. All of the complexes (1-4) have now been applied for several biological investigations to verify their therapeutic worth. First, their cytotoxicity properties were assessed against HeLa human cervical carcinoma along with the determination of IC50 values. The study was extended with extensive DNA and protein binding experiments followed by detailed fluorescence quenching study with suitable reagents to comprehend the mechanistic pathway. From all of these biological studies, it has been found that all of these heterometallic complexes show more than a few fold improvement of their therapeutic values as compared to the similar homometallic ones probably because of the simultaneous synergic effect of copper and zinc. Among all of the four heterometallic complexes, complex 3 exhibits highest binding constants and IC50 values suggest for their better interaction toward the biological targets and hence have better clinical importance.
Collapse
Affiliation(s)
- Ishani Majumder
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Prateeti Chakraborty
- Department of Chemistry, Bangabasi College, 19, Rajkumar Chakraborty Sarani, Kolkata 700009, India
| | - Raquel Álvarez
- Department of Pharmaceutical Sciences, CIETUS and IBSAL, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Myriam Gonzalez-Diaz
- Department of Pharmaceutical Sciences, CIETUS and IBSAL, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Rafael Peláez
- Department of Pharmaceutical Sciences, CIETUS and IBSAL, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Younes Ellahioui
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Antonio Bauza
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Ennio Zangrando
- Dipartimento di Scienze Chimiche, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Santiago Gómez-Ruiz
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Debasis Das
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
63
|
Meng X, Shi Y, Chen Z, Song L, Zhao M, Zou L, Liu S, Huang W, Zhao Q. Extending Hypochlorite Sensing from Cells to Elesclomol-Treated Tumors in Vivo by Using a Near-Infrared Dual-Phosphorescent Nanoprobe. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35838-35846. [PMID: 30260621 DOI: 10.1021/acsami.8b14717] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species (ROS), when beyond the threshold, can exhaust the capacity of cellular antioxidants and ultimately trigger cell apoptosis in tumor biology. However, the roles of hypochlorite (ClO-) in this process are much less clear compared with those of ROS, and its detection is easily obstructed by tissue penetration and endogenous fluorophores. Herein, we first synthesized a near-infrared (NIR) ratiometric ClO- probe (Ir NP) composed of two kinds of phosphorescent iridium(III) complexes (Ir1 and Ir2) encapsulated with amphiphilic DSPE-mPEG5000. Ir NPs are dual-emissive and show obvious changes in phosphorescence intensity ratios and lifetimes of two emission bands upon exposure to ClO-. During the ClO- detection, ratiometric photoluminescence imaging is much more reliable over the intensity-based one for its self-calibration, while time-resolved photoluminescence imaging (TRPI) could distinguish the phosphorescence with long lifetime of Ir NPs from short-lived autofluorescence of tissues, resulting in the high accuracy of ClO- determination. With NIR emission, a long phosphorescence lifetime, fast response, and excellent biocompatibility, Ir NPs were applied to the detection of ClO- in vitro and in vivo by means of ratiometric phosphorescence imaging and TRPI with high signal-to noise-ratios (SNR). Importantly, we demonstrated the elevated ClO- in elesclomol-stimulated tumors in living mice for the first time, which holds great potential for the visualization of the boost of ClO- in anti-carcinogen-treated tumors and the further investigation of ROS-related oncotherapeutics.
