51
|
Zhou A, Shao Y, Chen F, Qian PC, Cheng J. The copper-catalyzed ring-opening reactions of cyclopropanes by N-fluorobenzenesulfonimide toward N-allylsulfonamides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
52
|
Bunyamin A, Hua C, Polyzos A, Priebbenow DL. Intramolecular Photochemical [2+1]-Cycloadditions of Nucleophilic Siloxy Carbenes. Chem Sci 2022; 13:3273-3280. [PMID: 35414869 PMCID: PMC8926286 DOI: 10.1039/d2sc00203e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Visible light induced singlet nucleophilic carbenes undergo rapid [2 + 1]-cycloaddition with tethered olefins to afford unique bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane scaffolds. This cyclopropanation process requires only visible light irradiation to proceed, circumventing the use of exogenous (photo)catalysts, sensitisers or additives and showcases a vastly underexplored mode of reactivity for nucleophilic carbenes in chemical synthesis. The discovery of additional transformations including a cyclopropanation/retro-Michael/Michael cascade process to afford chromanones and a photochemical C–H insertion reaction are also described. Visible light induced singlet nucleophilic carbenes undergo rapid [2 + 1]-cycloaddition with tethered olefins to afford unique bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane scaffolds.![]()
Collapse
Affiliation(s)
- Amanda Bunyamin
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
| | - Carol Hua
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
- School of Life and Environmental Sciences, Deakin University Waurn Ponds Victoria 3216 Australia
| | - Anastasios Polyzos
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| | - Daniel L Priebbenow
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Science, Monash University Parkville Victoria 3052 Australia
| |
Collapse
|
53
|
Fadeev AA, Makarov AS, Ivanova OA, Uchuskin MG, Trushkov IV. Extended Corey–Chaykovsky reactions: transformation of 2-hydroxychalcones to benzannulated 2,8-dioxabicyclo[3.2.1]octanes and 2,3-dihydrobenzofurans. Org Chem Front 2022. [DOI: 10.1039/d1qo01646f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report the divergent synthesis of benzannulated 2,8-dioxabicyclo[3.2.1]octanes and 2,3-dihydrobenzofurans using the concept of extended Corey–Chaykovsky reactions.
Collapse
Affiliation(s)
- Alexander A. Fadeev
- Department of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russian Federation
| | - Anton S. Makarov
- Department of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russian Federation
| | - Olga A. Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Maxim G. Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russian Federation
| | - Igor V. Trushkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, Moscow 119334, Russian Federation
- D. Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| |
Collapse
|
54
|
Sivanandan ST, Bharath Krishna R, Baiju TV, Mohan C. Visible‐Light‐Mediated Ring‐Opening Reactions of Cyclopropanes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - R. Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences Mahatma Gandhi University Kottayam 686560 India
| | - Thekke V. Baiju
- Department of chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Chithra Mohan
- School of Chemical Sciences Mahatma Gandhi University Kottayam 686560 India
| |
Collapse
|
55
|
Turkowska J, Durka J, Ociepa M, Gryko D. Reversal of regioselectivity in reactions of donor-acceptor cyclopropanes with electrophilic olefins. Chem Commun (Camb) 2021; 58:509-512. [PMID: 34897317 DOI: 10.1039/d1cc05330b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactivity of donor-acceptor cyclopropanes towards nucleophiles and electrophiles is determined by the specific philicity of the carbon atoms originating from the strong polarization of the central C-C bond. Herein, we report that vitamin B12 catalysis enables the transformation of an initially electrophilic center into a nucleophilic radical that reacts with SOMOphiles. This radical-based strategy reverses the standard regioselectivity and thus complements the classical approaches.
Collapse
Affiliation(s)
- Joanna Turkowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Jakub Durka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Michał Ociepa
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
56
|
Xiao JA, Peng H, Liang JS, Meng RF, Su W, Xiao Q, Yang H. Gold/scandium bimetallic relay catalysis of formal [5+2]- and [4+2]-annulations: access to tetracyclic indole scaffolds. Chem Commun (Camb) 2021; 57:13369-13372. [PMID: 34821245 DOI: 10.1039/d1cc05658a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regiodivergent formal [5+2]- and [4+2]-annulation reactions of indole derivatives with 2-(2-alkynyl)aryl cyclopropane-1,1-diesters (ACPs) have been developed. A series of tetracyclic indole derivatives were delivered in a 77% average yield with excellent regioselectivities enabled by Au(I)/Sc(III) bimetallic relay catalysis. A gram-scale reaction and further transformation of the resulting tetracyclic indoles demonstrated the practical utility of this protocol. Moreover, the photophysical properties of the obtained multicyclic compounds were also investigated.
