51
|
Yonekawa MKA, Penteado BDB, Dal'Ongaro Rodrigues A, Lourenço EMG, Barbosa EG, das Neves SC, de Oliveira RJ, Marques MR, Silva DB, de Lima DP, Beatriz A, Oses JP, Dos S Jaques JA, Santos EDAD. l-Hypaphorine and d-hypaphorine: Specific antiacetylcholinesterase activity in rat brain tissue. Bioorg Med Chem Lett 2021; 47:128206. [PMID: 34146704 DOI: 10.1016/j.bmcl.2021.128206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022]
Abstract
Acetylcholinesterase (AChEis) inhibitors are used to treat neurodegenerative diseases like Alzheimer's disease (AD). l-Hypaphorine (l-HYP) is a natural indole alkaloid that has been shown to have effects on the central nervous system (CNS). The goal of this research was to synthesize l-HYP and d-HYP and test their anticholinesterasic properties in rat brain regions. l-HYP suppressed acetylcholinesterase (AChE) activity only in the cerebellum, whereas d-HYP inhibited AChE activity in all CNS regions studied. No cytotoxic effect on normal human cells (HaCaT) was observed in the case of l-HYP and d-HYP although an increase in cell proliferation. Molecular modeling studies revealed that d-HYP and l-HYP have significant differences in their binding mode positions and interact stereospecifically with AChE's amino acid residues.
Collapse
Affiliation(s)
- Murilo K A Yonekawa
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Bruna de B Penteado
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Amanda Dal'Ongaro Rodrigues
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Estela M G Lourenço
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Euzébio G Barbosa
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Silvia C das Neves
- Centro de Estudos e Células Tronco, Terapia Celular e Genética Toxicológica, Universidade Federal de Mato Grosso do Sul, NHU, Campo Grande, MS, Brazil
| | - Rodrigo J de Oliveira
- Centro de Estudos e Células Tronco, Terapia Celular e Genética Toxicológica, Universidade Federal de Mato Grosso do Sul, NHU, Campo Grande, MS, Brazil
| | - Maria R Marques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Denise B Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Dênis P de Lima
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Adilson Beatriz
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jean P Oses
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jeandre A Dos S Jaques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Edson Dos A Dos Santos
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.
| |
Collapse
|
52
|
Bridging Cyanobacteria to Neurodegenerative Diseases: A New Potential Source of Bioactive Compounds against Alzheimer's Disease. Mar Drugs 2021; 19:md19060343. [PMID: 34208482 PMCID: PMC8235772 DOI: 10.3390/md19060343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 02/02/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a drawback in society given the ageing population. Dementias are the most prevalent NDs, with Alzheimer’s disease (AD) representing around 70% of all cases. The current pharmaceuticals for AD are symptomatic and with no effects on the progression of the disease. Thus, research on molecules with therapeutic relevance has become a major focus for the scientific community. Cyanobacteria are a group of photosynthetic prokaryotes rich in biomolecules with confirmed activity in pathologies such as cancer, and with feasible potential in NDs such as AD. In this review, we aimed to compile the research works focused in the anti-AD potential of cyanobacteria, namely regarding the inhibition of the enzyme β-secretase (BACE1) as a fundamental enzyme in the generation of β-amyloid (Aβ), the inhibition of the enzyme acetylcholinesterase (AChE) lead to an increase in the availability of the neurotransmitter acetylcholine in the synaptic cleft and the antioxidant and anti-inflammatory effects, as phenomena associated with neurodegeneration mechanisms.
