51
|
Tabassum H, Maity A, Singh K, Bagchi D, Prasad A, Chakraborty A. Effect of Lipid Corona on Phenylalanine-Functionalized Gold Nanoparticles to Develop Stable and Corona-Free Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4531-4543. [PMID: 38357868 DOI: 10.1021/acs.langmuir.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Conventional gold nanoparticles (Au NPs) have many limitations, such as aggregation and subsequent precipitation in the medium of high ionic strength and protein molecules. Furthermore, when exposed to biological fluids, nanoparticles form a protein corona, which controls different biological processes such as the circulation lifetime, drug release profile, biodistribution, and in vivo cellular distribution. These limitations reduce the functionality of Au NPs in targeted delivery, bioimaging, gene delivery, drug delivery, and other biomedical applications. To circumvent these problems, there are numerous attempts to design corona-free and stable nanoparticles. Here, we report for the first time that lipid corona (coating of lipid) formation on phenylalanine-functionalized Au NPs (AuPhe NPs) imparts excellent stability against the high ionic strength of bivalent metal ions, amino acids, and proteins of different charges as compared to bare nanoparticles. Moreover, this work is focused on the ability of lipid corona formation on AuPhe NPs to prevent protein adsorption in the presence of cell culture medium (CCM), oppositely charged protein (e.g., histone 3), and human serum albumin (HSA). The results demonstrate that the lipid corona successfully protects the AuPhe NPs from protein adsorption, leading to the development of corona-free character. This unique achievement has profound implications for enhancing the biomedical utility and safety of these nanoparticles.
Collapse
Affiliation(s)
- Huma Tabassum
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Avijit Maity
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Krishna Singh
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Debanjan Bagchi
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Abhinav Prasad
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Anjan Chakraborty
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
52
|
Chahar D, Jha I, Arumugam J, Venkatesu P. Impact of Choline Hydroxide-Supported Magnetic Nanoparticles on Peroxidase Activity and Conformational Stability of Cytochrome c. ACS APPLIED BIO MATERIALS 2024; 7:1135-1145. [PMID: 38262058 DOI: 10.1021/acsabm.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nanotechnology has advanced significantly; however, little is known about the potential implications on human health-related issues, particularly blood carrying enzymes. Ionic liquids are also well-recognized for maintaining the structure and activity of enzymes. In this regard, we delineate a facile synthetic approach of preparation of Fe3O4 nanoparticles (NPs) as well as choline hydroxide [CH][OH] ionic liquid (IL)-supported Fe3O4 NPs (Fe3O4-CHOH). This approach of combining magnetic nanoparticles (MNPs) with IL results in distinctive properties, which may offer enormous utility in the field of biomedical research due to the effortless separation of MNPs by an external magnetic field. Detailed characterization of MNPs including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) was carried out. The biomolecular interactions of Fe3O4 and Fe3O4-CHOH NPs with cytochrome c (Cyt c) were studied in detail using various spectroscopic and microscopic techniques. From spectroscopic studies, it can be concluded that the secondary structure of Cyt c is more stable in the presence of Fe3O4-CHOH NPs than Fe3O4 NPs. The binding constant of Cyt c in the presence of MNPs was also calculated using the Benesi-Hildebrand equation. Furthermore, dynamic light scattering (DLS), ζ-potential, and microscopic studies were performed to study the interaction of Cyt c with MNPs. These studies provided evidence favoring the formation of bionanoconjugates of Cyt c with MNPs. Moreover, the enzymatic activity of Cyt c increases in the presence of both MNPs. The peroxidase activity of Cyt c in MNPs explicitly elucidates that the enzyme is preserved for a long time in the presence of Fe3O4-CHOH NPs. Later on, TEM and field emission scanning electron microscopy (FESEM) were also performed to gather more information regarding the morphology of Cyt c in the presence of MNPs.
