51
|
Singh A, Maqsood Z, Iqubal MK, Ali J, Baboota S. Compendium of Conventional and Targeted Drug Delivery Formulation Used for the Treatment and Management of the Wound Healing. Curr Drug Deliv 2021; 19:192-211. [PMID: 34315364 DOI: 10.2174/1567201818666210727165916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Wound healing is a complex and dynamic phenomenon that involves the restoration of normal physiology and functioning of injured tissue. The process of wound healing is primarily regulated by various cytokines, inflammatory mediators, and growth factors at the molecular level. Any intervention in the normal wound healing process leads to further tissue damage, which in turn leads to delayed wound healing. Several natural, synthetic drugs and their combinations were used to restored and accelerate the wound healing process. However, the conventional delivery carriers were not much effective, and thus, nowadays, nanocarriers are gaining much popularity since they are playing a pivotal role in drug delivery. Since nanocarriers have their own applicability and benefits (enhance the bioavailability, site-specific targeting) so, they can accelerate wound healing more efficiently. This review briefly discussed about the various events that take place during the wound healing process with emphasis on various natural, synthetic, and combination drug therapy used for accelerating wound healing and the role of nanotechnology-based approaches in chronic wound healing.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Zeba Maqsood
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
52
|
Tabrizi MH, Seyedi SMR, Mokhtareeizadeh Z. The anticancer activity of metal oxides and phytochemical-enriched medicinal nano-spheres (MNS); a comparative evaluation. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1956953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
53
|
Algahtani MS, Ahmad MZ, Shaikh IA, Abdel-Wahab BA, Nourein IH, Ahmad J. Thymoquinone Loaded Topical Nanoemulgel for Wound Healing: Formulation Design and In-Vivo Evaluation. Molecules 2021; 26:3863. [PMID: 34202733 PMCID: PMC8270244 DOI: 10.3390/molecules26133863] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/05/2022] Open
Abstract
Thymoquinone is a natural bioactive with significant therapeutic activity against multiple ailments including wound healing. The poor aqueous solubility and low skin permeability limit its therapeutic efficacy. The present investigation aimed to improve the biopharmaceutical attributes of thymoquinone to enhance its topical efficacy in wound healing. A nanoemulsion-based hydrogel system was designed and characterized as a nanotechnology-mediated drug delivery approach to improve the therapeutic efficacy of thymoquinone, utilizing a high-energy emulsification technique. The black seed oil, as a natural home of thymoquinone, was utilized to improve the drug loading capacity of the developed nanoemulsion system and reduced the oil droplet size to <100 nm through ultrasonication. The influence of formulation composition, and the ultrasonication process conditions, were investigated on the mean globule size and polydispersity index of the generated nanoemulsion. Irrespective of surfactant/co-surfactant ratio and % concentration of surfactant/co-surfactant mixture, the ultrasonication time had a significant (p < 0.05) influence on the mean droplet size and polydispersity index of the generated nanoemulsion. The developed nanoemulgel system of thymoquinone demonstrated the pseudoplastic behavior with thixotropic properties, and this behavior is desirable for topical application. The nanoemulgel system of thymoquinone exhibited significant enhancement (p < 0.05) in skin penetrability and deposition characteristics after topical administration compared to the conventional hydrogel system. The developed nanoemulgel system of thymoquinone exhibited quicker and early healing in wounded Wistar rats compared to the conventional hydrogel of thymoquinone, while showing comparable healing efficacy with respect to marketed silver sulfadiazine (1%) cream. Furthermore, histopathology analysis of animals treated with a developed formulation system demonstrated the formation of the thick epidermal layer, papillary dermis along with the presence of extensive and organized collagen fibers in newly healed tissues. The outcome of this investigation signifies that topical delivery of thymoquinone through nanoemulgel system is a promising candidate which accelerates the process of wound healing in preclinical study.
Collapse
Affiliation(s)
- Mohammed S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.)
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.)
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (I.A.S.); (B.A.A.-W.)
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (I.A.S.); (B.A.A.-W.)
| | - Ihab Hamed Nourein
- Department of Clinical Laboratory (Histopathology and Cytology), College of Applied Medical Sciences, Najran University, Najran 11001, Saudi Arabia;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.)
| |
Collapse
|
54
|
Adena SKR, Herneisey M, Pierce E, Hartmeier PR, Adlakha S, Hosfeld MAI, Drennen JK, Janjic JM. Quality by Design Methodology Applied to Process Optimization and Scale up of Curcumin Nanoemulsions Produced by Catastrophic Phase Inversion. Pharmaceutics 2021; 13:880. [PMID: 34203672 PMCID: PMC8232217 DOI: 10.3390/pharmaceutics13060880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/28/2023] Open
Abstract
In the presented study, we report development of a stable, scalable, and high-quality curcumin-loaded oil/water (o/w) nanoemulsion manufactured by concentration-mediated catastrophic phase inversion as a low energy nanoemulsification strategy. A design of experiments (DoE) was constructed to determine the effects of process parameters on the mechanical input required to facilitate the transition from the gel phase to the final o/w nanoemulsion and the long-term effects of the process parameters on product quality. A multiple linear regression (MLR) model was constructed to predict nanoemulsion diameter as a function of nanoemulsion processing parameters. The DoE and subsequent MLR model results showed that the manufacturing process with the lowest temperature (25 °C), highest titration rate (9 g/minute), and lowest stir rate (100 rpm) produced the highest quality nanoemulsion. Both scales of CUR-loaded nanoemulsions (100 g and 500 g) were comparable to the drug-free optimal formulation with 148.7 nm and 155.1 nm diameter, 0.22 and 0.25 PDI, and 96.29 ± 0.76% and 95.60 ± 0.88% drug loading for the 100 g and 500 g scales, respectively. Photostability assessments indicated modest loss of drug (<10%) upon UV exposure of 24 h, which is appropriate for intended transdermal applications, with expected reapplication of every 6-8 h.
Collapse
Affiliation(s)
- Sandeep Kumar Reddy Adena
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Michele Herneisey
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Eric Pierce
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Paul R. Hartmeier
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Suneera Adlakha
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Marco A. I. Hosfeld
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - James K. Drennen
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Jelena M. Janjic
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15228, USA
| |
Collapse
|
55
|
Liakopoulou A, Mourelatou E, Hatziantoniou S. Exploitation of traditional healing properties, using the nanotechnology's advantages: The case of curcumin. Toxicol Rep 2021; 8:1143-1155. [PMID: 34150524 PMCID: PMC8190487 DOI: 10.1016/j.toxrep.2021.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/02/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin (CUR) has a long history of use as an antimicrobial, anti-inflammatory and wound healing agent, for the treatment of various skin conditions. Encapsulation in nanocarriers may overcome the administration limitations of CUR, such as lipophilicity and photodegradation. Lipid nanocarriers with different matrix fluidity (Solid Lipid Nanoparticles; SLN, Nanostructured Lipid Carriers; NLC, and Nanoemulsion; NE) were prepared for the topical delivery of curcumin (CUR). The occlusive properties and film forming capacity, as well as the release profile of incorporated CUR, its protection against photodegradation and wound healing were studied in vitro, using empty nanocarriers or free CUR as control. The results suggest that incorporation of CUR in nanocarriers offers a significant protection against photodegradation that is not influenced by the matrix fluidity. However, this characteristic regulates properties such as the occlusion, the release rate and wound healing ability of CUR. Nanoparticles of low fluidity provided better surface occlusion, film forming capacity and retention of the incorporated CUR. All nanocarriers but especially NLC, achieved faster wound healing at lower dose of incorporated CUR. In conclusion, nanotechnology may enhance the action of CUR against skin conditions. Important characteristics of the nanocarrier such as matrix fluidity should be taken into consideration in the design of CUR nanosystems of optimal efficiency.