Collapse
|
53
|
Senol Deniz FS, Eren G, Orhan IE, Sener B, Ozgen U, Aldaba R, Calis I. Outlining In Vitro and In Silico Cholinesterase Inhibitory Activity of Twenty-Four Natural Products of Various Chemical Classes: Smilagenin, Kokusaginine, and Methyl Rosmarinate as Emboldening Inhibitors. Molecules 2021; 26:molecules26072024. [PMID: 33916300 PMCID: PMC8037418 DOI: 10.3390/molecules26072024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/04/2022] Open
Abstract
Cholinesterase (ChE) inhibition is an important treatment strategy for Alzheimer’s disease (AD) as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are involved in the pathology of AD. In the current work, ChE inhibitory potential of twenty-four natural products from different chemical classes (i.e., diosgenin, hecogenin, rockogenin, smilagenin, tigogenin, astrasieversianins II and X, astragalosides I, IV, and VI, cyclocanthosides E and G, macrophyllosaponins A-D, kokusaginin, lamiide, forsythoside B, verbascoside, alyssonoside, ipolamide, methyl rosmarinate, and luteolin-7-O-glucuronide) was examined using ELISA microtiter assay. Among them, only smilagenin and kokusaginine displayed inhibitory action against AChE (IC50 = 43.29 ± 1.38 and 70.24 ± 2.87 µg/mL, respectively). BChE was inhibited by only methyl rosmarinate and kokusaginine (IC50 = 41.46 ± 2.83 and 61.40 ± 3.67 µg/mL, respectively). IC50 values for galantamine as the reference drug were 1.33 ± 0.11 µg/mL for AChE and 52.31 ± 3.04 µg/mL for BChE. Molecular docking experiments showed that the orientation of smilagenin and kokusaginine was mainly driven by the interactions with the peripheral anionic site (PAS) comprising residues of hAChE, while kokusaginine and methyl rosmarinate were able to access deeper into the active gorge in hBChE. Our data indicate that similagenin, kokusaginine, and methyl rosmarinate could be hit compounds for designing novel anti-Alzheimer agents.
Collapse
Affiliation(s)
- F. Sezer Senol Deniz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey; (F.S.S.D.); (B.S.)
| | - Gokcen Eren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey;
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey; (F.S.S.D.); (B.S.)
- Correspondence:
| | - Bilge Sener
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey; (F.S.S.D.); (B.S.)
| | - Ufuk Ozgen
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61080 Trabzon, Turkey;
| | - Randa Aldaba
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, 99138 Nicosia, Turkey; (R.A.); (I.C.)
| | - Ihsan Calis
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, 99138 Nicosia, Turkey; (R.A.); (I.C.)
| |
Collapse
|
54
|
Sallam A, Sabry MA, Galala AA. Westalsan: A New Acetylcholine Esterase Inhibitor from the Endophytic Fungus
Westerdykella nigra. Chem Biodivers 2021; 18:e2000957. [DOI: 10.1002/cbdv.202000957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/03/2021] [Indexed: 01/26/2023]
Affiliation(s)
- Amal Sallam
- Department of Pharmacognosy Faculty of Pharmacy Mansoura University 35516 Mansoura Egypt
| | - Mohamed A. Sabry
- Department of Medicinal Chemistry Faculty of Pharmacy Mansoura University 35516 Mansoura Egypt
| | - Amal A. Galala
- Department of Pharmacognosy Faculty of Pharmacy Mansoura University 35516 Mansoura Egypt
| |
Collapse
|
55
|
Hwang J, Youn K, Lim G, Lee J, Kim DH, Jun M. Discovery of Natural Inhibitors of Cholinesterases from Hydrangea: In Vitro and In Silico Approaches. Nutrients 2021; 13:nu13010254. [PMID: 33477276 PMCID: PMC7830924 DOI: 10.3390/nu13010254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease conceptualized as a clinical-biological neurodegenerative construct where amyloid-beta pathophysiology is supposed to play a role. The loss of cognitive functions is mostly characterized by the rapid hydrolysis of acetylcholine by cholinesterases including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Moreover, both enzymes are responsible for non-catalytic actions such as interacting with amyloid β peptide (Aβ) which further leads to promote senile plaque formation. In searching for a natural cholinesterase inhibitor, the present study focused on two isocoumarines from hydrangea, thunberginol C (TC) and hydrangenol 8-O-glucoside pentaacetate (HGP). Hydrangea-derived compounds were demonstrated to act as dual inhibitors of both AChE and BChE. Furthermore, the compounds exerted selective and non-competitive mode of inhibition via hydrophobic interaction with peripheral anionic site (PAS) of the enzymes. Overall results demonstrated that these natural hydrangea-derived compounds acted as selective dual inhibitors of AChE and BChE, which provides the possibility of potential source of new type of anti-cholinesterases with non-competitive binding property with PAS.