Collapse
Affiliation(s)
- Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Hai Peng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jin-Shao Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Ru-Fang Meng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
57
|
Sergeev PG, Novikov RA, Tomilov YV. Lewis Acid‐Catalyzed Formal (4+2)‐ and (2+2+2)‐Cycloaddition Between 1‐Azadienes and Styrylmalonates as Analogues of Donor‐Acceptor Cyclopropanes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pavel G. Sergeev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Roman A. Novikov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Yury V. Tomilov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| |
Collapse
|
58
|
Zhang D, Cheng Q, Chen L, Deng H, Cai H, Zhang QF. Lewis acid-catalyzed [3 + 2] annulations of oxindole based spirocyclic donor-acceptor cyclopropanes with ynamides. Org Biomol Chem 2021; 19:9645-9648. [PMID: 34730170 DOI: 10.1039/d1ob01922h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[3 + 2] annulations of oxindole based spirocyclic donor-acceptor cyclopropanes and ynamides catalyzed by copper triflate have been developed for the synthesis of biologically important spirocyclopenteneoxindoles. These reactions tolerated a wide scope of substrates and provided the desired products in good to high yields (up to 90%) with up to >40 : 1 diastereoselectivities under mild conditions.
Collapse
Affiliation(s)
- Dongxin Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan 243002, China.
| | - Qihang Cheng
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan 243002, China.
| | - Lvjia Chen
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan 243002, China.
| | - Huiqing Deng
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan 243002, China.
| | - Hu Cai
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan 243002, China.
| | - Qian-Feng Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan 243002, China.
| |
Collapse
|
59
|
Jüstel PM, Stan A, Pignot CD, Ofial AR. Inherent Reactivity of Spiro-Activated Electrophilic Cyclopropanes. Chemistry 2021; 27:15928-15935. [PMID: 34569669 PMCID: PMC9298281 DOI: 10.1002/chem.202103027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/16/2022]
Abstract
The kinetics of the ring-opening reactions of thiophenolates with geminal bis(acceptor)-substituted cyclopropanes in DMSO at 20 °C was monitored by photometric methods. The determined second-order rate constants of the SN 2 reactions followed linear relationships with Mayr nucleophilicity parameters (N/sN ) and Brønsted basicities (pKaH ) of the thiophenolates as well as with Hammett substituent parameters (σ) for groups attached to the thiophenolates. Phenyl-substituted cyclopropanes reacted by up to a factor of 15 faster than their unsubstituted analogues, in accord with the known activating effect of adjacent π-systems in SN 2 reactions. Variation of the electronic properties of substituents at the phenyl groups of the cyclopropanes gave rise to parabolic Hammett relationships. Thus, the inherent SN 2 reactivity of electrophilic cyclopropanes is activated by electron-rich π-systems because of the more advanced C1-C2 bond polarization in the transition state. On the other hand, electron-poor π-systems also lower the energetic barriers for the attack of anionic nucleophiles owing to attractive electrostatic interactions.
Collapse
Affiliation(s)
- Patrick M. Jüstel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| | - Alexandra Stan
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| | - Cedric D. Pignot
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| | - Armin R. Ofial
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
60
|
Saha D, Maajid Taily I, Banerjee P. Electricity Driven 1,3‐Oxohydroxylation of Donor‐Acceptor Cyclopropanes: a Mild and Straightforward Access to β‐Hydroxy Ketones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Debarshi Saha
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar Punjab 140001
| | - Irshad Maajid Taily
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar Punjab 140001
| | - Prabal Banerjee
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar Punjab 140001
| |
Collapse
|
61
|
Vartanova AE, Plodukhin AY, Ratmanova NK, Andreev IA, Anisimov MN, Gudimchuk NB, Rybakov VB, Levina II, Ivanova OA, Trushkov IV, Alabugin IV. Expanding Stereoelectronic Limits of endo- tet Cyclizations: Synthesis of Benz[ b]azepines from Donor-Acceptor Cyclopropanes. J Am Chem Soc 2021; 143:13952-13961. [PMID: 34406759 DOI: 10.1021/jacs.1c07088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The importance of intramolecular constraints in cyclic transition-state geometries is especially pronounced in n-endo-tet cyclizations, where the usual backside approach of a nucleophile to the breaking bond is impossible for the rings containing less than eight atoms. Herein, we expand the limits of endo-tet cyclizations and show that donor-acceptor cyclopropanes can provide a seven-membered ring via a genuine 6-endo-tet process. Substrates containing a N-alkyl-N-arylcarbamoyl moiety as an acceptor group undergo Lewis acid-induced cyclization to form tetrahydrobenz[b]azepin-2-ones in high yields. The reaction proceeds with the inversion of the configuration at the electrophilic carbon. In this process, a formally six-membered transition state yields a seven-membered ring as the pre-existing cycle is merged into the forming ring. The stereochemistry of the products can be controlled by the reaction time and by the nature of Lewis acid, opening access to both diastereomers by tuning of the reaction conditions.