Collapse
Key Words
- BSA, bovine serum albumin
- CA, cellulose acetate
- CUR, curcumin
- Curcumin
- DLS, Dynamic Light Scattering
- DMEM, Dulbecco’s modified eagle medium
- DMSO, dimethyl sulfoxide
- DPBS, Dulbecco’s phosphate buffered saline
- ELS, Electrophoretic Light Scattering
- EtOH, ethanol
- FBS, fetal bovine serum
- MeOH, methanol
- NE, nanoemulsion
- NLC, nanostructured lipid carriers
- Nanoemulsion
- Nanostructured lipid carrier
- Occlusion
- P/S, penicillin/streptomycin
- PBS, phosphate buffered saline
- PdI, polydispersity index
- RH, relative humidity
- RT, room temperature
- SD, standard deviation
- SEM, scanning electron microscopy
- SLN, solid lipid nanoparticles
- Solid lipid nanoparticle
- TG, triglyceride
- Topical application
- UV-VIS, ultraviolet – visible spectrophotometry
- WFI, water for injection
- Wound healing
Collapse
Affiliation(s)
- Angeliki Liakopoulou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece
| | - Elena Mourelatou
- Laboratory of Pharmaceutical Technology, Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 46 Makedonitissas Avenue, CY-2417, P.O. Box 24005, CY-1700, Nicosia, Cyprus
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece
| |
Collapse
|
56
|
Khazei K, Mohajeri N, Bonabi E, Turk Z, Zarghami N. New Insights Toward Nanostructured Drug Delivery of Plant-Derived Polyphenol Compounds: Cancer Treatment and Gene Expression Profiles. Curr Cancer Drug Targets 2021; 21:689-701. [PMID: 34036921 DOI: 10.2174/1568009621666210525152802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
The increasing prevalence of cancer has led to the expansion of traditional medicine objectives for developing novel drug delivery systems. A wide range of plant-derived polyphenol bioactive substances have been investigated in order to explore anti-cancer effects of these natural compounds and to promote effective treatment of cancer through apoptosis induction. In this regard, plant-derived polyphenol compounds including curcumin, silibinin, quercetin, and resveratrol have been the subject of intense interest for anti-cancer applications due to their ability in regulating apoptotic genes. However, some limitations of pure polyphenol compounds, such as poor bioavailability, short-term stability, low-cellular uptake, and insufficient solubility, have restricted their efficiency. Nanoscale formulations of bioactive agents have provided a novel platform to address these limitations. This paper reviews recent advances in nanoformulation approaches of polyphenolic drugs, and their effects on improving the delivery of chemotherapy agents to cancer cells.
Collapse
Affiliation(s)
- Keyvan Khazei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Mohajeri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esat Bonabi
- Department of Medical Microbiology Faculty of Medicine, Istanbul Aydin University, Istanbul. Turkey
| | - Zeynep Turk
- Center for Applied and Theoretical Research on Higher Education, İstanbul Aydın University, Istanbul. Turkey
| | - Nosratollah Zarghami
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
57
|
Ma Q, Zhang J, Lu B, Lin H, Sarkar R, Wu T, Li X. Nanoemulgel for Improved Topical Delivery of Desonide: Formulation Design and Characterization. AAPS PharmSciTech 2021; 22:163. [PMID: 34031790 DOI: 10.1208/s12249-021-02035-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
This research aimed to develop a novel drug delivery system to improve treatment of skin disorders. The system is comprised of a Carbopol 980-based nanoemulgel (NE-gel) containing a desonide (DES; 0.05%, w/w) nanoemulsion (NE), which has a small particle size, high encapsulation efficiency, good thermodynamic stability, good permeation ability, and high skin retention. DES-loaded NE (DES-NE) was prepared by high-pressure homogenization. The developed formulation was characterized by differential scanning calorimetry (DSC), X-ray diffraction, drug release, skin permeation, and drug retention. DES in vitro release and skin permeation studies with different formulations of artificial membrane and rat abdominal skin were performed with the Franz diffusion cell system. Confocal laser scanning microscopy (CLSM) was used to detect the localization and permeation pathways of drugs in the skin. Compared with commercially available gel (CA-gel) and NE, the NE-gel release process conformed to the Higuchi release model (R2 = 0.9813). NE-gel prolonged the drug release time and allowed for reduced administration dose and frequency. The unit cumulative permeation of NE and NE-gel through the skin for 12 h was 63.13 ± 2.78 and 42.53 ± 2.06 μg/cm2, respectively, values significantly higher (p < 0.01) than that of the CA-gel (30.65 ± 1.25 μg/cm2) and CA-cream (15.21 ± 0.97 μg/cm2). The DES-NE and DES NE-gel skin drug retention was significantly higher than commercially available formulations (p < 0.01). Hence, the prepared NE-gel is a potential vehicle for improved topical DES delivery for better treatment of skin disorders.
Collapse
|
58
|
Tavares Luiz M, Santos Rosa Viegas J, Palma Abriata J, Viegas F, Testa Moura de Carvalho Vicentini F, Lopes Badra Bentley MV, Chorilli M, Maldonado Marchetti J, Tapia-Blácido DR. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur J Pharm Biopharm 2021; 165:127-148. [PMID: 33992754 DOI: 10.1016/j.ejpb.2021.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/05/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has been widely applied to develop drug delivery systems to improve therapeutic performance. The effectiveness of these systems is intrinsically related to their physicochemical properties, so their biological responses are highly susceptible to factors such as the type and quantity of each material that is employed in their synthesis and to the method that is used to produce them. In this context, quality-oriented manufacturing of nanoparticles has been an important strategy to understand and to optimize the factors involved in their production. For this purpose, Design of Experiment (DoE) tools have been applied to obtain enough knowledge about the process and hence achieve high-quality products. This review aims to set up the bases to implement DoE as a strategy to improve the manufacture of nanocarriers and to discuss the main factors involved in the production of the most common nanocarriers employed in the pharmaceutical field.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Viegas
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Sao Paulo State University, Araraquara, SP, Brazil
| | | | - Delia Rita Tapia-Blácido
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
59
|
Sethiya A, Agarwal DK, Agarwal S. Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini Rev Med Chem 2021; 20:1190-1232. [PMID: 32348221 DOI: 10.2174/1389557520666200429103647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Curcumin is a poly phenolic compound extracted from turmeric. Over the past years, it has acquired significant interest among researchers due to its numerous pharmacological activities like anti- cancer, anti-alzheimer, anti-diabetic, anti-bacterial, anti-inflammatory and so on. However, the clinical use of curcumin is still obstructed due to tremendously poor bioavailability, rapid metabolism, lower gastrointestinal absorption, and low permeability through cell that makes its pharmacology thrilling. These issues have led to enormous surge of investigation to develop curcumin nano formulations which can overcome these restrictive causes. The scientists all across the universe are working on designing several drug delivery systems viz. liposomes, micelles, magnetic nano carriers, etc. for curcumin and its composites which not only improve its physiochemical properties but also enhanced its therapeutic applications. The review aims to systematically examine the treasure of information about the medicinal use of curcumin. This article delivers a general idea of the current study piloted to overwhelm the complications with the bioavailability of curcumin which have exhibited an enhanced biological activity than curcumin. This article explains the latest and detailed study of curcumin and its conjugates, its phytochemistry and biological perspectives and also proved curcumin as an efficient drug candidate for the treatment of numerous diseases. Recent advancements and futuristic viewpoints are also deliberated, which shall help researchers and foster commercial translations of improved nanosized curcumin combination for the treatment of various diseases.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| | | | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| |
Collapse
|
60
|
D'Angelo NA, Noronha MA, Kurnik IS, Câmara MCC, Vieira JM, Abrunhosa L, Martins JT, Alves TFR, Tundisi LL, Ataide JA, Costa JSR, Jozala AF, Nascimento LO, Mazzola PG, Chaud MV, Vicente AA, Lopes AM. Curcumin encapsulation in nanostructures for cancer therapy: A 10-year overview. Int J Pharm 2021; 604:120534. [PMID: 33781887 DOI: 10.1016/j.ijpharm.2021.120534] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Curcumin (CUR) is a phenolic compound present in some herbs, including Curcuma longa Linn. (turmeric rhizome), with a high bioactive capacity and characteristic yellow color. It is mainly used as a spice, although it has been found that CUR has interesting pharmaceutical properties, acting as a natural antioxidant, anti-inflammatory, antimicrobial, and antitumoral agent. Nonetheless, CUR is a hydrophobic compound with low water solubility, poor chemical stability, and fast metabolism, limiting its use as a pharmacological compound. Smart drug delivery systems (DDS) have been used to overcome its low bioavailability and improve its stability. The current work overviews the literature from the past 10 years on the encapsulation of CUR in nanostructured systems, such as micelles, liposomes, niosomes, nanoemulsions, hydrogels, and nanocomplexes, emphasizing its use and ability in cancer therapy. The studies highlighted in this review have shown that these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged CUR release, and reduced side effects, among other interesting advantages.