Collapse
Affiliation(s)
- Xiangchun Meng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , PR China
| | - Yuxiang Shi
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , PR China
| | - Zejing Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , PR China
| | - Linna Song
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , PR China
| | - Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , PR China
| | - Liang Zou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , PR China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , PR China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , PR China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , Xi'an 710072 , Shaanxi , China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , PR China
| |
Collapse
|
64
|
Synthesis, structure, photo- and electroluminescent properties of bis(2-phenylpyridinato-N,c2′)[2-(2′-tosylaminophenyl)benzoxazolato-N,N′]iridium(III). Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
65
|
Qiu H, Pu F, Ran X, Liu C, Ren J, Qu X. Nanozyme as Artificial Receptor with Multiple Readouts for Pattern Recognition. Anal Chem 2018; 90:11775-11779. [DOI: 10.1021/acs.analchem.8b03807] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Qiu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiang Ran
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
66
|
Zheng X, Fan R, Song Y, Xing K, Wang P, Yang Y. Dual-Emitting Eu(III)-Cu(II) Heterometallic-Organic Framework: Simultaneous, Selective, and Sensitive Detection of Hydrogen Sulfide and Ascorbic Acid in a Wide Range. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32698-32706. [PMID: 30168318 DOI: 10.1021/acsami.8b11367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As important biomolecules, the deficiency or maladjustment of hydrogen sulfide (H2S) or ascorbic acid (AA) is associated with the symptoms of the same disease (e.g., cardiovascular disease or cancer). There is an urgent need to develop a fluorescent probe capable of distinguishing between H2S and AA simultaneously. Here, we report the syntheses, structure, and property of the first dual-detection fluorescent probe which can differentiate H2S or/and AA in aqueous media. Accordingly, a novel [EuCu(pydc)2(ox)0.5(H2O)3·1.5H2O]2 n (1, H2pydc = 2,3-pyridinedicarboxylic acid and ox = oxalic acid) for selective and sensitive detection of H2S and AA in a wide range has been constructed (H2S: [130 nM, +∞); AA: [55 nM, +∞)), exhibiting excellent catalytic activity comparable to horseradish peroxidase. In addition, the highly efficient detection in human serum sample also proves the potential application in medical diagnosis. Meanwhile, a combinatorial logic gate (AND(INH)-OR) based on activated 1 has also been constructed. Furthermore, this approach for simultaneous H2S and AA detection suggests that the current work will expand the potential application of metal-organic frameworks for dual or multiple detections in biomedical fields.
Collapse
Affiliation(s)
- Xubin Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 P. R. China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 P. R. China
| | - Yang Song
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 P. R. China
| | - Kai Xing
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 P. R. China
| | - Ping Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 P. R. China
| |
Collapse
|
67
|
Qi L, Hu Q, Kang Q, Yu L. Fabrication of Liquid-Crystal-Based Optical Sensing Platform for Detection of Hydrogen Peroxide and Blood Glucose. Anal Chem 2018; 90:11607-11613. [PMID: 30184427 DOI: 10.1021/acs.analchem.8b03062] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid and accurate determination of H2O2 is of great importance in practical applications. In this study, we demonstrate construction of liquid-crystal (LC)-based sensing platforms for sensitive and real-time detection of H2O2 with high accuracy for the first time. Single-stranded DNA (ssDNA) adsorbed onto the surface of nanoceria is released to the aqueous solution in the presence of H2O2, which disrupts arrangement of the self-assembled cationic surfactant monolayer decorated at the aqueous/LC interface. Thus, the orientation of LCs changes from a homeotropic to planar state, leading to change in the optical response from dark-to-bright appearance. As H2O2 can be produced during oxidation of glucose by glucose oxidase (GOx), detection of glucose is also fulfilled by employing the H2O2 sensing platform. Our system can detect H2O2 and glucose with concentrations as low as 28.9 nM and 0.52 μM, respectively. It shows high promise of using LC-based sensors for the detection of H2O2 and its relevant biomarkers in practical applications.
