51
|
Ge M, Wang Y, Carraro F, Liang W, Roostaeinia M, Siahrostami S, Proserpio DM, Doonan C, Falcaro P, Zheng H, Zou X, Huang Z. High‐Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meng Ge
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Weibin Liang
- Department of Chemistry and the Centre for Advanced Nanomaterials The University of Adelaide Adelaide 5005 South Australia Australia
| | - Morteza Roostaeinia
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary Alberta T2N1N4 Canada
| | - Samira Siahrostami
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary Alberta T2N1N4 Canada
| | - Davide M. Proserpio
- Dipartimento di Chimica Università degli Studi di Milano 20133 Milano Italy
- Samara Center for Theoretical Materials Science (SCTMS) Samara State Technical University Samara 443100 Russia
| | - Christian Doonan
- Department of Chemistry and the Centre for Advanced Nanomaterials The University of Adelaide Adelaide 5005 South Australia Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
52
|
Three-Dimensional Electron Diffraction for Structural Analysis of Beam-Sensitive Metal-Organic Frameworks. CRYSTALS 2021. [DOI: 10.3390/cryst11030263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrons interact strongly with matter, which makes it possible to obtain high-resolution electron diffraction data from nano- and submicron-sized crystals. Using electron beam as a radiation source in a transmission electron microscope (TEM), ab initio structure determination can be conducted from crystals that are 6–7 orders of magnitude smaller than using X-rays. The rapid development of three-dimensional electron diffraction (3DED) techniques has attracted increasing interests in the field of metal-organic frameworks (MOFs), where it is often difficult to obtain large and high-quality crystals for single-crystal X-ray diffraction. Nowadays, a 3DED dataset can be acquired in 15–250 s by applying continuous crystal rotation, and the required electron dose rate can be very low (<0.1 e s−1 Å−2). In this review, we describe the evolution of 3DED data collection techniques and how the recent development of continuous rotation electron diffraction techniques improves data quality. We further describe the structure elucidation of MOFs using 3DED techniques, showing examples of using both low- and high-resolution 3DED data. With an improved data quality, 3DED can achieve a high accuracy, and reveal more structural details of MOFs. Because the physical and chemical properties of MOFs are closely associated with their crystal structures, we believe 3DED will only increase its importance in developing MOF materials.
Collapse
|
53
|
Zhou Z, Vázquez-González M, Willner I. Stimuli-responsive metal-organic framework nanoparticles for controlled drug delivery and medical applications. Chem Soc Rev 2021; 50:4541-4563. [PMID: 33625421 DOI: 10.1039/d0cs01030h] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stimuli-responsive metal-organic framework nanoparticles, NMOFs, provide a versatile platform for the controlled release of drugs and biomedical applications. The porous structure of NMOFs, their biocompatibility, low toxicity, and efficient permeability turn the NMOFs into ideal carriers for therapeutic applications. Two general methods to gate the drug-loaded NMOFs and to release the loads were developed: by one method, the loaded NMOFs are coated or surface-modified with stimuli-responsive gates being unlocked in the presence of appropriate chemical (e.g., ions or reducing agents), physical (e.g., light or heat), or biomarker (e.g., miRNA or ATP) triggers. By a second approach, the drug-loaded NMOFs include encoded structural information or co-added agents to induce the structural distortion or stimulate the degradation of the NMOFs. Different chemical triggers such as pH changes, ions, ATP, or redox agents, and physical stimuli such as light or heat are applied to degrade the NMOFs, resulting in the release of the loads. In addition, enzymes, DNAzymes, and disease-specific biomarkers are used to unlock the gated NMOFs. The triggered release of drugs for cancer therapy, anti-blood clotting, and the design of autonomous insulin-delivery systems ("artificial pancreas") are discussed. Specifically, multi-drug carrier systems and functional NMOFs exhibiting dual and cooperative therapeutic functions are introduced. The future perspectives and applications of stimuli-responsive particles are addressed.