Collapse
Affiliation(s)
- Natália A D'Angelo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana A Noronha
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabelle S Kurnik
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mayra C C Câmara
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jorge M Vieira
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Luís Abrunhosa
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Joana T Martins
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Thais F R Alves
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, Brazil; College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, Sorocaba, Brazil; Sorocaba Development and Innovation Agency (INOVA Sorocaba), Sorocaba Technology Park, Sorocaba, Brazil
| | - Louise L Tundisi
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Janaína A Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliana S R Costa
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Angela F Jozala
- Laboratory of Industrial Microbiology and Fermentation Process (LAMINFE), University of Sorocaba, Sorocaba, Brazil
| | - Laura O Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Priscila G Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, Brazil; College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, Sorocaba, Brazil; Sorocaba Development and Innovation Agency (INOVA Sorocaba), Sorocaba Technology Park, Sorocaba, Brazil
| | - António A Vicente
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - André M Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
61
|
Rahdar A, Hajinezhad MR, Sargazi S, Zaboli M, Barani M, Baino F, Bilal M, Sanchooli E. Biochemical, Ameliorative and Cytotoxic Effects of Newly Synthesized Curcumin Microemulsions: Evidence from In Vitro and In Vivo Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:817. [PMID: 33806829 PMCID: PMC8004644 DOI: 10.3390/nano11030817] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is known to exhibit antioxidant and tissue-healing properties and has recently attracted the attention of the biomedical community for potential use in advanced therapies. This work reports the formulation and characterization of oil-in-water F127 microemulsions to enhance the bioavailability of curcumin Microemulsions showed a high encapsulation efficiency and prolonged release. To investigate the interactions of curcumin with one unit of the polymeric chain of surfactant F127, ethyl butyrate, and sodium octanoate, as well as the interaction between ethyl butyrate and one unit of the F127 polymer chain, the Density Functional Theory (DFT) calculations at the M06-2X level of theory, were performed in water solution. The MTT assay was used to assess the cytotoxicity of free and encapsulated curcumin on non-malignant and malignant cell lines. Combination effects were calculated according to Chou-Talalay's principles. Results of in vitro studies indicated that MCF7 and HepG2 cells were more sensitive to curcumin microemulsions. Moreover, a synergistic relationship was observed between curcumin microemulsions and cisplatin in all affected fractions of MCF7 and HepG2 cells (CI < 0.9). For in vivo investigation, thioacetamide-intoxicated rats received thioacetamide (100 mg/kg Sc) followed by curcumin microemulsions (30 mg/kg Ip). Thioacetamide-intoxicated rats showed elevated serum liver enzymes, blood urea nitrogen (BUN), and creatinine levels, and a significant reduction in liver superoxide dismutase (SOD) and catalase (CAT) activities (p < 0.05). Curcumin microemulsions reduced liver enzymes and serum creatinine and increased the activity of antioxidant enzymes in thioacetamide-treated rats in comparison to the untreated thioacetamide-intoxicated group. Histopathological investigations confirmed the biochemical findings. Overall, the current results showed the desirable hepatoprotective, nephroprotective, and anti-cancer effects of curcumin microemulsions.
Collapse
Affiliation(s)
- Abbas Rahdar
- Department of Physics, University of Zabol, P.O. Box. 98613-35856, Zabol, Iran;
| | - Mohammad Reza Hajinezhad
- Basic Veterinary Science Department, Veterinary Faculty, University of Zabol, P.O. Box. 98613-35856, Zabol, Iran;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Maryam Zaboli
- Department of Chemistry, University of Birjand, Birjand 97174-34765, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Esmael Sanchooli
- Department of Chemistry, University of Zabol, P.O. Box. 98613-35856, Zabol, PIran;
| |
Collapse
|
62
|
Mumtaz SM, Bhardwaj G, Goswami S, Tonk RK, Goyal RK, Abu-Izneid T, Pottoo FH. Management of Glioblastoma Multiforme by Phytochemicals: Applications of Nanoparticle-Based Targeted Drug Delivery System. Curr Drug Targets 2021; 22:429-442. [PMID: 32718288 DOI: 10.2174/1389450121666200727115454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhorts tumors of star-shaped glial cells in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorders like neurofibromatosis and schwannomatosis, which develop the tumor in the nervous system. The management of GBM with chemo-radiotherapy leads to resistance, and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind the failure of drugs are due to DNA alkylation in the cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bioactive compounds from plants referred as phytochemicals, serve as vital sources for anti-cancer drugs. Some prototypical examples include taxol analogs, vinca alkaloids (vincristine, vinblastine), podophyllotoxin analogs, camptothecin, curcumin, aloe-emodin, quercetin, berberine etc. These phytochemicals often regulate diverse molecular pathways, which are implicated in the growth and progression of cancers. However, the challenges posed by the presence of BBB/BBTB to restrict the passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review, we integrated nanotech as a novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.
Collapse
Affiliation(s)
- Sayed M Mumtaz
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Shikha Goswami
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Ramesh K Goyal
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
63
|
Salleh A, Fauzi MB. The In Vivo, In Vitro and In Ovo Evaluation of Quantum Dots in Wound Healing: A Review. Polymers (Basel) 2021; 13:E191. [PMID: 33430272 PMCID: PMC7825662 DOI: 10.3390/polym13020191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 01/09/2023] Open
Abstract
Wound is defined as primarily damaged or disruption of skin contributed to the loss of its microstructure stability and which undergoes complex wound healing process. However, there are tons of factors that could affect the wound healing process such as infection and slow angiogenesis. Involvement of nanotechnologies therapies in wound care research aims to facilitates this healing process. Quantum dots (QDs) are an advanced nanomaterial technology found to be useful in clinical and biomedical applications. This review has been carried out to provide a summary of the application of QDs in acute or chronic wound healing. A thorough searching was done via Web of Science and SCOPUS database to obtain relevant articles including the in vivo, in vitro and in ovo studies. The results demonstrated a similar effect of different types of QDs, or an improvement of QDs in wound healing, antibacterial and angiogenesis properties. This review demonstrated the effectiveness of QDs for the wound healing process mainly by their antibacterial activity. Uniquely, the antibacterial effect unraveled an increasing trend over time influenced by the various concentration of QDs. In conclusion, the application of QDs support the wound healing phases and proven to be effective in vivo, in vitro and in ovo. However, the future QDs work should focus on the molecular level for the details of cellular interactions and pathways.
Collapse
Affiliation(s)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
64
|
Tran QH, Thuy TTH, Nguyen TTT. Fabrication of a narrow size nano curcuminoid emulsion by combining phase inversion temperature and ultrasonication: preparation and bioactivity. NEW J CHEM 2021. [DOI: 10.1039/d1nj01241j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel method to prepare narrow size nano curcuminoids from Curcuma longa.