Collapse
Affiliation(s)
- Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , PR China
| | - Qiongzheng Hu
- Salk Institute for Biological Studies , 10010 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , PR China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , PR China
| |
Collapse
|
68
|
Liao Y, Zhou X, Fu Y, Xing D. Graphene Oxide as a Bifunctional Material toward Superior RNA Protection and Extraction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30227-30234. [PMID: 30129746 DOI: 10.1021/acsami.8b12522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
It is well known that graphene oxide (GO), a planar nanomaterial, is endowed with the capacity to immobilize short ssRNA via π-π stacking, thus enhancing its stability. However, whether large RNA molecules, such as total RNA, extracted from biological tissues can be protected using GO has not been investigated. It is usually believed that the protection of total RNA by GO is not effective because the lengths of total RNA, which range from a few to thousands of bases, are inclined to undergo desorption due to their complicated structure. Herein, the nanobiological effects of total RNA/GO are first investigated and demonstrate that the total RNA can be harbored on the surface of GO, thus resulting in a shield effect. This shield effect allows total RNA to highly resist RNase degradation and maintain RNA stability at room temperature up to 4 days, enabling the discovery of GO as the potential next-generation RNase nanoinhibitor. Furthermore, GO can be conjugated to nanomagnetic beads, defined as magnetic graphene oxide, enabling the rapid purification and protection of RNA from animal cells and tissues, whole blood, bacteria, and plant tissue.
Collapse
Affiliation(s)
- Yuhui Liao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Yu Fu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
69
|
Sun M, Chang WT, Van Wijk E, He M, Van Wijk R, Wang M. Application of delayed luminescence method on measuring of the processing of Chinese herbal materials. Chin Med 2018; 13:43. [PMID: 30159006 PMCID: PMC6109338 DOI: 10.1186/s13020-018-0202-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Based on the principle of tradition Chinese medicine, the processing refers to various techniques that alter the overall properties of herbal materials to meet the requirements of therapeutic applications. However, the standards of quality control and scientific standard operation protocol for processing manufacturing are largely unknown and there is a huge demand for the development of scientific tools for evaluating the quality during and after the processing. The key challenge in evidence-based medicine is to characterize the processing of herbal materials from system-based perspective. METHODS Delayed luminescence (DL) as a rapid, direct, systemic tool was used to characterize the properties of raw and processed materials of Rehmanniae radix and Ginseng radix et rhizome. Hyperbolic function was used to extract four parameters from DL curves of herbal materials. Statistical tools, including one-way analysis of variance and principal component analysis, were used to differentiate raw and processed herbal materials. RESULTS Our results showed DL properties were able to reliably identify raw and processed materials of Rehmanniae radix and Ginseng radix et rhizoma, respectively. In addition, the results indicated that after four cycles of processing for Rehmanniae radix, there was no much significant change in DL parameters which resembles the results obtained from chemical analyses (after five cycles) using 1HNMR and gas chromatography-mass spectrometry in previous studies. CONCLUSION DL may serve as a fast, robust and sensitive tool for evaluating processing on herbs and may be used as part of a comprehensive platform for assessing the quality of herbal materials.
Collapse
Affiliation(s)
- Mengmeng Sun
- Leiden University European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Wen-Te Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Eduard Van Wijk
- Meluna Research, Koppelsedijk 1-a, 4191 LC Geldermalsen, The Netherlands
- Sino-Dutch Centre for Preventive and Personalized Medicine, Gasthuislingelaan 33, 4002 AG Tiel, The Netherlands
| | - Min He
- Leiden University European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Roeland Van Wijk
- Meluna Research, Koppelsedijk 1-a, 4191 LC Geldermalsen, The Netherlands
- Sino-Dutch Centre for Preventive and Personalized Medicine, Gasthuislingelaan 33, 4002 AG Tiel, The Netherlands
| | - Mei Wang
- Leiden University European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- SU BioMedicine, Postbus 546, 2300 AM Leiden, The Netherlands
| |
Collapse
|
70
|
Iridium-based probe for luminescent nitric oxide monitoring in live cells. Sci Rep 2018; 8:12467. [PMID: 30127525 PMCID: PMC6102254 DOI: 10.1038/s41598-018-30991-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO) is an intra- and extracellular messenger with important functions during human physiology process. A long-lived luminescent iridium(III) complex probe 1 has been designed and synthesized for the monitoring of NO controllably released from sodium nitroprusside (SNP). Probe 1 displayed a 15-fold switch-on luminescence in the presence of SNP at 580 nm. The probe exhibited a linear response towards SNP between 5 to 25 μM with detection limit at 0.18 μM. Importantly, the luminescent switch-on detection of NO in HeLa cells was demonstrated. Overall, complex 1 has the potential to be applied for NO tracing in complicated cellular environment.