Collapse
Affiliation(s)
- Deepak Chahar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Indrani Jha
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Jayamani Arumugam
- Department of Chemistry, University of Delhi, Delhi 110 007, India
- Department of Sciences Program Chemistry, Manav Rachna University, Faridabad 121004, India
| | | |
Collapse
|
53
|
Simmons A, Mihalek O, Bimonte Nelson HA, Sirianni RW, Stabenfeldt SE. Acute brain injury and nanomedicine: sex as a biological variable. FRONTIERS IN BIOMATERIALS SCIENCE 2024; 3:1348165. [PMID: 39450372 PMCID: PMC11500709 DOI: 10.3389/fbiom.2024.1348165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Sex as a biological variable has been recognized for decades to be a critical aspect of the drug development process, as differences in drug pharmacology and toxicity in female versus male subjects can drive the success or failure of new therapeutics. These concepts in development of traditional drug systems have only recently begun to be applied for advancing nanomedicine systems that are designed for drug delivery or imaging in the central nervous system (CNS). This review provides a comprehensive overview of the current state of two fields of research - nanomedicine and acute brain injury-centering on sex as a biological variable. We highlight areas of each field that provide foundational understanding of sex as a biological variable in nanomedicine, brain development, immune response, and pathophysiology of traumatic brain injury and stroke. We describe current knowledge on female versus male physiology as well as a growing number of empirical reports that directly address sex as a biological variable in these contexts. In sum, the data make clear two key observations. First, the manner in which sex affects nanomedicine distribution, toxicity, or efficacy is important, complex, and depends on the specific nanoparticle system under considerations; second, although field knowledge is accumulating to enable us to understand sex as a biological variable in the fields of nanomedicine and acute brain injury, there are critical gaps in knowledge that will need to be addressed. We anticipate that understanding sex as a biological variable in the development of nanomedicine systems to treat acute CNS injury will be an important determinant of their success.
Collapse
Affiliation(s)
- Amberlyn Simmons
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Olivia Mihalek
- Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States
| | | | - Rachael W. Sirianni
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
- Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
54
|
Wang S, Wang H, Drabek A, Smith WS, Liang F, Huang ZR. Unleashing the Potential: Designing Antibody-Targeted Lipid Nanoparticles for Industrial Applications with CMC Considerations and Clinical Outlook. Mol Pharm 2024; 21:4-17. [PMID: 38117251 DOI: 10.1021/acs.molpharmaceut.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Antibody-targeted lipid nanoparticles (Ab-LNPs) are rapidly gaining traction as multifaceted platforms in precision medicine, adept at delivering a diverse array of therapeutic agents, including nucleic acids and small molecules. This review provides an incisive overview of the latest developments in the field of Ab-LNP technology, with a special emphasis on pivotal design aspects such as antibody engineering, bioconjugation strategies, and advanced formulation techniques. Furthermore, it addresses critical chemistry, manufacturing, and controls (CMC) considerations and thoroughly examines the in vivo dynamics of Ab-LNPs, underscoring their promising potential for clinical application. By seamlessly blending scientific advancements with practical industrial perspectives, this review casts a spotlight on the burgeoning role of Ab-LNPs as an innovative and potent tool in the realm of targeted drug delivery.
Collapse
Affiliation(s)
- Sheryl Wang
- Sanofi, Genomic Medicine Unit, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Hong Wang
- Sanofi, Genomic Medicine Unit, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Andrew Drabek
- Sanofi, Genomic Medicine Unit, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Wenwen Sha Smith
- FUSION BioVenture, 15 Presidential Way, Woburn, Massachusetts 01801, United States
| | - Feng Liang
- Sanofi, Genomic Medicine Unit, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Zhaohua Richard Huang
- Sanofi, Genomic Medicine Unit, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| |
Collapse
|
55
|
Razei A, Javanbakht M, Hajizade A, Heiat M, Zhao S, Aghamollaei H, Saadati M, Khafaei M, Asadi M, Cegolon L, Keihan AH. Nano and microparticle drug delivery systems for the treatment of Brucella infections. Biomed Pharmacother 2023; 169:115875. [PMID: 37979375 DOI: 10.1016/j.biopha.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Nano-based drug delivery systems are increasingly used for diagnosis, prevention and treatment of several diseases, thanks to several beneficial properties, including the ability to target specific cells or organs, allowing to reduce treatment costs and side effects frequently associated with chemotherapeutic medications, thereby improving treatment compliance of patients. In the field of communicable diseases, especially those caused by intracellular bacteria, the delivery of antibiotics targeting specific cells is of critical importance to maximize their treatment efficacy. Brucella melitensis, an intracellular obligate bacterium surviving and replicating inside macrophages is hard to be eradicated, mainly because of the low ability of antibiotics to enter these phagocityc cells . Although different antibiotics regimens including gentamicin, doxycycline and rifampicin are in fact used against the Brucellosis, no efficient treatment has been attained yet, due to the intracellular life of the respective pathogen. Nano-medicines responding to environmental stimuli allow to maximize drug delivery targeting macropages, thereby boosting treatment efficacy. Several drug delivery nano-technologies, including solid lipid nanoparticles, liposomes, chitosan, niosomes, and their combinations with chitosan sodium alginate can be employed in combination of antibiotics to successfully eradicate Brucellosis infection from patients.