Collapse
Affiliation(s)
- Anna E Vartanova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russian Federation.,Faculty of Science, RUDN University, Moscow 117198, Russian Federation
| | - Andrey Yu Plodukhin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Nina K Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow 117997, Russian Federation
| | - Ivan A Andreev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russian Federation.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow 117997, Russian Federation
| | - Mikhail N Anisimov
- Department of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow 119334, Russian Federation
| | - Nikita B Gudimchuk
- Department of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow 119334, Russian Federation
| | - Victor B Rybakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Irina I Levina
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Olga A Ivanova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russian Federation.,Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390 United States
| |
Collapse
|
62
|
Vartanova AE, Levina II, Rybakov VB, Ivanova OA, Trushkov IV. Donor-Acceptor Cyclopropane Ring Opening with 6-Amino-1,3-dimethyluracil and Its Use in Pyrimido[4,5- b]azepines Synthesis. J Org Chem 2021; 86:12300-12308. [PMID: 34382810 DOI: 10.1021/acs.joc.1c01064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A scandium trifluoromethanesulfonate-catalyzed reaction of donor-acceptor cyclopropanes with 6-amino-1,3-dimethyluracil was found to proceed as three-membered ring opening via nucleophilic attack of the C(5) atom of an ambident nucleophile serving as an enamine equivalent. It was shown that, under basic conditions, the obtained products underwent cyclization to 6,7-dihydro-1H-pyrimido[4,5-b]azepine-2,4,8-triones, an interesting subclass of nucleobase analogues.
Collapse
Affiliation(s)
- Anna E Vartanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Faculty of Science, RUDN University, Miklukho-Maklaya 6, Moscow 117198, Russian Federation
| | - Irina I Levina
- N. M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Victor B Rybakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Olga A Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Laboratory of Chemical Synthesis, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| |
Collapse
|
63
|
Kolb S, Ahlburg NL, Werz DB. Friedel-Crafts-Type Reactions with Electrochemically Generated Electrophiles from Donor-Acceptor Cyclopropanes and -Butanes. Org Lett 2021; 23:5549-5553. [PMID: 34231368 DOI: 10.1021/acs.orglett.1c01890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a general electrochemical method to functionalize donor-acceptor (D-A) cyclopropanes and -butanes with arenes utilizing Friedel-Crafts-type reactivity. The catalyst-free strategy relies on the direct anodic oxidation of the strained carbocycles, which leads after C(sp3)-C(sp3) cleavage to radical cations that act as electrophiles for the arylation reaction. Broad reaction scopes in regard to cyclopropanes, cyclobutanes, and aromatic reaction partners are presented. Additionally, a plausible electrolysis mechanism is proposed.
Collapse
Affiliation(s)
- Simon Kolb
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Nils L Ahlburg
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
64
|
Caillé J, Robiette R. Cycloaddition of cyclopropanes for the elaboration of medium-sized carbocycles. Org Biomol Chem 2021; 19:5702-5724. [PMID: 34114583 DOI: 10.1039/d1ob00838b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The stereocontrolled formation of medium-sized carbocycles is a major goal in modern organic chemistry due to their widespread occurrence in natural products and pharmaceutically active ingredients. One approach consists in the use of cycloaddition reactions which notably results in high selectivities and atom-economy. To this end, cyclopropanes are ideal substrates since they can provide readily functionalized three- or five-carbon synthons. Herein we report advances made in cycloaddition reactions of cyclopropanes towards the synthesis of medium-sized carbocycles via transition metal catalysis or Lewis acid catalysis.
Collapse
Affiliation(s)
- Julien Caillé
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium. and Institut de Chimie et des Matériaux Paris Est (ICMPE), UMR-CNRS 7182, Université Paris Est Créteil (UPEC), 2 Rue Henri Dunant, 94320 Thiais, France.
| | - Raphaël Robiette
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|