Collapse
|
71
|
Determination of bacterial DNA based on catalytic oxidation of cysteine by G-quadruplex DNAzyme generated from asymmetric PCR: Application to the colorimetric detection of Staphylococcus aureus. Mikrochim Acta 2018; 185:410. [DOI: 10.1007/s00604-018-2935-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 02/01/2023]
|
72
|
Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNA biosensor based on reduced graphene oxide /functionalized ordered mesoporous carbon/Ni-oxytetracycline metallopolymer nanoparticles modified pencil graphite electrode. Biosens Bioelectron 2018; 113:108-115. [DOI: 10.1016/j.bios.2018.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 01/01/2023]
|
73
|
Yang W, Xia J, Zhou G, Jiang D, Li Q, Wang S, Zheng X, Li X, Shen Y, Li X. Selective non-enzymatic total bilirubin detection in serum using europium complexes with different β-diketone-derived ligands as luminescence probes. Anal Bioanal Chem 2018; 410:6459-6468. [PMID: 30043114 DOI: 10.1007/s00216-018-1243-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/11/2018] [Accepted: 07/04/2018] [Indexed: 11/29/2022]
Abstract
Three europium(III) complexes, Eu(ectfd)3 (Hectfd = 1-(9-ethyl-9H-carbazol-7-yl)-4,4,4-trifluorobutane-1,3-dione), Eu(tta)3 (Htta = 4,4,4-trifluoro-1-(thiophen-2-yl)-butane-1,3-dione), and Eu(dbt)3 (Hdbt = 2-(4',4',4'-trifluoro-1',3'-dioxobutyl)dibenzothiophene), were synthesized and employed to detect total bilirubin (BR) in blood-serum samples. UV-visible absorption and fluorescence (FL) spectroscopies were used to evaluate the selectivity of each europium (III) fluorescence probe to BR, which was shown to remarkably reduce the luminescence intensities of the europium(III) complexes at a wavelength of 612 nm. The luminescence intensity of each complex is linearly related to BR concentration. Eu(tta)3 was shown to be the more-appropriate fluorescence probe for the sensitive and reliable detection of total BR in blood serum samples than either Eu(ectfd)3 or Eu(dbt)3. This observation can be ascribed to special σ-hole bonding between Htta and BR. In addition, the optimal pH test conditions for the detection of BR in human serum by the Eu(tta)3 probe were determined. Sensitivity was shown to be dramatically affected by the pH of the medium. The experimental results reveal that pH 7.5 is optimal for this probe, which coincides with the pH of human serum. Furthermore, BR detection using the Eu(tta)3 luminescence probe is simple, practical, and relatively free of interference from coexisting substances; it has a minimum detection limit (DL) of 68 nM and is a potential candidate for the routine assessment of total BR in serum samples. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Wei Yang
- Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Jinfeng Xia
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Guohong Zhou
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Danyu Jiang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiang Li
- Department of Chemistry, East China Normal University, Shanghai, 200062, China.
| | - Shiwei Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaohong Zheng
- Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Xi Li
- Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Yibo Shen
- Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Xin Li
- Department of Chemistry, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
74
|
Chu M, Chen X, Wang J, Guo L, Wang Q, Gao Z, Kang J, Zhang M, Feng J, Guo Q, Li B, Zhang C, Guo X, Chu Z, Wang Y. Polypharmacology of Berberine Based on Multi-Target Binding Motifs. Front Pharmacol 2018; 9:801. [PMID: 30087614 PMCID: PMC6066535 DOI: 10.3389/fphar.2018.00801] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Polypharmacology is emerging as the next paradigm in drug discovery. However, considerable challenges still exist for polypharmacology modeling. In this study, we developed a rational design to identify highly potential targets (HPTs) for polypharmacological drugs, such as berberine. Methods and Results: All the proven co-crystal structures locate berberine in the active cavities of a redundancy of aromatic, aliphatic, and acidic residues. The side chains from residues provide hydrophobic and electronic interactions to aid in neutralization for the positive charge of berberine. Accordingly, we generated multi-target binding motifs (MBM) for berberine, and established a new mathematical model to identify HPTs based on MBM. Remarkably, the berberine MBM was embodied in 13 HPTs, including beta-secretase 1 (BACE1) and amyloid-β1-42 (Aβ1-42). Further study indicated that berberine acted as a high-affinity BACE1 inhibitor and prevented Aβ1-42 aggregation to delay the pathological process of Alzheimer's disease. Conclusion: Here, we proposed a MBM-based drug-target space model to analyze the underlying mechanism of multi-target drugs against polypharmacological profiles, and demonstrated the role of berberine in Alzheimer's disease. This approach can be useful in derivation of rules, which will illuminate our understanding of drug action in diseases.