Collapse
Affiliation(s)
- Jayeong Hwang
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea; (J.H.); (K.Y.)
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea; (J.H.); (K.Y.)
| | - Gyutae Lim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (G.L.); (J.L.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Sciences and Technology, Daejeon 34113, Korea
| | - Jinhyuk Lee
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (G.L.); (J.L.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Sciences and Technology, Daejeon 34113, Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, Dong-A University, Busan 49315, Korea;
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea; (J.H.); (K.Y.)
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
- Correspondence: ; Tel.: +82-51-200-7323; Fax: +82-51-200-7535
| |
Collapse
|
56
|
Catanesi M, Caioni G, Castelli V, Benedetti E, d’Angelo M, Cimini A. Benefits under the Sea: The Role of Marine Compounds in Neurodegenerative Disorders. Mar Drugs 2021; 19:24. [PMID: 33430021 PMCID: PMC7827849 DOI: 10.3390/md19010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Marine habitats offer a rich reservoir of new bioactive compounds with great pharmaceutical potential; the variety of these molecules is unique, and its production is favored by the chemical and physical conditions of the sea. It is known that marine organisms can synthesize bioactive molecules to survive from atypical environmental conditions, such as oxidative stress, photodynamic damage, and extreme temperature. Recent evidence proposed a beneficial role of these compounds for human health. In particular, xanthines, bryostatin, and 11-dehydrosinulariolide displayed encouraging neuroprotective effects in neurodegenerative disorders. This review will focus on the most promising marine drugs' neuroprotective potential for neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. We will describe these marine compounds' potential as adjuvant therapies for neurodegenerative diseases, based on their antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
57
|
Barbosa M, Valentão P, Andrade PB. Polyphenols from Brown Seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the Pursuit of Natural Alternatives to Tackle Neurodegeneration. Mar Drugs 2020; 18:E654. [PMID: 33353007 PMCID: PMC7766193 DOI: 10.3390/md18120654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Globally, the burden of neurodegenerative disorders continues to rise, and their multifactorial etiology has been regarded as among the most challenging medical issues. Bioprospecting for seaweed-derived multimodal acting products has earned increasing attention in the fight against neurodegenerative conditions. Phlorotannins (phloroglucinol-based polyphenols exclusively produced by brown seaweeds) are amongst the most promising nature-sourced compounds in terms of functionality, and though research on their neuroprotective properties is still in its infancy, phlorotannins have been found to modulate intricate events within the neuronal network. This review comprehensively covers the available literature on the neuroprotective potential of both isolated phlorotannins and phlorotannin-rich extracts/fractions, highlighting the main key findings and pointing to some potential directions for neuro research ramp-up processes on these marine-derived products.
Collapse
Affiliation(s)
| | | | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313 Porto, Portugal; (M.B.); (P.V.)
