51
|
Zhong X, Liu Y, Liang W, Zhu Y, Hu B. Construction of Core-Shell MOFs@COF Hybrids as a Platform for the Removal of UO 22+ and Eu 3+ Ions from Solution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13883-13895. [PMID: 33689268 DOI: 10.1021/acsami.1c03151] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The binary nanocomposites of metal/covalent-organic frameworks (NH2-MIL-125(Ti)@TpPa-1) were constructed by solvothermal method, which was developed as a multifunctional platform with adsorption and photocatalysis for radionuclides removal. The batch experiments and physicochemical property (FT-IR, XRD, SEM, TEM, XPS, etc.) corroborated: (i) core-shell NH2-MIL-125(Ti)@TpPa-1 had a more stable, multilayer pore structure and abundant active functional groups; (ii) NH2-MIL-125(Ti)@TpPa-1 had fast a removal rate, as well as a high adsorption capacity of 536.73 mg (UO22+)/g and 593.97 mg (Eu3+)/g; (iii) the pseudo-second-order and Langmuir model provided a more reasonable description, indicating the immobilization process was endothermic, spontaneous chemisorption; (iv) the adsorption mechanism was chelation and electrostatic attraction, ascribed to the nitrogen/oxygen-containing functional groups. These results illustrated that NH2-MIL-125(Ti)@TpPa-1 was a prospective adsorbent for the remediation polluted by radionuclides. In addition, the research provided the theoretical basis for further investigation on the UO22+(VI) photoreduction.
Collapse
Affiliation(s)
- Xin Zhong
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P. R. China
| | - Yuxin Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P. R. China
| | - Wen Liang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P. R. China
| | - Yuling Zhu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P. R. China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P. R. China
| |
Collapse
|
52
|
Synthesis of multi-organo-functionalized fibrous silica KCC-1 for highly efficient adsorption of acid fuchsine and acid orange II from aqueous solution. Sci Rep 2021; 11:2716. [PMID: 33526831 PMCID: PMC7851152 DOI: 10.1038/s41598-021-81080-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Multi-functionalized fibrous silica KCC-1 (MF-KCC-1) bearing amine, tetrasulfide, and thiol groups was synthesized via a post-functionalization method and fully characterized by several methods such as FTIR, FESEM, EDX-Mapping, TEM, and N2 adsorption-desorption techniques. Due to abundant surface functional groups, accessible active adsorption sites, high surface area (572 m2 g-1), large pore volume (0.98 cm3 g-1), and unique fibrous structure, mesoporous MF-KCC-1 was used as a potential adsorbent for the uptake of acid fuchsine (AF) and acid orange II (AO) from water. Different adsorption factors such as pH of the dye solution, the amount of adsorbent, initial dye concentration, and contact time, affecting the uptake process were optimized and isotherm and kinetic studies were conducted to find the possible mechanism involved in the process. For both AF and AO dyes, the Langmuir isotherm model and the PFO kinetic model show the most agreement with the experimental data. According to the Langmuir isotherm, the calculated maximum adsorption capacity for AF and AO were found to be 574.5 mg g-1 and 605.9 mg g-1, respectively, surpassing most adsorption capacities reported until now which is indicative of the high potential of mesoporous MF-KCC-1 as an adsorbent for removal applications.