Collapse
Affiliation(s)
- Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Likai Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Qianqian Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Zirui Gao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiarui Kang
- Department of Pathology, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Mingbo Zhang
- Pharmacy Departments, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jinqiu Feng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Qi Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Binghua Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Chengrui Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Xueyuan Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Zhengyun Chu
- Pharmacy Departments, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
75
|
Ghasemi A, Rabiee N, Ahmadi S, Hashemzadeh S, Lolasi F, Bozorgomid M, Kalbasi A, Nasseri B, Shiralizadeh Dezfuli A, Aref AR, Karimi M, Hamblin MR. Optical assays based on colloidal inorganic nanoparticles. Analyst 2018; 143:3249-3283. [PMID: 29924108 PMCID: PMC6042520 DOI: 10.1039/c8an00731d] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Colloidal inorganic nanoparticles have wide applications in the detection of analytes and in biological assays. A large number of these assays rely on the ability of gold nanoparticles (AuNPs, in the 20 nm diameter size range) to undergo a color change from red to blue upon aggregation. AuNP assays can be based on cross-linking, non-cross linking or unmodified charge-based aggregation. Nucleic acid-based probes, monoclonal antibodies, and molecular-affinity agents can be attached by covalent or non-covalent means. Surface plasmon resonance and SERS techniques can be utilized. Silver NPs also have attractive optical properties (higher extinction coefficient). Combinations of AuNPs and AgNPs in nanocomposites can have additional advantages. Magnetic NPs and ZnO, TiO2 and ZnS as well as insulator NPs including SiO2 can be employed in colorimetric assays, and some can act as peroxidase mimics in catalytic applications. This review covers the synthesis and stabilization of inorganic NPs and their diverse applications in colorimetric and optical assays for analytes related to environmental contamination (metal ions and pesticides), and for early diagnosis and monitoring of diseases, using medically important biomarkers.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran and Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Sepideh Ahmadi
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Shabnam Hashemzadeh
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran and Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Farshad Lolasi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran and Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mahnaz Bozorgomid
- Department of Pharmaceutical Chemistry, Islamic Azad University of Pharmaceutical Sciences Branch, Tehran, Iran
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Behzad Nasseri
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran and Chemical Engineering Deptartment and Bioengineeing Division, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Amin Shiralizadeh Dezfuli
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
76
|
Vekariya PA, Karia PS, Bhatt BS, Patel MN. Half Sandwich Rhodium(III) and Iridium(III) Complexes as Cytotoxic and Metallonuclease Agents. Appl Biochem Biotechnol 2018; 187:556-569. [PMID: 30003473 DOI: 10.1007/s12010-018-2835-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/02/2018] [Indexed: 12/28/2022]
Abstract
Half sandwich complexes of the type [(η5-C5Me5)M(L1-3)Cl]Cl.2H2O were synthesized using [{(η5-C5Me5)M(μ-Cl)Cl}2], where M = Rh(III)/Ir(III) and L1-3 = pyrimidine-based ligands. The complexes were characterized by spectral analysis. DNA interaction studies by absorption titration and hydrodynamic measurement and suggest intercalative mode of binding of complexes with CT-DNA. The molecular docking study also supports intercalation of the complexes between the stacks of nucleotide base pairs. The gel electrophoresis assay demonstrated the ability of the complexes to interact and cleave plasmid DNA. Minimum inhibitory concentrations (MIC) of the complexes were investigated by the microdilution broth method. The cytotoxic properties of the metal complexes were evaluated using brine shrimp lethality bioassay.