Collapse
Affiliation(s)
- Quang-Hieu Tran
- Chemistry Division-Basic Sciences Department-Saigon Technology University
- Ho Chi Minh City 700000
- Vietnam
- Faculty of Tecnology-Saigon Technology University
- Ho Chi Minh City 700000
| | - Thi Thanh-Ho Thuy
- Faculty of Tecnology-Saigon Technology University
- Ho Chi Minh City 700000
- Vietnam
| | - Thi Thanh-Tu Nguyen
- Faculty of Tecnology-Saigon Technology University
- Ho Chi Minh City 700000
- Vietnam
| |
Collapse
|
65
|
Javed MN, Pottoo FH, Shamim A, Hasnain MS, Alam MS. Design of Experiments for the Development of Nanoparticles, Nanomaterials, and Nanocomposites. DESIGN OF EXPERIMENTS FOR PHARMACEUTICAL PRODUCT DEVELOPMENT 2021:151-169. [DOI: 10.1007/978-981-33-4351-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
66
|
Araya-Sibaja AM, Wilhelm K, González-Aguilar GA, Vega-Baudrit JR, Salazar-López NJ, Domínguez-Avila JA, Navarro-Hoyos M. Curcumin Loaded and Co-loaded Nanosystems: A Review from a Biological Activity Enhancement Perspective. Pharm Nanotechnol 2020; 9:85-100. [PMID: 33371864 DOI: 10.2174/2211738508666201228150659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a natural phenolic compound exhibiting multiple bioactivities that have been evaluated in vitro, in vivo as well as through clinical studies in humans. Some of them include antimicrobial, antioxidant, anti-inflammatory, and central nervous system protective effects. Further, curcumin is generally recognized as a safe substance because of its low toxicity. However, its molecular structure is susceptible to changes in pH, oxidation, photodegradation, low aqueous solubility, and biotransformation compromising its bioavailability; these drawbacks are successfully addressed through nanotechnology. OBJECTIVE The present review systematizes findings on the enhancement of curcumin's beneficial effects when it is loaded and co-loaded into different types of nanosystems covering liposomes, polymeric and solid-lipid nanoparticles, nanostructured lipid carrier, lipid-polymeric hybrids, self- -assembled and protein-based core-shell systems in relation to its antimicrobial, antioxidant, anti-inflammatory and central nervous system protective bioactivities. CONCLUSION Curcumin is a versatile molecule capable of exerting antimicrobial, antioxidant, anti- inflammatory, and central nervous system protective effects in an enhanced manner using the possibilities offered by the nanotechnology-based approach. Its enhanced bioactivities are associated with increments in solubility, stability, bioavailability, as well as in improved intracellular uptake and cell internalization. These advantages, in addition to curcumin's low toxicity, indicate the potential of curcumin to be loaded and co-loaded into nanosystems capable of providing a controlled release and targeted administration.
Collapse
Affiliation(s)
- Andrea M Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Krissia Wilhelm
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Gustavo A González-Aguilar
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - José R Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Norma J Salazar-López
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Jesús A Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Mirtha Navarro-Hoyos
- BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, 2060, San José, Costa Rica
| |
Collapse
|
67
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Kapoor B, Awasthi A, Kr A, Kumar R, Pottoo FH, Kumar V, Dureja H, Anand K, Chellappan DK, Dua K, Gowthamarajan K. Opening eyes to therapeutic perspectives of bioactive polyphenols and their nanoformulations against diabetic neuropathy and related complications. Expert Opin Drug Deliv 2020; 18:427-448. [PMID: 33356647 DOI: 10.1080/17425247.2021.1846517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Diabetic neuropathy (DN) is one of the major complications arising from hyperglycaemia in diabetic patients. In recent years polyphenols present in plants have gained attention to treat DN. The main advantages associated with them are their action via different molecular pathways to manage DN and their safety. However, they failed to gain clinical attention due to challenges associated with their formulation development such as lipophilicity,poor bioavailability, rapid systemic elimination, and enzymatic degradation.Area covered: This article includes different polyphenols that have shown their potential against DN in preclinical studies and the research carried out towards development of their nanoformulations in order to overcome aforementioned issues.Expert opinion: In this review various polyphenol based nanoformulations such as nanospheres, self-nanoemulsifying drug delivery systems, niosomes, electrospun nanofibers, metallic nanoparticles explored exclusively to treat DN are discussed. However, the literature available related to polyphenol based nanoformulations to treat DN is limited. Moreover, these experiments are limited to preclinical studies. Hence, more focus is required towards development of nanoformulations using simple and single step process as well as inexpensive and non-toxic excipients so that a stable, scalable, reproducible and non-toxic formulation could be achieved and clinical trials could be initiated.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Arya Kr
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Vijay Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia
| | - K Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.,Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
68
|
Syed Azhar SNA, Ashari SE, Ahmad S, Salim N. In vitro kinetic release study, antimicrobial activity and in vivo toxicity profile of a kojic acid ester-based nanoemulsion for topical application. RSC Adv 2020; 10:43894-43903. [PMID: 35519703 PMCID: PMC9058481 DOI: 10.1039/d0ra04807k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Nanoemulsions have emerged as novel vehicles for drug delivery that allow sustained or controlled release for topical application. In this study, kojic acid ester-based nanoemulsion (KAE-NA) was analyzed for in vitro permeation evaluation, kinetic release study, in vitro antimicrobial activity and in vivo toxicity profile on embryonic zebrafish (Danio rerio). Based on KAE-NA in vitro permeation evaluation, the percentage of permeation was significantly improved from 4.94% at 1 h to 59.64% at 8 h of application. The permeation rate of KAE-NA at 8 h was 4659.50 μg cm-2 h-1 (initial concentration, C 0 = 2000 μg mL-1) with a permeability coefficient (K p) value of 0.48 cm h-1. The kinetic release analysis showed the Korsmeyer-Peppas model was the best fitted kinetic model with high linearity [R 2 = 0.9964]. Antimicrobial activity of KAE-NA was studied against the skin pathogen bacteria Staphylococcus aureus ATCC 43300. The results indicated that the inhibition zone size of the KAE-NA (8.00 ± 0.0 mm) was slightly bigger than that of its active ingredient, kojic acid ester (6.5 ± 0.0 mm). The toxicity profile of KAE-NA on embryonic zebrafish revealed less toxicity with LC50 (50% lethal concentration) more than 500 μg mL-1. The survival rate of the embryonic zebrafish was more than 80% when treated at doses ranging from 7.81-250 μg mL-1 and showed normal development throughout the experiment without any observed deformation. Hence, KAE-NA proved to be less toxic on the embryonic zebrafish.
Collapse
Affiliation(s)
| | - Siti Efliza Ashari
- Integrated Chemical BioPhysics Research Centre, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Norazlinaliza Salim
- Integrated Chemical BioPhysics Research Centre, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
| |
Collapse
|
69
|
Iqubal MK, Saleem S, Iqubal A, Chaudhuri A, Pottoo FH, Ali J, Baboota S. Natural, Synthetic and their Combinatorial Nanocarriers Based Drug Delivery System in the Treatment Paradigm for Wound Healing Via Dermal Targeting. Curr Pharm Des 2020; 26:4551-4568. [DOI: 10.2174/1381612826666200612164511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022]
Abstract
A wound refers to the epithelial loss, accompanied by loss of muscle fibers collagen, nerves and bone
instigated by surgery, trauma, frictions or by heat. Process of wound healing is a compounded activity of recovering
the functional integrity of the damaged tissues. This process is mediated by various cytokines and growth
factors usually liberated at the wound site. A plethora of herbal and synthetic drugs, as well as photodynamic
therapy, is available to facilitate the process of wound healing. Generally, the systems used for the management
of wounds tend to act through covering the ruptured site, reduce pain, inflammation, and prevent the invasion and
growth of microorganisms. The available systems are, though, enough to meet these requirements, but the involvement
of nanotechnology can ameliorate the performance of these protective coverings. In recent years,
nano-based formulations have gained immense popularity among researchers for the wound healing process due
to the enhanced benefits they offer over the conventional preparations. Hereupon, this review aims to cover the
entire roadmap of wound healing, beginning from the molecular factors involved in the process, the various synthetic
and herbal agents, and combination therapy available for the treatment and the current nano-based systems
available for delivery through the topical route for wound healing.