Collapse
Affiliation(s)
- Ali Razei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Hossien Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saadati
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Mosa Asadi
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- University of Trieste, Department of Medical, Surgical & Health Sciences, Trieste, Italy; University Health Agency Giuliano-Isontina (ASUGI), Public Health Department, Trieste, Italy
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
56
|
Mehta P, Shende P. Evasion of opsonization of macromolecules using novel surface-modification and biological-camouflage-mediated techniques for next-generation drug delivery. Cell Biochem Funct 2023; 41:1031-1043. [PMID: 37933222 DOI: 10.1002/cbf.3880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Opsonization plays a pivotal role in hindering controlled drug release from nanoformulations due to macrophage-mediated nanoparticle destruction. While first and second-generation delivery systems, such as lipoplexes (50-150 nm) and quantum dots, hold immense potential in revolutionizing disease treatment through spatiotemporal controlled drug delivery, their therapeutic efficacy is restricted by the selective labeling of nanoparticles for uptake by reticuloendothelial system and mononuclear phagocyte system via various molecular forces, such as electrostatic, hydrophobic, and van der Waals bonds. This review article presents novel insights into surface-modification techniques utilizing macromolecule-mediated approaches, including PEGylation, di-block copolymerization, and multi-block polymerization. These techniques induce stealth properties by generating steric forces to repel micromolecular-opsonins, such as fibrinogen, thereby mitigating opsonization effects. Moreover, advanced biological methods, like cellular hitchhiking and dysopsonic protein adsorption, are highlighted for their potential to induce biological camouflage by adsorbing onto the nanoparticulate surface, leading to immune escape. These significant findings pave the way for the development of long-circulating next-generation nanoplatforms capable of delivering superior therapy to patients. Future integration of artificial intelligence-based algorithms, integrated with nanoparticle properties such as shape, size, and surface chemistry, can aid in elucidating nanoparticulate-surface morphology and predicting interactions with the immune system, providing valuable insights into the probable path of opsonization.
Collapse
Affiliation(s)
- Parth Mehta
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| | - Pravin Shende
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| |
Collapse
|
57
|
Navarro-Marchal SA, Martín-Contreras M, Castro-Santiago D, del Castillo-Santaella T, Graván P, Jódar-Reyes AB, Marchal JA, Peula-García JM. Effect of the Protein Corona Formation on Antibody Functionalized Liquid Lipid Nanocarriers. Int J Mol Sci 2023; 24:16759. [PMID: 38069079 PMCID: PMC10706289 DOI: 10.3390/ijms242316759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The main aim of this study is to report basic knowledge on how a protein corona (PC) could affect or modify the way in which multifunctionalized nanoparticles interact with cells. With this purpose, we have firstly optimized the development of a target-specific nanocarrier by coupling a specific fluorescent antibody on the surface of functionalized lipid liquid nanocapsules (LLNCs). Thus, an anti-HER2-FITC antibody (αHER2) has been used, HER2 being a surface receptor that is overexpressed in several tumor cells. Subsequently, the in vitro formation of a PC has been developed using fetal bovine serum supplemented with human fibrinogen. Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA), Laser Doppler Electrophoresis (LDE), and Gel Chromatography techniques have been used to assure a complete physico-chemical characterization of the nano-complexes with (LLNCs-αHER2-PC) and without (LLNCs-αHER2) the surrounding PC. In addition, cellular assays were performed to study the cellular uptake and the specific cellular-nanocarrier interactions using the SKBR3 (high expression of HER2) breast cancer cell line and human dermal fibroblasts (HDFa) (healthy cell line without expression of HER2 receptors as control), showing that the SKBR3 cell line had a higher transport rate (50-fold) than HDFa at 60 min with LLNCs-αHER2. Moreover, the SKBR3 cell line incubated with LLNCs-αHER2-PC suffered a significant reduction (40%) in the uptake. These results suggest that the formation of a PC onto LLNCs does not prevent specific cell targeting, although it does have an important influence on cell uptake.