Collapse
Affiliation(s)
- Pankajkumar A Vekariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388120, India
| | - Parag S Karia
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388120, India
| | - Bhupesh S Bhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388120, India
| | - Mohan N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388120, India.
| |
Collapse
|
77
|
Zhou X, Cui Z, Liu L, Sun Z, Lin M, Hu Q, Wang H, Xiao X. Small molecule-protein interactions in branch migration thermodynamics: modelling and application in the homogeneous detection of proteins and small molecules. Analyst 2018; 143:2755-2759. [PMID: 29850719 DOI: 10.1039/c8an00555a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have disclosed the unique inhibition effect of small molecule-protein interactions toward the DNA branch migration process and constructed a complete thermodynamic model for it. The disclosed effect was further coupled with the steric hindrance effect to establish a homogeneous assay for proteins and small molecules with ultra-high inhibition factors and sensitivity.
Collapse
Affiliation(s)
- Xing Zhou
- Centre of Reproductive Medicine/Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Dopamine Receptor Subtypes Differentially Regulate Autophagy. Int J Mol Sci 2018; 19:ijms19051540. [PMID: 29786666 PMCID: PMC5983733 DOI: 10.3390/ijms19051540] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/11/2023] Open
Abstract
Some dopamine receptor subtypes were reported to participate in autophagy regulation, but their exact functions and mechanisms are still unclear. Here we found that dopamine receptors D2 and D3 (D2-like family) are positive regulators of autophagy, while dopamine receptors D1 and D5 (D1-like family) are negative regulators. Furthermore, dopamine and ammonia, the two reported endogenous ligands of dopamine receptors, both can induce dopamine receptor internalization and degradation. In addition, we found that AKT (protein kinase B)-mTOR (mechanistic target of rapamycin) and AMPK (AMP-activated protein kinase) pathways are involved in DRD3 (dopamine receptor D3) regulated autophagy. Moreover, autophagy machinery perturbation inhibited DRD3 degradation and increased DRD3 oligomer. Therefore, our study investigated the functions and mechanisms of dopamine receptors in autophagy regulation, which not only provides insights into better understanding of some dopamine receptor-related neurodegeneration diseases, but also sheds light on their potential treatment in combination with autophagy or mTOR pathway modulations.
Collapse
|
79
|
Liu R, Wu H, Lv L, Kang X, Cui C, Feng J, Guo Z. Fluorometric aptamer based assay for ochratoxin A based on the use of exonuclease III. Mikrochim Acta 2018; 185:254. [PMID: 29656368 DOI: 10.1007/s00604-018-2786-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/29/2018] [Indexed: 11/30/2022]
Abstract
This study describes an aptamer based assay for the mycotoxin ochratoxin A (OTA). The method is based on the use of an OTA-specific aptamer, exonuclease (Exo) III, SYBR Gold as a fluorescent probe, and a complementary strand that specifically combines with the aptamer. In the presence of OTA, the aptamer and OTA hybridize, thereby resulting in the formation of ssDNA, which is not digested by Exo III. Intense fluorescence is observed after addition of SYBR Gold (best measured at excitation/emission wavelengths of 495/540 nm). Fluorescence increases linearly with the log of the OTA concentration in the range from 8 to 1000 ng·mL-1. The detection limit is 4.7 ng·mL-1. The assay was applied to the determination of OTA in diluted [2%(v/v)] red wine, and recoveries and RSDs ranged between 93.5% and 113.8%, and between 3.2% and 5.7%, respectively. Graphical abstract In the presence of ochratoxin A (OTA), specific combinations of aptamer and OTA may occur and result in DNA double strands being untied, which avoids being digested by Exo III. Intense fluorescence is observed after SYBR Gold addition.