| |
Collapse
|
58
|
Labriere C, Elumalai V, Staffansson J, Cervin G, Le Norcy T, Denardou H, Réhel K, Moodie LWK, Hellio C, Pavia H, Hansen JH, Svenson J. Phidianidine A and Synthetic Analogues as Naturally Inspired Marine Antifoulants. JOURNAL OF NATURAL PRODUCTS 2020; 83:3413-3423. [PMID: 33054188 DOI: 10.1021/acs.jnatprod.0c00881] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stationary and slow-moving marine organisms regularly employ a natural product chemical defense to prevent being colonized by marine micro- and macroorganisms. While these natural antifoulants can be structurally diverse, they often display highly conserved chemistries and physicochemical properties, suggesting a natural marine antifouling pharmacophore. In our current report, we investigate the marine natural product phidianidine A, which displays several chemical properties found in highly potent marine antifoulants. Phidianidine A and synthetic analogues were screened against the settlement and metamorphosis of Amphibalanus improvisus cyprids, and several of the compounds displayed inhibitory activities at low micromolar concentrations with IC50 values down to 0.7 μg/mL observed. The settlement study highlights that phidianidine A is a potent natural antifoulant and that the scaffold can be tuned to generate simpler and improved synthetic analogues. The bioactivity is closely linked to the size of the compound and to its basicity. The study also illustrates that active analogues can be prepared in the absence of the natural constrained 1,2,4-oxadiazole ring. A synthetic lead analogue of phidianidine A was incorporated in a coating and included in antifouling field trials, where it was shown that the coating induced potent inhibition of marine bacteria and microalgae settlement.
Collapse
Affiliation(s)
- Christophe Labriere
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Vijayaragavan Elumalai
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jannie Staffansson
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Tiffany Le Norcy
- Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Hugo Denardou
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Karine Réhel
- Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Lindon W K Moodie
- Department of Medicinal Chemistry and Uppsala Antibiotic Centre, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Jørn H Hansen
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, Biomaterial & Textile, RISE Research Institutes of Sweden, Box 857, 501 15 Borås, Sweden
| |
Collapse
|
59
|
Chakraborty K, Joy M. High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview. Food Res Int 2020; 137:109637. [PMID: 33233216 PMCID: PMC7457972 DOI: 10.1016/j.foodres.2020.109637] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Extensive biodiversity and availability of marine and estuarine molluscs, along with their their wide-range of utilities as food and nutraceutical resources developed keen attention of the food technologists and dieticians, particularly during the recent years. The current review comprehensively summarized the nutritional qualities, functional food attributes, and bioactive properties of these organisms. Among the phylum mollusca, Cephalopoda, Bivalvia, and Gastropoda were mostly reported for their nutraceutical applications and bioactive properties. The online search tools, like Scifinder/Science Direct/PubMed/Google Scholar/MarinLit database and marine natural product reports (1984-2019) were used to comprehend the information about the molluscs. More than 1334 secondary metabolites were reported from marine molluscs between the periods from 1984 to 2019. Among various classes of specialized metabolites, terpenes were occupied by 55% in gastropods, whereas sterols occupied 41% in bivalves. The marketed nutraceuticals, such as CadalminTM green mussel extract (Perna viridis) and Lyprinol® (Perna canaliculus) were endowed with potential anti-inflammatory activities, and were used against arthritis. Molluscan-derived therapeutics, for example, ziconotide was used as an analgesic, and elisidepsin was used in the treatment of cancer. Greater numbers of granted patents (30%) during 2016-2019 recognized the increasing importance of bioactive compounds from molluscs. Consumption of molluscs as daily diets could be helpful in the enhancement of immunity, and reduce the risk of several ailments. The present review comprehended the high value compounds and functional food ingredients from marine and estuarine molluscs.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India.
| | - Minju Joy
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India
| |
Collapse
|
60
|
Dai Y, Li K, She J, Zeng Y, Wang H, Liao S, Lin X, Yang B, Wang J, Tao H, Dai H, Zhou X, Liu Y. Lipopeptide Epimers and a Phthalide Glycerol Ether with AChE Inhibitory Activities from the Marine-Derived Fungus Cochliobolus Lunatus SCSIO41401. Mar Drugs 2020; 18:md18110547. [PMID: 33143384 PMCID: PMC7693918 DOI: 10.3390/md18110547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
A pair of novel lipopeptide epimers, sinulariapeptides A (1) and B (2), and a new phthalide glycerol ether (3) were isolated from the marine algal-associated fungus Cochliobolus lunatus SCSIO41401, together with three known chromanone derivates (4–6). The structures of the new compounds, including the absolute configurations, were determined by comprehensive spectroscopic methods, experimental and calculated electronic circular dichroism (ECD), and Mo2 (OAc)4-induced ECD methods. The new compounds 1–3 showed moderate inhibitory activity against acetylcholinesterase (AChE), with IC50 values of 1.3–2.5 μM, and an in silico molecular docking study was also performed.