Collapse
Affiliation(s)
- Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sadaf Saleem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam- 31441, Saudi Arabia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
70
|
Waghule T, Gorantla S, Rapalli VK, Shah P, Dubey SK, Saha RN, Singhvi G. Emerging Trends in Topical Delivery of Curcumin Through Lipid Nanocarriers: Effectiveness in Skin Disorders. AAPS PharmSciTech 2020; 21:284. [PMID: 33058071 DOI: 10.1208/s12249-020-01831-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Curcumin is a unique molecule naturally obtained from rhizomes of Curcuma longa. Curcumin has been reported to act on diverse molecular targets like receptors, enzymes, and co-factors; regulate different cellular signaling pathways; and modulate gene expression. It suppresses expression of main inflammatory mediators like interleukins, tumor necrosis factor, and nuclear factor κB which are involved in the regulation of genes causing inflammation in most skin disorders. The topical delivery of curcumin seems to be more advantageous in providing a localized effect in skin diseases. However, its low aqueous solubility, poor skin permeation, and degradation hinder its application for commercial use despite its enormous potential. Lipid-based nanocarrier systems including liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lyotropic liquid crystal nanoparticles, lipospheres, and lipid nanocapsules have found potential as carriers to overcome the issues associated with conventional topical dosage forms. Nano-size, lipophilic nature, viscoelastic properties, and occlusive effect of lipid nanocarriers provide high drug loading, hydration of skin, stability, enhanced permeation through the stratum corneum, and slow release of curcumin in the targeted skin layers. This review particularly focuses on the application of lipid nanocarriers for the topical delivery of curcumin in the treatment of various skin diseases. Furthermore, preclinical studies and patents have also indicated the emerging commercialization potential of curcumin-loaded lipid nanocarriers for effective drug delivery in skin disorders. Graphical Abstract.
Collapse
|
71
|
Abstract
Curcumin nanoemulsion was prepared using coconut oil, Tween 80 (surfactant) and polyethylene glycol (co-solvent) with the addition of honey and glycerol as additives. The nanoemulsion was optimized and systematically characterized for transdermal delivery. Small particle size (15.92 nm), low polydispersity index (0.17) and slight acidic (pH 4.18) curcumin nanoemulsion was obtained without any chemical degradation based on the Fourier transform infrared (FTIR) spectrum. The incorporation of curcumin inside nanoglobul improved curcumin stability and skin permeability. Its high permeability can be seen from Nile dyed curcumin in different layers of skin through fluorescent imaging. The release kinetic of curcumin followed the Higuchi model, which explains why the skin permeation was a Fickian diffusion-controlled process because the Korsmeyer constant was proven to be 0.3 (<0.5). Nanoencapsulation slightly decreased the antioxidant capacity of curcumin for about 7.9% compared to its free counterpart. It showed low cytotoxicity (EC50 2.3552 µg/mL) to human skin fibroblasts. Cell death was noticed at a high concentration (2.5 µg/mL) of treatment. Curcumin was also found to promote wound closure at low concentration 0.1563 µg/mL and was comparable with the performance of ascorbic acid based on scratch assay. Therefore, this nutritious curcumin nanoemulsion is a promising transdermal delivery system for topical application.
Collapse
|
72
|
Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound healing: From material sciences to wound healing applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Andreia Barroso
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Henrique Mestre
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Catarina Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences Universidade de Lisboa Campo Grande Lisboa 1649‐016 Portugal
| |
Collapse
|
73
|
Pujimulyani D, Suryani CL, Setyowati A, Handayani RAS, Arumwardana S, Widowati W, Maruf A. Cosmeceutical potentials of Curcuma mangga Val. extract in human BJ fibroblasts against MMP1, MMP3, and MMP13. Heliyon 2020; 6:e04921. [PMID: 32995615 PMCID: PMC7502333 DOI: 10.1016/j.heliyon.2020.e04921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/13/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress, the disrupted oxidation-reduction mechanism in our body, is caused by the excessive exposure of free radicals and the impaired antioxidant defenses that can accelerate skin aging. Antioxidants can be obtained from nature, which are available widely in therapeutic-rich plants, such as white saffron (Curcuma mangga Val., denoted as C. mangga). Although many pieces of evidence reveal that C. mangga contains an abundance of phenolic compounds and has antioxidative effects, its cosmeceutical potentials remain unclear. The present study aimed to disclose the unexplored antiaging potentials of C. mangga extract (CME) in oxidative stress-induced human BJ fibroblasts with a focus on collagen protection against pro-inflammatory mediators MMP1, MMP3, and MMP13. The oxidative stress-induced cells were treated with CME and curcumin at different doses. The results showed that treatment using CME (25 μg/mL) could maintain the collagen contents up to 18.45 ± 0.68 μg/mL in H2O2-treated fibroblasts (only ~26.63% reduction in collagen contents), while the figure for the negative control was the lowest (12.79 μg/mL), showing a significant reduction in collagen contents by 49.13%. In addition, the gene expression of pro-inflammatory MMPs arose significantly in BJ fibroblasts after oxidative stress induction using 200 μM H2O2, in which the expression for MMP1, MMP3, and MMP13 increased by 7.10, 38.96, and 2.69 times, respectively. Interestingly, CME treatment (100 μg/mL) could effectively inhibit MMP1, MMP3, and MMP13 gene expression by 3.65, 34.62, and 2.02 times, respectively. In conclusion, CME showed favorable antiaging activities in H2O2-treated human BJ fibroblasts as confirmed by the low levels of gene expression of MPP1, MMP3, and MMP13 after treatment with CME.
Collapse
Affiliation(s)
- Dwiyati Pujimulyani
- Faculty of Agroindustry, University of Mercu Buana Yogyakarta, Yogyakarta, 55753, Indonesia
| | - Ch Lilis Suryani
- Faculty of Agroindustry, University of Mercu Buana Yogyakarta, Yogyakarta, 55753, Indonesia
| | - Astuti Setyowati
- Faculty of Agroindustry, University of Mercu Buana Yogyakarta, Yogyakarta, 55753, Indonesia
| | | | - Seila Arumwardana
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, 40163, Indonesia
| | - Wahyu Widowati
- Medical Research Center, Faculty of Medicine, Maranatha Christian University, Bandung, 40164, Indonesia
| | - Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
74
|
Development of mirtazapine loaded solid lipid nanoparticles for topical delivery: Optimization, characterization and cytotoxicity evaluation. Int J Pharm 2020; 586:119439. [PMID: 32622808 DOI: 10.1016/j.ijpharm.2020.119439] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 11/20/2022]
Abstract
Mirtazapine, an antidepressant drug has been proved to exert antipruritic effect upon oral administration in numerous clinical trial studies. The objective of the current study was to develop mirtazapine loaded solid lipid nanoparticles (SLNs) and evaluate its potential as a topical drug delivery system for management of pruritus. Mirtazapine loaded SLNs were successfully developed and optimized applying Box-Behnken design. The optimized mirtazapine loaded SLNs were characterized for physicochemical parameters and morphology. The in vitro cytotoxicity and cellular uptake studies of optimized SLNs were performed in human epithelial A-431 cell line. Further, the optimized mirtazapine loaded SLNs dispersion was incorporated into gel and characterized for rheology and texture analysis. The particle size and PDI of optimized mirtazapine loaded was found to be 180.3 nm and 0.209 respectively. The cytotoxicity studies revealed the safety of mirtazapine loaded SLNs on topical administration. The developed gel showed pseudoplastic flow behavior and good textural profile. The in vitro drug release studies showed that the developed mirtazapine loaded SLNs dispersion and its gel followed Korsmeyer-Peppas model (R2 = 0.905) and Higuchi model (R2 = 0.928) respectively. The ex vivo drug permeation studies showed higher values for mean cumulative amount of drug released (548.25 ± 29.29 μg/cm2), permeation flux (45.10 ± 0.78 μg/cm2/h) and skin retention (11.33 ± 0.85%) of SLNs gel in comparison to pure drug gel. The stability studies indicate the stability of SLNs gel for three months at refrigerated and ambient temperatures. Therefore, abovementioned findings suggest that mirtazapine loaded SLNs could be a potential system for topical management of pruritus.