Collapse
Affiliation(s)
- Renjie Liu
- Institute of food science and engineering, Jilin agricultural University, Changchun, 130118, China
| | - Hua Wu
- Institute of food science and engineering, Jilin agricultural University, Changchun, 130118, China
- College of agriculture, Yanbian university, Yanji, 133002, China
| | - Lei Lv
- College of agriculture, Yanbian university, Yanji, 133002, China
| | - Xiaojiao Kang
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
| | - Chengbi Cui
- College of agriculture, Yanbian university, Yanji, 133002, China
| | - Jin Feng
- College of agriculture, Yanbian university, Yanji, 133002, China
| | - Zhijun Guo
- College of agriculture, Yanbian university, Yanji, 133002, China.
| |
Collapse
|
80
|
Ma DL, NG HP, Wong SY, Vellaisamy K, Wu KJ, Leung CH. Iridium(iii) complexes as reaction based chemosensors for medical diagnostics. Dalton Trans 2018; 47:15278-15282. [DOI: 10.1039/c8dt03492c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This frontier article introduces recent developments and applications of iridium(iii) complexes as luminescent probes for ions and biomolecules.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Hing Pan NG
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Suk-Yu Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | | | - Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| |
Collapse
|
81
|
Solomatina AI, Su SH, Lukina MM, Dudenkova VV, Shcheslavskiy VI, Wu CH, Chelushkin PS, Chou PT, Koshevoy IO, Tunik SP. Water-soluble cyclometalated platinum(ii) and iridium(iii) complexes: synthesis, tuning of the photophysical properties, and in vitro and in vivo phosphorescence lifetime imaging. RSC Adv 2018; 8:17224-17236. [PMID: 35539280 PMCID: PMC9080394 DOI: 10.1039/c8ra02742k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/29/2018] [Indexed: 12/12/2022] Open
Abstract
This paper presents synthesis and photophysical investigation of cyclometalated water-soluble Pt(ii) and Ir(iii) complexes containing auxiliary sulfonated diphosphine (bis(diphenylphosphino)benzene (dppb), P^P*) ligand. The complexes demonstrate considerable variations in excitation (extending up to 450 nm) and emission bands (with maxima ranging from ca. 450 to ca. 650 nm), as well as in the sensitivity of excited state lifetimes to molecular oxygen (from almost negligible to more than 4-fold increase in degassed solution). Moreover, all the complexes possess high two-photon absorption cross sections (400–500 GM for Pt complexes, and 600–700 GM for Ir complexes). Despite their negative net charge, all the complexes demonstrate good uptake by HeLa cells and low cytotoxicity within the concentration and time ranges suitable for two-photon phosphorescence lifetime (PLIM) microscopy. The most promising complex, [(ppy)2Ir(sulfo-dppb)] (Ir1*), upon incubation in HeLa cells demonstrates two-fold lifetime variations under normal and nitrogen atmosphere, correspondingly. Moreover, its in vivo evaluation in athymic nude mice bearing HeLa tumors did not reveal acute toxicity upon both intravenous and topical injections. Finally, Ir1* demonstrated statistically significant difference in lifetimes between normal tissue (muscle) and tumor in macroscopic in vivo PLIM imaging. Novel water-soluble iridium complexes with sulfonated diphosphine allow in vitro and in vivo lifetime hypoxia imaging.![]()
Collapse
Affiliation(s)
| | - Shih-Hao Su
- Department of Chemistry
- National Taiwan University
- Taipei
- Republic of China
| | - Maria M. Lukina
- Institute of Biomedical Technologies
- Privolzhskiy Research Medical University
- Nizhny Novgorod 603005
- Russia
| | - Varvara V. Dudenkova
- Institute of Biomedical Technologies
- Privolzhskiy Research Medical University
- Nizhny Novgorod 603005
- Russia
| | | | - Cheng-Ham Wu
- Department of Chemistry
- National Taiwan University
- Taipei
- Republic of China
| | | | - Pi-Tai Chou
- Department of Chemistry
- National Taiwan University
- Taipei
- Republic of China
| | - Igor O. Koshevoy
- Department of Chemistry
- University of Eastern Finland
- 80101 Joensuu
- Finland
| | - Sergey P. Tunik