Collapse
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
54
|
Alimi LO, Alyami MZ, Chand S, Baslyman W, Khashab NM. Coordination-based self-assembled capsules (SACs) for protein, CRISPR-Cas9, DNA and RNA delivery. Chem Sci 2021; 12:2329-2344. [PMID: 34163998 PMCID: PMC8179292 DOI: 10.1039/d0sc05975g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Biologics, such as functional proteins and nucleic acids, have recently dominated the drug market and comprise seven out of the top 10 best-selling drugs. Biologics are usually polar, heat sensitive, membrane impermeable and subject to enzymatic degradation and thus require systemic routes of administration and delivery. Coordination-based delivery vehicles, which include nanosized extended metal-organic frameworks (nMOFs) and discrete coordination cages, have gained a lot of attention because of their remarkable biocompatibility, in vivo stability, on-demand biodegradability, high encapsulation efficiency, easy surface modification and moderate synthetic conditions. Consequently, these systems have been extensively utilized as carriers of biomacromolecules for biomedical applications. This review summarizes the recent applications of nMOFs and coordination cages for protein, CRISPR-Cas9, DNA and RNA delivery. We also highlight the progress and challenges of coordination-based platforms as a promising approach towards clinical biomacromolecule delivery and discuss integral future research directions and applications.
Collapse
Affiliation(s)
- Lukman O Alimi
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mram Z Alyami
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Santanu Chand
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Walaa Baslyman
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
55
|
|
56
|
Liang C, Lin H, Guo W, Lu X, Yu D, Fan S, Zhang F, Qu F. Amperometric sensor based on ZIF/g-C 3N 4/RGO heterojunction nanocomposite for hydrazine detection. Mikrochim Acta 2021; 188:48. [PMID: 33486540 DOI: 10.1007/s00604-021-04711-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/10/2021] [Indexed: 11/29/2022]
Abstract
A dense zeolitic imidazolate framework (ZIF) nanosheet is for the first time molded by reduced graphite oxide (RGO) and graphitic carbon nitride (g-C3N4) to fabricate an original 2D/2D/2D heterojunction (ZIF/g-C3N4/RGO nanohybrid), which is pipetted onto carbon cloth electrode (CCE) (ZIF/g-C3N4/RGO/CCE) as an electrochemical sensor. Profiting from the renowned synergistic and coupling effects, the resulting nanohybrid endows excellent electrocatalytic activity towards hydrazine. Amperometric detection reveals that the hybrid sensor possesses a low detection limit of 32 nM (S/N = 3) in a monitoring range of 0.0001 to 1.0386 mM, along with a high sensitivity 93.71 μA mM-1 cm-2. Importantly, the minimum detection concentration of hydrazine in the actual sample is lower than the maximum allowable limit of the World Health Organization (WHO) and has high reproducibility (RSD = 4.82%). As expected, the high sensing capability of ZIF/g-C3N4/RGO combines the advantages of abundant surface-active sites and high conductivity along with 2D interfaces between ZIF, g-C3N4, and RGO nanosheets. This study provides a promising to expand 2D-based ternary nanojunction as a bridge for promoting sensing performance.Graphical abstract.
Collapse
Affiliation(s)
- Cuiyuan Liang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Xing Lu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Dexin Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Songjie Fan
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China. .,Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, People's Republic of China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China. .,Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, People's Republic of China.
| |
Collapse
|
57
|
Liang W, Wied P, Carraro F, Sumby CJ, Nidetzky B, Tsung CK, Falcaro P, Doonan CJ. Metal–Organic Framework-Based Enzyme Biocomposites. Chem Rev 2021; 121:1077-1129. [DOI: 10.1021/acs.chemrev.0c01029] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Weibin Liang
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Peter Wied
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christopher J. Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, 8010 Graz, Austria
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christian J. Doonan
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
58
|
Huang Z, Grape ES, Li J, Inge AK, Zou X. 3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213583] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
59
|
Huang Z, Ge M, Carraro F, Doonan C, Falcaro P, Zou X. Can 3D electron diffraction provide accurate atomic structures of metal–organic frameworks? Faraday Discuss 2021; 225:118-132. [DOI: 10.1039/d0fd00015a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Structure determination by continuous rotation electron diffraction can be as feasible and accurate as single crystal X-ray diffraction without the need for large crystals.