Collapse
|
75
|
Wani TU, Mohi-Ud-Din R, Majeed A, Kawoosa S, Pottoo FH. Skin Permeation of Nanoparticles: Mechanisms Involved and Critical Factors Governing Topical Drug Delivery. Curr Pharm Des 2020; 26:4601-4614. [PMID: 32611291 DOI: 10.2174/1381612826666200701204010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Transdermal route has been an ever sought-after means of drug administration, regarded as being the most convenient and patient compliant. However, skin poses a great barrier to the entry of the external particles including bacteria, viruses, allergens, and drugs as well (mostly hydrophilic or high molecular weight drugs), consequent to its complex structure and composition. Among the various means of enhancing drug permeation through the skin, e.g. chemical permeation enhancers, electroporation, thermophoresis, etc. drug delivery through nanoparticles has been of great interest. Current literature reports a vast number of nanoparticles that have been implicated for drug delivery through the skin. However, a precise account of critical factors involved in drug delivery and mechanisms concerning the permeation of nanoparticles through the skin is necessary. The purpose of this review is to enumerate the factors crucial in governing the prospect of drug delivery through skin and classify the skin permeation mechanisms of nanoparticles. Among the various mechanisms discussed are the ones governed by principles of kinetics, osmotic gradient, adhesion, hydration, diffusion, occlusion, electrostatic interaction, thermodynamics, etc. Among the most common factors affecting skin permeation of nanoparticles that are discussed include size, shape, surface charge density, composition of nanoparticles, mechanical stress, pH, etc.
Collapse
Affiliation(s)
- Taha Umair Wani
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Pharmacogosy and Phytochemistry Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Asmat Majeed
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Shabnam Kawoosa
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, P.O. BOX 1982, Dammam, Saudi Arabia
| |
Collapse
|
76
|
Fazelifar P, Tabrizi MH, Rafiee A. The Arachis hypogaea Essential Oil Nanoemulsion as an Efficient Safe Apoptosis Inducer in Human Lung Cancer Cells (A549). Nutr Cancer 2020; 73:1059-1067. [PMID: 32586130 DOI: 10.1080/01635581.2020.1783330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanoemulsions have improved therapeutic efficiency. In this regard, due to the Arachis hypogaea components such as flavonoids, we planned to produce Arachis hypogaea oil nanoemulsion (AHO-NE) in order to evaluate its anticancer impacts on A549 lung cancer cells. The AHO-NE was formulated by ultrasonication, characterized, and used in treating A549 cells. Then, we evaluated Caspase-3 gene expression, flow cytometry results, and MTT assay on A549 cells to check its anticancer impacts. The 50.3 nm AHO-NE significantly reduced the of A549 cells' viability comparing with HFF normal cells. The increasing SubG1 peaks and Cas3 overexpression indicate the AHO-NE apoptotic impact on A549 cells. We found its antioxidant activity (ABTS IC50 = 270.42 μg/ml and DPPH IC50 = 208.51 μg/ml). In conclusion, AHO-NE has the potential to be used as an exclusive cell-dependent anticancer compound in A549 lung cancer cells.
Collapse
Affiliation(s)
- Parastoo Fazelifar
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Aras Rafiee
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
77
|
Pucek A, Tokarek B, Waglewska E, Bazylińska U. Recent Advances in the Structural Design of Photosensitive Agent Formulations Using "Soft" Colloidal Nanocarriers. Pharmaceutics 2020; 12:E587. [PMID: 32599791 PMCID: PMC7356306 DOI: 10.3390/pharmaceutics12060587] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for effective delivery of photosensitive active compounds has resulted in the development of colloid chemistry and nanotechnology. Recently, many kinds of novel formulations with outstanding pharmaceutical potential have been investigated with an expansion in the design of a wide variety of "soft" nanostructures such as simple or multiple (double) nanoemulsions and lipid formulations. The latter can then be distinguished into vesicular, including liposomes and "smart" vesicles such as transferosomes, niosomes and ethosomes, and non-vesicular nanosystems with solid lipid nanoparticles and nanostructured lipid carriers. Encapsulation of photosensitive agents such as drugs, dyes, photosensitizers or antioxidants can be specifically formulated by the self-assembly of phospholipids or other amphiphilic compounds. They are intended to match unique pharmaceutic and cosmetic requirements and to improve their delivery to the target site via the most common, i.e., transdermal, intravenous or oral administration routes. Numerous surface modifications and functionalization of the nanostructures allow increasing their effectiveness and, consequently, may contribute to the treatment of many diseases, primarily cancer. An increasing article number is evidencing significant advances in applications of the different classes of the photosensitive agents incorporated in the "soft" colloidal nanocarriers that deserved to be highlighted in the present review.
Collapse
Affiliation(s)
| | | | | | - Urszula Bazylińska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (A.P.); (B.T.); (E.W.)
| |
Collapse
|
78
|
Asmawi AA, Salim N, Abdulmalek E, Abdul Rahman MB. Modeling the Effect of Composition on Formation of Aerosolized Nanoemulsion System Encapsulating Docetaxel and Curcumin Using D-Optimal Mixture Experimental Design. Int J Mol Sci 2020; 21:E4357. [PMID: 32575390 PMCID: PMC7352744 DOI: 10.3390/ijms21124357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 02/03/2023] Open
Abstract
The synergistic anticancer effect of docetaxel (DTX) and curcumin (CCM) has emerged as an attractive therapeutic candidate for lung cancer treatment. However, the lack of optimal bioavailability because of high toxicity, low stability, and poor solubility has limited their clinical success. Given this, an aerosolized nanoemulsion system for pulmonary delivery is recommended to mitigate these drawbacks. In this study, DTX- and CCM-loaded nanoemulsions were optimized using the D-optimal mixture experimental design (MED). The effect of nanoemulsion compositions towards two response variables, namely, particle size and aerosol size, was studied. The optimized formulations for both DTX- and CCM-loaded nanoemulsions were determined, and their physicochemical and aerodynamic properties were evaluated as well. The MED models achieved the optimum formulation for DTX- and CCM-loaded nanoemulsions containing a 6.0 wt% mixture of palm kernel oil ester (PKOE) and safflower seed oils (1:1), 2.5 wt% of lecithin, 2.0 wt% mixture of Tween 85 and Span 85 (9:1), and 2.5 wt% of glycerol in the aqueous phase. The actual values of the optimized formulations were in line with the predicted values obtained from the MED, and they exhibited desirable attributes of physicochemical and aerodynamic properties for inhalation therapy. Thus, the optimized formulations have potential use as a drug delivery system for a pulmonary application.
Collapse
Affiliation(s)
- Azren Aida Asmawi
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
| | - Norazlinaliza Salim
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
- UPM-MAKNA Cancer Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
79
|
Godbole MD, Sabale PM, Mathur VB. Development of lamivudine liposomes by three-level factorial design approach for optimum entrapment and enhancing tissue targeting. J Microencapsul 2020; 37:431-444. [DOI: 10.1080/02652048.2020.1778806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mangesh D. Godbole
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
- Kamla Nehru College of Pharmacy, Nagpur, India
| | - Prafulla M. Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | | |
Collapse
|
80
|
A novel microwave-assisted synthesis, characterization and evaluation of luliconazole-loaded solid lipid nanoparticles. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03220-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
81
|
Pottoo FH, Javed MN, Rahman JU, Abu-Izneid T, Khan FA. Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. Semin Cancer Biol 2020; 69:391-398. [PMID: 32302695 DOI: 10.1016/j.semcancer.2020.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive (WHO grade IV) form of diffuse glioma endowed with tremendous invasive capacity. The availability of narrow therapeutic choices for GBM management adds to the irony, even the post-treatment median survival time is roughly around 14-16 months. Gene mutations seem to be cardinal to GBM formation, owing to involvement of amplified and mutated receptor tyrosine kinase (RTK)-encoding genes, leading to dysregulation of growth factor signaling pathways. Of-late, the role of different microRNAs (miRNAs) in progression and proliferation of GBM was realized, which lead to their burgeon potential applications for diagnostic and therapeutic purposes. miRNA signatures are intricately linked with onset and progression of GBM. Although, progression of GBM causes significant changes in the BBB to form BBTB, but still efficient passage of cancer therapeutics, including antibodies and miRNAs are prevented, leading to low bioavailability. Recent developments in the nanomedicine field provide novel approaches to manage GBM via efficient and brain targeted delivery of miRNAs either alone or as part of cytotoxic pharmaceutical composition, thereby modulating cell signaling in well predicted manner to promise positive therapeutic outcomes.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India; School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India.