- St. Petersburg State University
- Institute of Chemistry
- St. Petersburg
- Russia
| |
Collapse
|
82
|
Sheet SK, Sen B, Aguan K, Khatua S. A cationic organoiridium(iii) complex-based AIEgen for selective light-up detection of rRNA and nucleolar staining. Dalton Trans 2018; 47:11477-11490. [DOI: 10.1039/c8dt02099j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclometalated Ir(iii) complex-based AIEgen has been developed to selectively detect and stain the cell rRNA which has been revealed by in vitro PL studies and cell imaging experiment.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| | - Bhaskar Sen
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics
- North Eastern Hill University
- Shillong
- India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| |
Collapse
|
83
|
Zhao M, Pan Y, Wang X, Gao XW, Chao D. Nitroolefin-modified cyclometalated iridium(iii) complexes for tunable detection of biothiols with deep-red emission. NEW J CHEM 2018. [DOI: 10.1039/c8nj00314a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two nitroolefin-modified cyclometalated iridium(iii) complexes were employed as turn-on probes for the rapid (1 min) detection of biothiols with tunable emission.
Collapse
Affiliation(s)
- Mengying Zhao
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- P. R. China
| | - Yaping Pan
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- P. R. China
| | - Xingbo Wang
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- P. R. China
| | - Xue-Wang Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry
- University of Chinese Academy of Sciences Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Duobin Chao
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- P. R. China
| |
Collapse
|
84
|
Huang T, Yu Q, Liu S, Huang W, Zhao Q. Phosphorescent iridium(iii) complexes: a versatile tool for biosensing and photodynamic therapy. Dalton Trans 2018; 47:7628-7633. [DOI: 10.1039/c8dt00887f] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This Frontier article highlights the utilization of phosphorescent iridium(iii) complexes for biosensing and photodynamic therapy.
Collapse
Affiliation(s)
- Tianci Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| |
Collapse
|
85
|
Palmioli A, Panigati M, Bernardi A. Glycodendron–rhenium complexes as luminescent probes for lectin sensing. Org Biomol Chem 2018; 16:8413-8419. [DOI: 10.1039/c8ob01838c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhanced emission intensity of novel Re(i)-glycoprobes resulting from the specific recognition of carbohydrate-binding proteins as a potential tool in bioimaging applications.
Collapse
Affiliation(s)
| | - Monica Panigati
- Department of Chemistry
- University of Milano
- 20133 Milano
- Italy
| | - Anna Bernardi
- Department of Chemistry
- University of Milano
- 20133 Milano
- Italy
| |
Collapse
|
86
|
Štarha P, Trávníček Z, Dvořák Z. A cytotoxic tantalum(v) half-sandwich complex: a new challenge for metal-based anticancer agents. Chem Commun (Camb) 2018; 54:9533-9536. [DOI: 10.1039/c8cc05223a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The new and pharmacologically promising electroneutral half-sandwich Ta(v)-dichlorido Schiff-base complex was described.
Collapse
Affiliation(s)
- Pavel Štarha
- Division of Biologically Active Complexes and Molecular Magnets
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University in Olomouc
- 783 71 Olomouc
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University in Olomouc
- 783 71 Olomouc
| | - Zdeněk Dvořák
- Division of Biologically Active Complexes and Molecular Magnets
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University in Olomouc
- 783 71 Olomouc
| |
Collapse
|
87
|
Zhang P, Huang H. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans 2018; 47:14841-14854. [DOI: 10.1039/c8dt03432j] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we summarize recent progress in the design and application of innovative osmium compounds as anticancer agents with diverse modes of action, as organelle-targeted imaging probes and photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|