Collapse
Affiliation(s)
- Yu Dai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
| | - Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
| | - Yanbo Zeng
- Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (Y.Z.); (H.W.); (H.D.)
| | - Hao Wang
- Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (Y.Z.); (H.W.); (H.D.)
| | - Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Haofu Dai
- Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (Y.Z.); (H.W.); (H.D.)
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (X.Z.); (Y.L.)
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (X.Z.); (Y.L.)
| |
Collapse
|
61
|
Vieira NC, Cortelo PC, Castro-Gamboa I. Rapid qualitative profiling of metabolites present in Fusarium solani, a rhizospheric fungus derived from Senna spectabilis, using GC/MS and UPLC-QTOF/MS E techniques assisted by UNIFI information system. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:281-291. [PMID: 32362135 DOI: 10.1177/1469066720922424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungi are an important source of natural products found in a variety of plant species. A wide range of methods for the detection of metabolites present in fungi have been reported in the literature. The search for methodologies that allow the rapid detection of compounds present in crude extracts is crucial to enable the metabolite annotation doing a qualitative analysis of the complex matrix. Mass spectrometry is an important ally when it comes to in silico detection of previously reported metabolites. In this work, the ethyl acetate extract of Fusarium solani was analyzed by gas chromatography coupled to mass spectrometry (GC/MS) after derivatization process. The ethyl acetate extract was also investigated by liquid chromatography coupled with high-resolution tandem mass spectrometry assisted by the UNIFI software system. A library containing previously reported metabolites from the Fusarium genus was added to the UNIFI platform. Simultaneously, the extract was analyzed through anticholinesterase and antifungal assays. The analysis of the derivatized extract by GC/MS led to the putative identification of five metabolites, and the investigation using Ultra-High Performance Liquid Chromatography - Quadrupole Time-of-Flight Mass Spectrometry (UPLC-QTOF) analysis in data-independent acquisition mode (mass spectrometry) led to the annotation of 15 compounds present in the built-in Fusarium library added to the UNIFI system. The Fusarium solani extract showed potential anticholinesterase and in vitro antifungal activity supported by the detection of bioactive metabolites.
Collapse
Affiliation(s)
- Natália Carolina Vieira
- Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Patrícia Cardoso Cortelo
- Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Ian Castro-Gamboa
- Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
62
|
Ka S, Masi M, Merindol N, Di Lecce R, Plourde MB, Seck M, Górecki M, Pescitelli G, Desgagne-Penix I, Evidente A. Gigantelline, gigantellinine and gigancrinine, cherylline- and crinine-type alkaloids isolated from Crinum jagus with anti-acetylcholinesterase activity. PHYTOCHEMISTRY 2020; 175:112390. [PMID: 32335411 DOI: 10.1016/j.phytochem.2020.112390] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Three undescribed Amarylidaceae alkaloids, named gigantelline, gigantellinine and gigancrinine, were isolated from Crinum jagus (syn. = Crinum giganteum) collected in Senegal, together with the already known sanguinine, cherylline, lycorine, crinine, flexinine and the isoquinolinone derivative hippadine. Gigantelline, gigantellinine and gigancrinine were characterized as 4-(6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-yl)-phenol, its 7-O-demethyl-5ꞌ-hydroxy-4ꞌ-methoxy derivative and 5,6a,7,7a,8a,9-hexahydro-6,9a-ethano[1,3]dioxolo[4,5-j]oxireno[2,3-b]phenanthridin-9-ol, respectively, by using spectroscopic (1D and 2D 1H and 13C NMR and HRESIMS) and chemical methods. Their relative configuration was assigned by NOESY NMR spectra and NMR calculations, while the absolute configuration was assigned using electronic circular dichroism (ECD) experiments and calculations. Sanguinine, cherylline, crinine, flexinine, and the isoquinolinone hippadine, were isolated for the first time from C. jagus. Cherylline, gigantellinine, crinine, flexinine and sanguinine inhibited the activity of AChE in a dose-dependent manner, and inhibition by sanguinine was remarkably effective (IC50 = 1.83 ± 0.01 μM). Cherylline and hippadine showed weak cytotoxicity at 100 μM.