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
82
|
Ahmad N, Ahmad R, Mohammed Buheazaha T, Salman AlHomoud H, Al-Nasif HA, Sarafroz M. A comparative ex vivo permeation evaluation of a novel 5-Fluorocuracil nanoemulsion-gel by topically applied in the different excised rat, goat, and cow skin. Saudi J Biol Sci 2020; 27:1024-1040. [PMID: 32256163 PMCID: PMC7105695 DOI: 10.1016/j.sjbs.2020.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 01/05/2023] Open
Abstract
AIM OF THE STUDY 5-Fluorouracil (5-FU) can't be given orally because of very low bioavailability and produces serious adverse effects. Therefore, the main objective of this research is to develop, evaluate, and comparative effects by different nanoformulations of topical application on chemoprevention of skin cancer in different types of skin. MATERIAL AND METHODS Castor oil (oil), Transcutol HP (surfactant), and Polyethylene glycol (PEG)-400 (co-surfactant) have taken on the basis of nonionic property and highest nanoemulsion (NE)-region. Aqueous micro titration method with ultra-sonication method (based on high energy) was used for the preparation of 5-FU-NE. Optimized-5-FU-NE was stable thermodynamically, and their characterizations was performed on the basis of globule size, zeta potential, refractive index, and viscosity. Optimized-NE has been converted into 5-FU-NE-Gel with the help of Carbopol® 934 and also performed their permeation studies in the different skins (cow, goat, and rat, ex vivo) using Logan transdermal diffusion cell (DHC-6T). Optimized-5-FU-NE and 5-FU-NE-Gel were evaluated cytotoxic studies (in vitro) on the melanoma cell lines. RESULTS The permeation of 5-FU from 5-FU-NE-Gel nanoformulation for rat skin model was 1.56 times higher than the 5-FU-NE and 12.51 times higher than the 5-FU-S for the cow and goat skin model. The values of steady state flux and permeability coefficient for 5-FU-NE-Gel of rat skin were higher i.e. 12.0244 ± 1.12 µgcm-2h-1 and 1.2024 ± 0.073 × 10-2 µg cm-2h-1, respectively. Optimized-5-FU-NE and 5-FU-NE-Gel nanoformulation were found to be physically stable. SK-MEL-5 cancer cells have showed the results based on cytotoxicity studies (in vitro) that 5-FU as Optimized-5-FU-NE-Gel is much more efficacious than 5-FU-NE followed by free 5-FU. Localization of 5-FU from 5-FU-NE-Gel was higher with higher permeation in rat skin. CONCLUSION 5-FU-NE-Gel is found to be for the better to treatment of cutaneous malignancies. It can be developed 5-FU-NE-Gel could be a promising vehicle for the skin cancer chemoprevention.
Collapse
Key Words
- 5-FU, 5-Fluorouracil
- 5-FU-NE-Gel, 5-Fluorouracil Nanoemulsion Gel
- 5-Fluorouracil
- ANOVA, Analysis of variance
- BCS, Biopharmaceutical Classification System
- Cytotoxic activity
- DDTC, Diethyldithiocarbamate
- DSC, Differential Scanning Calorimetry
- Different skin permeation, chemoprevention
- Electrospray Ionization, ESI
- Er, Enhancement Ratio
- FT-IR, Fourier-transform infrared spectroscopy
- Kp, Permeability Coefficient
- Local accumulation efficiency
- NE, Nanoemulsion
- Nanoemulsion
- Nanoemulsion-gel
- PBS, phosphate buffered solution
- PDI, Polydispersity Index
- RI, Refractive index
- SEM, Scanning Electron Microscope
- TEM, Transmission Electron Microscope
- Transdermal delivery
- UHPLC-MS/MS, Ultra high performance liquid chromatography mass spectroscopy and mass spectroscopy
- ZP, Zeta Potential
Collapse
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Taysser Mohammed Buheazaha
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hussain Salman AlHomoud
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hassan Ali Al-Nasif
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Md Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
83
|
Aman RM, Abu Hashim II, Meshali MM. Novel Clove Essential Oil Nanoemulgel Tailored by Taguchi's Model and Scaffold-Based Nanofibers: Phytopharmaceuticals with Promising Potential as Cyclooxygenase-2 Inhibitors in External Inflammation. Int J Nanomedicine 2020; 15:2171-2195. [PMID: 32280213 PMCID: PMC7125334 DOI: 10.2147/ijn.s246601] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/07/2020] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Clove essential oil is a phytochemical possessing a vast array of biological activities. Nevertheless, fabricating nano topical delivery systems targeted to augment the anti-inflammatory activity of the oil has not been investigated so far. Accordingly, in this study, controlled release nanoparticulate systems, namely nanoemulgel and nanofibers (NFs), of the oil were developed to achieve such goal. METHODS The nanoemulsion was incorporated in the hydrogel matrix of mixed biopolymers - chitosan, guar gum and gum acacia - to formulate nanoemulsion-based nanoemulgel. Taguchi's model was adopted to evaluate the effect of independently controlled parameters, namely, the concentration of chitosan (X1), guar gum (X2), and gum acacia (X3) on different dependently measured parameters. Additionally, the nanoemulsion-based NFs were prepared by the electrospinning technique using polyvinyl alcohol (PVA) polymer. Extensive in vitro, ex vivo and in vivo evaluations of the aforementioned formulae were conducted. RESULTS Both Fourier transform-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) established the complete dispersion of the nanoemulsion in the polymeric matrices of the prepared nanoemulgel and NFs. The ex vivo skin permeation data of clove essential oil from the prepared formulations showed that NFs can sustain its penetration through the skin comparably with nanoemulgel. Topical treatment with NFs (once application) and nanoemulgel (twice application) evoked a marvelous in vivo anti-inflammatory activity against croton oil-induced mouse skin inflammation model when compared with pure clove essential oil along with relatively higher efficacy of medicated NFs than that of medicated nanoemulgel. Such prominent anti-inflammatory activity was affirmed by histopathological and immunohistochemical examinations. CONCLUSION These results indicated that nanoemulsion-based nanoemulgel and nanoemulsion-based NFs could be introduced to the phytomedicine field as promising topical delivery systems for effective treatment of inflammatory diseases instead of nonsteroidal anti-inflammatory drugs that possess adverse effects.
Collapse
Affiliation(s)
- Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | | | | |
Collapse
|
84
|
Duan Y, Li K, Wang H, Wu T, Zhao Y, Li H, Tang H, Yang W. Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydr Polym 2020; 238:116195. [PMID: 32299553 DOI: 10.1016/j.carbpol.2020.116195] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/01/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
Curcumin grafted hyaluronic acid modified pullulan polymers (Cur-HA-SPu) by chemical conjugation was designed and prepared, and its film may be used to accelerate wound healing and help to fight infection. The synthesis of Cur-HA-SPu polymer was characterized by FT-IR, 1H NMR and DSC. Cur-HA-SPu film has a higher swelling ratio than that of HA-SPu film. Moreover, the good biocompatibility of Cur-HA-SPu polymer was confirmed by skin irritation, cytotoxicity and hemolysis tests. Compared to Cur, the MTT and proliferation test carried out in L929 cells revealed that Cur-HA-SPu polymer showed no cytotoxicity and enhanced cell proliferation. Cur-HA-SPu polymer exhibited a certain bactericidal activity against E. coli and S. aureus. Furthermore, the materials showed antioxidant activity when DPPH method determined. Wound healing study using wistar rat model demonstrated that Cur-HA-SPu film obtained better wound healing result than that of HA-SPu film or natural healing. The above results suggest that Cur-HA-SPu film is a promising and safety formulation for accelerating skin wound healing.