Collapse
Affiliation(s)
- Zhehao Huang
- Department of Materials and Environmental Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Meng Ge
- Department of Materials and Environmental Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Christian Doonan
- Department of Chemistry and the Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| |
Collapse
|
60
|
Huang Z, Willhammar T, Zou X. Three-dimensional electron diffraction for porous crystalline materials: structural determination and beyond. Chem Sci 2020; 12:1206-1219. [PMID: 34163882 PMCID: PMC8179196 DOI: 10.1039/d0sc05731b] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022] Open
Abstract
Porous crystalline materials such as zeolites, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have attracted great interest due to their well-defined pore structures in molecular dimensions. Knowing the atomic structures of porous materials is crucial for understanding their properties and exploring their applications. Many porous materials are synthesized as polycrystalline powders, which are too small for structure determination by X-ray diffraction. Three-dimensional electron diffraction (3DED) has been developed for studying such materials. In this Minireview, we summarize the recent developments of 3DED methods and demonstrate how 3DED revolutionized structural analysis of zeolites, MOFs, and COFs. Zeolites and MOFs whose structures remained unknown for decades could be solved. New approaches for design and targeted synthesis of novel zeolites could be developed. Moreover, we discuss the advances of structural analysis by 3DED in revealing the unique structural features and properties, such as heteroatom distributions, mixed-metal frameworks, structural flexibility, guest-host interactions, and structure transformation.
Collapse
Affiliation(s)
- Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm SE-106 91 Sweden
| | - Tom Willhammar
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm SE-106 91 Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm SE-106 91 Sweden
| |
Collapse
|
61
|
Singh N, Ahmed S, Fakim A, Qutub S, Alahmed O, El Tall O, Shekhah O, Eddaoudi M, Khashab NM. In situ assembled ZIF superstructures via an emulsion-free soft-templating approach. Chem Sci 2020; 11:11280-11284. [PMID: 34094369 PMCID: PMC8162773 DOI: 10.1039/d0sc04513f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Assembling well-defined MOF superstructures remains challenging as it requires easily removable hard templates or readily available immiscible solutions for an emulsion-based soft-template approach. In this work, a single-step emulsion-free soft templating approach is reported to spontaneously prepare hollow ZIF-8 and ZIF-67 colloidosomes with no further purification. These superstructures can load different enzymes regardless of the size and charge with a high encapsulation efficiency of 99%. We envisage that this work will expand the repertoires of MOF superstructures by the judicious selection of precursors and the reaction medium.
Collapse
Affiliation(s)
- Namita Singh
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Sana Ahmed
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Aliyah Fakim
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Somayah Qutub
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Othman Alahmed
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Omar El Tall
- KAUST Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Osama Shekhah
- Prof. Mohamed Eddaoudi Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Prof. Mohamed Eddaoudi Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
62
|
Abstract
This review is devoted to discussion of the latest advances in design and applications of boron imidazolate frameworks (BIFs) that are a particular sub-family of zeolite-like metal–organic frameworks family. A special emphasis is made on nanostructured hybrid materials based on BIF matrices and their modern applications, especially in environment remediation and energy conversion.
Collapse
|
63
|
Velásquez-Hernández MDJ, Astria E, Winkler S, Liang W, Wiltsche H, Poddar A, Shukla R, Prestwich G, Paderi J, Salcedo-Abraira P, Amenitsch H, Horcajada P, Doonan CJ, Falcaro P. Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans. Chem Sci 2020; 11:10835-10843. [PMID: 34094337 PMCID: PMC8162298 DOI: 10.1039/d0sc01204a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/11/2020] [Indexed: 11/21/2022] Open
Abstract
Glycosaminoglycans (GAGs) are biomacromolecules necessary for the regulation of different biological functions. In medicine, GAGs are important commercial therapeutics widely used for the treatment of thrombosis, inflammation, osteoarthritis and wound healing. However, protocols for the encapsulation of GAGs in MOFs carriers are not yet available. Here, we successfully encapsulated GAG-based clinical drugs (heparin, hyaluronic acid, chondroitin sulfate, dermatan sulfate) and two new biotherapeutics in preclinical stage (GM-1111 and HepSYL proteoglycan) in three different pH-responsive metal-azolate frameworks (ZIF-8, ZIF-90, and MAF-7). The resultant GAG@MOF biocomposites present significant differences in terms of crystallinity, particle size, and spatial distribution of the cargo, which influences the drug-release kinetics upon applying an acidic stimulus. For a selected system, heparin@MOF, the released therapeutic retained its antithrombotic activity while the MOF shell effectively protects the drug from heparin lyase. By using different MOF shells, the present approach enables the preparation of GAG-based biocomposites with tunable properties such as encapsulation efficiency, protection and release.