Collapse
Affiliation(s)
- Seydou Ka
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec, G8Z 4M3, Canada; Laboratoire de Chimie Organique et Chimie Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de Dakar, Dakar, Sénégal
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Natacha Merindol
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec, G8Z 4M3, Canada
| | - Roberta Di Lecce
- Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Mélodie B Plourde
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec, G8Z 4M3, Canada
| | - Matar Seck
- Laboratoire de Chimie Organique et Chimie Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de Dakar, Dakar, Sénégal
| | - Marcin Górecki
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy; Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Isabel Desgagne-Penix
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec, G8Z 4M3, Canada.
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy.
| |
Collapse
|
63
|
Structural and functional characterization of an organometallic ruthenium complex as a potential myorelaxant drug. Biomed Pharmacother 2020; 127:110161. [PMID: 32380389 DOI: 10.1016/j.biopha.2020.110161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
In addition to antibacterial and antitumor effects, synthetic ruthenium complexes have been reported to inhibit several medicinally important enzymes, including acetylcholinesterase (AChE). They may also interact with muscle-type nicotinic acetylcholine receptors (nAChRs) and thus affect the neuromuscular transmission and muscle function. In the present study, the effects of the organometallic ruthenium complex of 5-nitro-1,10-phenanthroline (nitrophen) were evaluated on these systems. The organoruthenium-nitrophen complex [(η6-p-cymene)Ru(nitrophen)Cl]Cl; C22H21Cl2N3O2Ru (C1-Cl) was synthesized, structurally characterized and evaluated in vitro for its inhibitory activity against electric eel acetylcholinesterase (eeAChE), human recombinant acetylcholinesterase (hrAChE), horse serum butyrylcholinesterase (hsBChE) and horse liver glutathione-S-transferase. The physiological effects of C1-Cl were then studied on isolated mouse phrenic nerve-hemidiaphragm muscle preparations, by means of single twitch measurements and electrophysiological recordings. The compound C1-Cl acted as a competitive inhibitor of eeAChE, hrAChE and hsBChE with concentrations producing 50 % inhibition (IC50) of enzyme activity ranging from 16 to 26 μM. Moreover, C1-Cl inhibited the nerve-evoked isometric muscle contraction (IC50 = 19.44 μM), without affecting the directly-evoked muscle single twitch up to 40 μM. The blocking effect of C1-Cl was rapid and almost completely reversed by neostigmine, a reversible cholinesterase inhibitor. The endplate potentials were also inhibited by C1-Cl in a concentration-dependent manner (IC50 = 7.6 μM) without any significant change in the resting membrane potential of muscle fibers up to 40 μM. Finally, C1-Cl (5-40 μM) decreased (i) the amplitude of miniature endplate potentials until a complete block by concentrations higher than 25 μM and (ii) their frequency at 10 μM or higher concentrations. The compound C1-Cl reversibly blocked the neuromuscular transmission in vitro by a non-depolarizing mechanism and mainly through an action on postsynaptic nAChRs. The compound C1-Cl may be therefore interesting for further preclinical testing as a new competitive neuromuscular blocking, and thus myorelaxant, drug.