Collapse
|
53
|
Ghaforinejad H, Mazaheri H, Hassani Joshaghani A, Marjani A. Study on novel modified large mesoporous silica FDU-12/polymer matrix nanocomposites for adsorption of Pb(II). PLoS One 2021; 16:e0245583. [PMID: 33481897 PMCID: PMC7822333 DOI: 10.1371/journal.pone.0245583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/05/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, porous methacrylate-modified FDU-12/poly(methyl methacrylate) and amine-modified FDU-12/Nylon 6 nanocomposites were synthesized via a facile solution casting protocol. The physicochemical properties of the prepared materials were studied using various characterization techniques including Fourier transform-infrared spectroscopy, field emission-scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption/desorption. After characterization of the materials, the prepared nanocomposites were applied as novel adsorbents for the removal of Pb(II) from aqueous media. In this regard, the effect of various parameters including solution pH, adsorbent amount, contact time, and initial concentration of Pb(II) on the adsorption process was investigated. To study the mechanism of adsorption, kinetic studies were conducted. The kinetic models of pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion were employed. The results revealed that the adsorption of Pb(II) onto methacrylate-modified FDU-12/poly(methyl methacrylate) and amine-modified FDU-12/Nylon 6 adsorbents followed the pseudo-second-order kinetic model. Also, different isotherms including Langmuir, Freundlich, and Dubinin-Radushkevich were applied to evaluate the equilibrium adsorption data. Langmuir isotherm provided the best fit with the equilibrium data of both adsorbents with maximum adsorption capacities of 99.0 and 94.3 mg g-1 for methacrylate-modified FDU-12/poly(methyl methacrylate) and amine-modified FDU-12/Nylon 6, respectively, for the removal of Pb(II).
Collapse
Affiliation(s)
- Hamed Ghaforinejad
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | - Hossein Mazaheri
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | | | - Azam Marjani
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
54
|
Synthesis, molecular dynamics simulation and adsorption study of different pollutants on functionalized mesosilica. Sci Rep 2021; 11:1967. [PMID: 33479295 PMCID: PMC7820229 DOI: 10.1038/s41598-020-80566-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/23/2020] [Indexed: 11/08/2022] Open
Abstract
Experimental and computational works were carried out on a new type of mesoporous silica. In the experimental section, functionalized hollow mesosilica spheres were prepared via a facile technique and then evaluated using some analytical techniques (FESEM, TEM, L-XRD, FTIR, BET-BJH, and TGA). The obtained results revealed that the synthesized material had hollow structure with a diamino-grafted porous shell. The molecular separation of crystal Violet (CV) and neutral Red (NR) dyes from water were investigated by adsorption process using the synthesized powder. Influence of adsorbent loading was evaluated as adsorption ability and dyes removal efficiency. Also, the obtained modeling results revealed appropriate fitting of data with non-linear Langmuir model. The theoretical studies were employed to study the adsorption and removal mechanism of cationic (CV and NR) and anionic (orange II (OII)) dyes using molecular dynamics calculations. Moreover, the simulation outcomes provided valuable information about quantum chemical properties including the HOMO-LUMO maps, chemical reactivity, global softness (σ) and hardness (η) for silica-linker-water-dyes components.
Collapse
|
55
|
A novel and facile green synthesis method to prepare LDH/MOF nanocomposite for removal of Cd(II) and Pb(II). Sci Rep 2021; 11:1609. [PMID: 33452374 PMCID: PMC7810885 DOI: 10.1038/s41598-021-81095-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
To date, many nanoadsorbents have been developed and used to eliminate heavy metal contamination, however, one of the challenges ahead is the preparation of adsorbents from processes in which toxic organic solvents are used in the least possible amount. Herein, we have developed a new carboxylic acid-functionalized layered double hydroxide/metal-organic framework nanocomposite (LDH/MOF NC) using a simple, effective, and green in situ method. UiO-66-(Zr)-(COOH)2 MOF nanocrystals were grown uniformly over the whole surface of COOH-functionalized Ni50Co50-LDH ultrathin nanosheets in a green water system under a normal solvothermal condition at 100 °C. The synthesized LDH/MOF NC was used as a potential adsorbent for removal of toxic Cd(II) and Pb(II) from water and the influence of important factors on the adsorption process was monitored. Various non-linear isotherm and kinetic models were used to find plausible mechanisms involved in the adsorption, and it was found that the Langmuir and pseudo-first-order models show the best agreement with isotherm and kinetic data, respectively. The calculated maximum adsorption capacities of Cd(II) and Pb(II) by the LDH/MOF NC were found to be 415.3 and 301.4 mg g-1, respectively, based on the Langmuir model (pH = 5.0, adsorbent dose = 0.02 g, solution volume = 20 mL, contact time = 120 min, temperature = 25 ℃, shaking speed 200 rpm).