Collapse
Affiliation(s)
| | - Efwita Astria
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9 Graz 8010 Austria
| | - Sarah Winkler
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9 Graz 8010 Austria
| | - Weibin Liang
- School of Physical Sciences, Faculty of Sciences, University of Adelaide South Australia 5005 Australia
| | - Helmar Wiltsche
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology 8010 Graz Austria
| | - Arpita Poddar
- School of Science, Nanobiotechnology Research Laboratory (NBRL), RMIT University 3001 Melbourne Australia
| | - Ravi Shukla
- School of Science, Nanobiotechnology Research Laboratory (NBRL), RMIT University 3001 Melbourne Australia
| | - Glenn Prestwich
- The University of Utah, College of Pharmacy Salt Lake City Utah 84112-5820 USA
| | - John Paderi
- Symic. Bio, Inc. 1400 Pine St., #640505 San Francisco CA 94164 USA
| | - Pablo Salcedo-Abraira
- Advanced Porous Materials Unit (APMU), IMDEA Energy Avda. Ramón de la Sagra 3 E-28935 Móstoles Madrid Spain
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Avda. Ramón de la Sagra 3 E-28935 Móstoles Madrid Spain
| | - Christian J Doonan
- School of Physical Sciences, Faculty of Sciences, University of Adelaide South Australia 5005 Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9 Graz 8010 Austria
| |
Collapse
|
64
|
Poddar A, Pyreddy S, Carraro F, Dhakal S, Rassell A, Field MR, Reddy TS, Falcaro P, Doherty CM, Shukla R. ZIF-C for targeted RNA interference and CRISPR/Cas9 based gene editing in prostate cancer. Chem Commun (Camb) 2020; 56:15406-15409. [DOI: 10.1039/d0cc06241c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal–organic-frameworks for gene therapy in prostate cancer – ZIF-C based delivery of RNA interference and CRISPR/Cas9 causes host gene expression knockdown. Coating with a green tea phytochemical enhances uptake and increases cancer cytotoxicity.
Collapse
Affiliation(s)
- Arpita Poddar
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | - Suneela Pyreddy
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Sudip Dhakal
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | - Andrea Rassell
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | - Matthew R. Field
- RMIT Microscopy & Microanalysis Facility
- RMIT University
- Melbourne
- Australia
| | - T. Srinivasa Reddy
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | | | - Ravi Shukla
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| |
Collapse
|
65
|
Khajavian R, Mirzaei M, Alizadeh H. Current status and future prospects of metal–organic frameworks at the interface of dye-sensitized solar cells. Dalton Trans 2020; 49:13936-13947. [DOI: 10.1039/d0dt02798g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this Frontier Article recent progresses and challenges at the interface of metal–organic frameworks and dye-sensitized solar cells are highlighted and discussed.
Collapse
Affiliation(s)
- Ruhollah Khajavian
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad 9177948974
- Iran
| | - Masoud Mirzaei
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad 9177948974
- Iran
| | - Hanie Alizadeh
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad 9177948974
- Iran
| |
Collapse
|
66
|
Ricco R, Wied P, Nidetzky B, Amenitsch H, Falcaro P. Magnetically responsive horseradish peroxidase@ZIF-8 for biocatalysis. Chem Commun (Camb) 2020; 56:5775-5778. [DOI: 10.1039/c9cc09358c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A porous model bioreactor is obtained combining zeolitic imidazolate framework ZIF-8 with horseradish peroxidase and iron oxide magnetic nanoparticles in a one-pot process, in water at room temperature.
Collapse
Affiliation(s)
- Raffaele Ricco
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Peter Wied
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
- Institute of Biotechnology and Biochemical Engineering
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering
- Graz University of Technology
- 8010 Graz
- Austria
- Austrian Centre of Industrial Biotechnology (acib)
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| |
Collapse
|