Collapse
Affiliation(s)
- Yumeng Duan
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China
| | - Kaiyue Li
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China
| | - Huangwei Wang
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China
| | - Tong Wu
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China
| | - Yafei Zhao
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China
| | - Haiying Li
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China.
| | - Hongbo Tang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, PR China.
| | - Wenzhi Yang
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China.
| |
Collapse
|
85
|
Cadmium(II) ion removal from aqueous solution using chitosan oligosaccharide-based blend. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03136-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
86
|
Dave V, Bhardwaj N, Gupta N, Tak K. Herbal ethosomal gel containing luliconazole for productive relevance in the field of biomedicine. 3 Biotech 2020; 10:97. [PMID: 32099738 PMCID: PMC7005235 DOI: 10.1007/s13205-020-2083-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/20/2020] [Indexed: 01/23/2023] Open
Abstract
This study includes development, characterization, and optimization of herbal ethosomal formulation. The aim of the present study is to develop drug loaded ethosomes capped with Azadirachta indica (neem) which, was further incorporated in Carbopol 934 K thereby, resulting in the formation of ethosomal gel. The formulation is aimed to express effective treatment against fungal infection. The build was formulated using drug (Luliconazole), soyalecithin, ethanolic neem extract and propylene glycol. In total nine ethosomal, formulations of distinct concentrations of ingredients were processed, to determine out the optimized formulation among the all. Further the prepared drug loaded ethosomes were subjected to various evaluation parameters like particle size, zeta potential, polydispersity index (PDI) and % entrapment efficiency. For the evaluation of its surface morphology, transmission electron microscopy was executed whereas, atomic force microscopy was carried out which contributes in detail and depth information of surface morphology. For the analysis of thermal behavior Thermal gravimetric analysis graph was obtained for luliconazole, soyalecithin, neem extract, physical mixture and optimized formulation (LF5). Attenuated total internal reflection Fourier transforms infra-red spectroscopy was performed for luliconazole, soyalecithin, neem extract, physical mixture, and optimized formulation (LF5) to examine the interaction between the drug and the excipients. Viscosity, pH, spreadability and extrudability of the ethosomal gel were calculated to determine the suitability of the formulation for topical application. In vitro drug permeation study and antifungal activity was executed out with the aid of Wistar albino rat skin model and tube dilution assay respectively. The complete study wrap up, that this herbal ethosomal approach provides advanced sustained and targeted delivery of luliconazole. On analyzing the results, ethosomal formulation LF5 was found to be optimized one, due to its optimum concentration of soyalecithin (300 mg) and ethanol (35%). Hence it has maximum entrapment efficiency of 86.56 ± 0.74%. Optimum vesicle size, zeta potential, and PDI were found to be 155.30 ± 1.2 nm, - 42.20 ± 0.3 mV, and 0.186 ± 0.07 respectively. In vitro drug permeation study expresses release of 83.45 ± 2.51 in 24 h whereas; the in vivo activity proved that LF5 is more active and effective against Candida parapsilosis in comparison to Aspergillus niger. In the end, it was estimated that ethosomal suspension and lyophilized ethosomal suspension was utmost stable at 4 °C/60 ± 5 RH. The complete study clearly indicates that the buildup of ethosomal formulation with luliconazole and neem extract show synergistic effect thereby, expressing excellent result against the treatment of fungal infection.
Collapse
Affiliation(s)
- Vivek Dave
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| | - Nishant Bhardwaj
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| | - Nikita Gupta
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| | - Kajal Tak
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| |
Collapse
|
87
|
Ahmad N, Ahmad R, Ahmad FJ, Ahmad W, Alam MA, Amir M, Ali A. Poloxamer-chitosan-based Naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J Biol Sci 2020; 27:500-517. [PMID: 31889876 PMCID: PMC6933235 DOI: 10.1016/j.sjbs.2019.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Here, the aim is to improve the bioavailability of Naringenin (NRG) in brain and to establish the highest remedial benefit from a novel anti-ischemic medicine i.e. NRG. METHODS A novel Naringenin-loaded-nanoemulsion (NE)-(in situ)-gel (i.e. thermoresponsive), was formulated with the help of Poloxamer-407 (20.0% w/v). Chitosan (CS, 0.50% w/v) was used to introduce the mucoadhesive property of NE-(in situ)-gel and finally called as NRG-NE-gel + 0.50%CS. A novel UHPLC-ESI-Q-TOF-MS/MS-method was optimized and used for NRG-NE-gel + 0.50%CS to quantify the Pharmacokinetic-(PK)-parameters in plasma as well as brain and to evaluate the cerebral ischemic parameters after MCAO i.e. locomotor activity, grip strength, antioxidant activity, and quantity the infarction volume in neurons with the safety/toxicity of NRG-NE-gel + 0.50%CS after i.n. administration in the rats. RESULTS The mucoadhesive potency and gelling temperature of NRG-NE-gel + 0.50%CS were observed 6245.38 dynes/cm2 and 28.3 ± 1.0 °C, respectively. Poloxamer-407 based free micelles size was observed 98.31 ± 1.17 nm with PDI (0.386 ± 0.021). The pH and viscosity of NRG-NE-gel + 0.50%CS were found to be 6.0 ± 0.20 and 2447 ± 24cp (at 35.0 ± 1.0 °C temperature), respectively. An elution time and m/z NRG were observed 1.78 min and 270.97/150.96 with 1.22 min and m/z of 301.01/150.98 for Quercetin (IS) respectively. Inter and intra %precision and %accuracy was validated 1.01-3.37% and 95.10-99.30% with a linear dynamic range (1.00 to 2000.00 ng/ml). AUC0-24 of plasma & brain were observed 995.60 ± 24.59 and 5600.99 ± 144.92 (ng min/ml g) in the rats after the intranasal (i.n.) administration of NRG-NE-gel + 0.50%CS. No toxicological response were not found in terms of mortalities, any-change morphologically i.e. in the microstructure of brain as well as nasal mucosa tissues, and also not found any visual signs in terms of inflammatory or necrosis. CONCLUSION Intranasally administered NRG-NE-gel + 0.50%CS enhanced the bioavailability of Naringenin in the brain. In the cerebral ischemic rats, significantly improved the neurobehavioral activity (locomotor & grip strength) followed by antioxidant activity as well as infarction volume. Finally, the toxicity studies carried out and established the safe nature of optimized-NRG-NE-gel + 0.50%CS.
Collapse
Key Words
- ANOVA., analysis of variance
- AUC, area under curve
- BA, bioavailability
- CLSM, confocal laser scanning microscopy
- CS, chitosan
- Cerebral ischemia
- Cmax, maximum plasma concentration
- ESI, electrospray ionization
- HQC, high quality control
- Kel, elimination rate constant
- LLE, liquid–liquid extraction
- LLOQ QC, lower limit of quantification for quality control
- LLOQ, lower limit of quantification
- LOD, lower limit of detection
- LOQ, lower limit of quantitation
- LQC, low quality control
- MCAO, middle cerebral artery occlusion
- MCAO-oxidative stress
- MQC, middle quality control
- Mucoadhesive-chitosan-based-nanoemulsion-gel
- NE, nanoemulsion
- NRG, naringenin
- Naringenin
- PDI, polydispersity index
- PK, pharmacokinetic
- Q-TOF, quadrupole time of flight
- SEM, scanning electron microscope
- TBARS, thiobarbituric acid reactive substances
- TEM, transmission electron microscope
- Tmax, time to Cmax
- UHPLC-MS/MS, ultra high performance liquid chromatography mass spectroscopy and mass spectroscopy
- UHPLC-MS/MS-pharmacokinetic
- t½, half-life
Collapse
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Farhan Jalees Ahmad
- Nanomedicine Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Wasim Ahmad
- Department of Pharmacy, Mohammad Al-Mana College for Medical Sciences, Safaa, Dammam-34222, Saudi Arabia
| | - Md Aftab Alam
- Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida 201310, India
| | - Mohd Amir
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abuzer Ali
- College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|
88
|
Kumar A, Walia H, Pottoo FH, Javed MN. Insights of Nanophytomedicines as a Combinatorial Therapy in Disease Diagnosis and Treatment. NANOPHYTOMEDICINE 2020:113-132. [DOI: 10.1007/978-981-15-4909-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
89
|
Javed MN, Dahiya ES, Ibrahim AM, Alam MS, Khan FA, Pottoo FH. Recent Advancement in Clinical Application of Nanotechnological Approached Targeted Delivery of Herbal Drugs. NANOPHYTOMEDICINE 2020:151-172. [DOI: 10.1007/978-981-15-4909-0_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
|