Collapse
|
56
|
Zabihi S, Jamshidian S, Soltani R, Pelalak R, Heidari Z, Marjani A, Ghadiri M. In situ Polymerized FDU‐12/Poly(methyl methacrylate) and FDU‐12/polyamide 6 Nanocomposites for Cd
2+
Adsorption. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Samyar Zabihi
- Shazand-Arak Oil Refinery Company Department of Process Engineering Research and Development Department Arak Iran
| | - Sahar Jamshidian
- Shadram Company Environment, Research and Development Department Arak Iran
| | - Roozbeh Soltani
- Islamic Azad University Department of Chemistry Arak Branch Arak Iran
| | - Rasool Pelalak
- Duy Tan University Institute of Research and Development 550000 Da Nang Viet Nam
- Duy Tan University Faculty of Environmental and Chemical Engineering 550000 Da Nang Viet Nam
| | - Zahra Heidari
- Sahand University of Technology Chemical Engineering Faculty Sahand New Town Tabriz Iran
| | - Azam Marjani
- Ton Duc Thang University Department for Management of Science and Technology Development Ho Chi Minh City Viet Nam
- Ton Duc Thang University Faculty of Applied Sciences Ho Chi Minh City Viet Nam
| | - Mahdi Ghadiri
- Duy Tan University Institute of Research and Development 550000 Da Nang Viet Nam
- Duy Tan University Faculty of Environment and Chemical Engineering 550000 Da Nang Viet Nam
| |
Collapse
|
57
|
Fe Doped MIL-101/Graphene Nanohybrid for Photocatalytic Oxidation of Alcohols Under Visible-Light Irradiation. Catal Letters 2021. [DOI: 10.1007/s10562-020-03472-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
58
|
Pelalak R, Soltani R, Heidari Z, Malekshah RE, Aallaei M, Marjani A, Rezakazemi M, Kurniawan TA, Shirazian S. Molecular dynamics simulation of novel diamino-functionalized hollow mesosilica spheres for adsorption of dyes from synthetic wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114812] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
59
|
Pishnamazi M, Selakjani PP, Abarati MN, Pishnamazi M, Nouri A, Kharazi HH, Marjani A. κ-Carrageenan-Fe2O3 superporous composite adsorbent beads for application in magnetic field expanded bed chromatography adsorption. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
60
|
Bahrami M, Zabihi S, Gougol M, Hoseinabadi HA, Jamshidian S, Adimi M, Pishnamazi M. Process Design of Ammonia Separation for Nitrification Control in Aeration Basins at an IKORC's Oily Wastewater Treatment Unit. ACS OMEGA 2020; 5:21883-21896. [PMID: 32905451 PMCID: PMC7469653 DOI: 10.1021/acsomega.0c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
In the current decades, water shortage is well understood as one of the main limiting factors for oil industry development all over the world. One of the available and reasonable solutions is reusing wastewater. The oily wastewater treatment unit of the IKORC oil refinery provides a portion of the makeup water for cooling towers, applying physical, biological, and chemical treatments. Ammonia shocks are the only crisis that disrupts the nitrification process. This condition eventuates in destroying the microorganisms of aeration basins and leads to a high ammonia containing effluent. In order to protect the aeration process, it is mandatory to apply a suitable system for removing excess ammonia. In this study, at first, ammonia removal history is reviewed. Then quantity and quality of the oily sewer are investigated. Because of high volatility of ammonia contamination and high TDS, a stripping tower with air is selected among diverse solutions. Taking into account the principles of project econometrics, operating parameters such as stripping factor, pressure drop, tower volumetric flow rate, and number of towers are determined. Then, the process is designed and its environmental survey is conducted. Finally, calculating indices proved that this project is economically profitable in addition to its environmental benefits.