Collapse
|
64
|
Himalayan Nettle Girardinia diversifolia as a Candidate Ingredient for Pharmaceutical and Nutraceutical Applications-Phytochemical Analysis and In Vitro Bioassays. Molecules 2020; 25:molecules25071563. [PMID: 32235298 PMCID: PMC7180999 DOI: 10.3390/molecules25071563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Girardinia diversifolia, also known as Himalayan nettle, is a perennial herb used in Nepal to make fiber as well as in traditional medicine for the treatment of several diseases. To date, phytochemical studies and biological assays on this plant are scarce. Thus, in the present work, the G. diversifolia extracts have been evaluated for their potential pharmaceutical, cosmetic and nutraceutical uses. For this purpose, detailed phytochemical analyses were performed, evidencing the presence of phytosterols, fatty acids, carotenoids, polyphenols and saponins. The most abundant secondary metabolites were β- and γ-sitosterol (11 and 9% dw, respectively), and trans syringin (0.5 mg/g) was the most abundant phenolic. Fatty acids with an abundant portion of unsaturated derivatives (linoleic and linolenic acid at 22.0 and 9.7 mg/g respectively), vitamin C (2.9 mg/g) and vitamin B2 (0.12 mg/g) were also present. The antioxidant activity was moderate while a significant ability to inhibit acetylcholinesterase (AChE), butyrilcholinesterase (BuChE), tyrosinase, α-amylase and α-glucosidase was observed. A cytotoxic effect was observed on human ovarian, pancreatic and hepatic cancer cell lines. The effect in hepatocarcinoma cells was associated to a downregulation of the low-density lipoprotein receptor (LDLR), a pivotal regulator of cellular cholesterol homeostasis. These data show the potential usefulness of this species for possible applications in pharmaceuticals, nutraceuticals and cosmetics.
Collapse
|
65
|
Chen S, Liu Z, Tan H, Chen Y, Zhu S, Liu H, Zhang W. Photeroids A and B, unique phenol–sesquiterpene meroterpenoids from the deep-sea-derived fungus Phomopsis tersa. Org Biomol Chem 2020; 18:642-645. [DOI: 10.1039/c9ob02625h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photeroids A (1) and B (2), two structurally fascinating meroterpenoids, were isolated from the deep-sea-derived fungus Phomopsis tersa FS441.
Collapse
Affiliation(s)
- Shanchong Chen
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangdong Academy of Science
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangdong Academy of Science
| | - Haibo Tan
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangdong Academy of Science
| | - Shuang Zhu
- School of Biosciences and Biopharmaceutics
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangdong Academy of Science
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangdong Academy of Science
| |
Collapse
|
66
|
In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases. Int J Biol Macromol 2019; 140:1147-1157. [DOI: 10.1016/j.ijbiomac.2019.08.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022]
|
67
|
Habtemariam S. Natural Products in Alzheimer's Disease Therapy: Would Old Therapeutic Approaches Fix the Broken Promise of Modern Medicines? Molecules 2019; 24:molecules24081519. [PMID: 30999702 PMCID: PMC6514598 DOI: 10.3390/molecules24081519] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/30/2022] Open
Abstract
Despite extensive progress in understanding the pathology of Alzheimer's disease (AD) over the last 50 years, clinical trials based on the amyloid-beta (Aβ) hypothesis have kept failing in late stage human trials. As a result, just four old drugs of limited clinical outcomes and numerous side effects are currently used for AD therapy. This article assesses the common pharmacological targets and therapeutic principles for current and future drugs. It also underlines the merits of natural products acting through a polytherapeutic approach over a monotherapy option of AD therapy. Multi-targeting approaches through general antioxidant and anti-inflammatory mechanisms coupled with specific receptor and/or enzyme-mediated effects in neuroprotection, neuroregeneration, and other rational perspectives of novel drug discovery are emphasized.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|