Collapse
Affiliation(s)
- Majid Bahrami
- Department
of Process Engineering, Research and Development Department, Shazand-Arak Oil Refinery Company, Arak, Iran
| | - Samyar Zabihi
- Department
of Process Engineering, Research and Development Department, Shazand-Arak Oil Refinery Company, Arak, Iran
| | - Mahdi Gougol
- Pars
Oil and Gas Company, Tehran 14147 13111, Iran
| | | | - Sahar Jamshidian
- Environment,
Research and Development Department, Shadram
Company, Iran
| | - Maryam Adimi
- Department
of Chemical Engineering, Farahan Branch, Islamic Azad University, Farahan, Iran
| | - Mahboubeh Pishnamazi
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- The
Faculty of Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
61
|
Synthesis of exfoliate bentonite/cellulose nanocomposite as a delivery system for Oxaliplatin drug with enhanced loading and release properties; cytotoxicity and pharmacokinetic studies. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
62
|
Soltani R, Marjani A, Soltani R, Shirazian S. Hierarchical multi-shell hollow micro-meso-macroporous silica for Cr(VI) adsorption. Sci Rep 2020; 10:9788. [PMID: 32555202 PMCID: PMC7300025 DOI: 10.1038/s41598-020-66540-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/22/2020] [Indexed: 11/15/2022] Open
Abstract
The development of easier, cheaper, and more effective synthetic strategies for hierarchical multimodal porous materials and multi-shell hollow spheres remains a challenging topic to utilize them as adsorbents in environmental applications. Here, the hierarchical architecture of multi-shell hollow micro–meso–macroporous silica with pollen-like morphology (MS-HMS-PL) has been successfully synthesized via a facile soft-templating approach and characterized for the first time. MS-HMS-PL sub-microspheres showed a trimodal hierarchical pore architecture with a high surface area of 414.5 m2 g−1, surpassing most of the previously reported multishelled hollow nanomaterials. Due to its facile preparation route and good physicochemical properties, MS-HMS-PL could be a potential candidate material in water purification, catalysis, and drug delivery. To investigate the applicability of MS-HMS-PL as an adsorbent, its adsorption performance for Cr(VI) in water was evaluated. Important adsorption factors affecting the adsorption capacity of adsorbent were systematically studied and Kinetics, isotherms, and thermodynamics parameters were computed via the non-linear fitting technique. The maximum capacity of adsorption computed from the Langmuir isotherm equation for Cr(VI) on MS-HMS-PL was 257.67 mg g−1 at 293 K and optimum conditions (pH 4.0, adsorbent dosage 5.0 mg, and contact time 90 min).
Collapse
Affiliation(s)
- Roozbeh Soltani
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Azam Marjani
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Reza Soltani
- Department of Chemistry, Lorestan University, Khoramabad, Iran
| | - Saeed Shirazian
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
63
|
Wei H, Wang CL, Gao W, Liu JP, Zhang XM. Novel 3D anionic heterometallic frameworks based on trinuclear CoII and trinuclear LnIII motifs displaying slow magnetic relaxation and selective adsorption of methylene blue. CrystEngComm 2020. [DOI: 10.1039/d0ce01254h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3D CoLn heterometallic frameworks have been synthesized. CoDy and CoHo show slow magnetic relaxation behavior. CoTb exhibits excellent adsorption capacity for methylene blue.
Collapse
Affiliation(s)
- Han Wei
- College of Chemistry and Materials Science
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications
- Ministry of Education
- Huaibei Normal University
- China
| | - Cui-Li Wang
- College of Chemistry and Materials Science
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications
- Ministry of Education
- Huaibei Normal University
- China
| | - Wei Gao
- College of Chemistry and Materials Science
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications
- Ministry of Education
- Huaibei Normal University
- China
| | - Jie-Ping Liu
- College of Chemistry and Materials Science
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications
- Ministry of Education
- Huaibei Normal University
- China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications
- Ministry of Education
- Huaibei Normal University
- China
| |
Collapse
|