Collapse
Affiliation(s)
- Saúl A. Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (S.A.N.-M.); (P.G.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18071 Granada, Spain;
| | - Marina Martín-Contreras
- Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - David Castro-Santiago
- Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Teresa del Castillo-Santaella
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain;
- Biocolloid and Fluid Physics Group, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Pablo Graván
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (S.A.N.-M.); (P.G.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18071 Granada, Spain;
- Biocolloid and Fluid Physics Group, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Ana Belén Jódar-Reyes
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18071 Granada, Spain;
- Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Biocolloid and Fluid Physics Group, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (S.A.N.-M.); (P.G.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18071 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - José Manuel Peula-García
- Biocolloid and Fluid Physics Group, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Department of Applied Physics II, University of Malaga, 29071 Malaga, Spain
| |
Collapse
|
58
|
Sell M, Lopes AR, Escudeiro M, Esteves B, Monteiro AR, Trindade T, Cruz-Lopes L. Application of Nanoparticles in Cancer Treatment: A Concise Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2887. [PMID: 37947732 PMCID: PMC10650201 DOI: 10.3390/nano13212887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Timely diagnosis and appropriate antitumoral treatments remain of utmost importance, since cancer remains a leading cause of death worldwide. Within this context, nanotechnology offers specific benefits in terms of cancer therapy by reducing its adverse effects and guiding drugs to selectively target cancer cells. In this comprehensive review, we have summarized the most relevant novel outcomes in the range of 2010-2023, covering the design and application of nanosystems for cancer therapy. We have established the general requirements for nanoparticles to be used in drug delivery and strategies for their uptake in tumor microenvironment and vasculature, including the reticuloendothelial system uptake and surface functionalization with protein corona. After a brief review of the classes of nanovectors, we have covered different classes of nanoparticles used in cancer therapies. First, the advances in the encapsulation of drugs (such as paclitaxel and fisetin) into nanoliposomes and nanoemulsions are described, as well as their relevance in current clinical trials. Then, polymeric nanoparticles are presented, namely the ones comprising poly lactic-co-glycolic acid, polyethylene glycol (and PEG dilemma) and dendrimers. The relevance of quantum dots in bioimaging is also covered, namely the systems with zinc sulfide and indium phosphide. Afterwards, we have reviewed gold nanoparticles (spheres and anisotropic) and their application in plasmon-induced photothermal therapy. The clinical relevance of iron oxide nanoparticles, such as magnetite and maghemite, has been analyzed in different fields, namely for magnetic resonance imaging, immunotherapy, hyperthermia, and drug delivery. Lastly, we have covered the recent advances in the systems using carbon nanomaterials, namely graphene oxide, carbon nanotubes, fullerenes, and carbon dots. Finally, we have compared the strategies of passive and active targeting of nanoparticles and their relevance in cancer theranostics. This review aims to be a (nano)mark on the ongoing journey towards realizing the remarkable potential of different nanoparticles in the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Mariana Sell
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
| | - Ana Rita Lopes
- Faculty of Dental Medicine, Portuguese Catholic University, 3504-505 Viseu, Portugal;
| | - Maria Escudeiro
- Abel Salazar Biomedical Institute, University of Porto, 4050-313 Porto, Portugal;
| | - Bruno Esteves
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| | - Ana R. Monteiro
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain;
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Luísa Cruz-Lopes
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| |
Collapse
|
59
|
Forte G, La Mendola D, Satriano C. The Hybrid Nano-Biointerface between Proteins/Peptides and Two-Dimensional Nanomaterials. Molecules 2023; 28:7064. [PMID: 37894543 PMCID: PMC10609159 DOI: 10.3390/molecules28207064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In typical protein-nanoparticle surface interactions, the biomolecule surface binding and consequent conformational changes are intermingled with each other and are pivotal to the multiple functional properties of the resulting hybrid bioengineered nanomaterial. In this review, we focus on the peculiar properties of the layer formed when biomolecules, especially proteins and peptides, face two-dimensional (2D) nanomaterials, to provide an overview of the state-of-the-art knowledge and the current challenges concerning the biomolecule coronas and, in general, the 2D nano-biointerface established when peptides and proteins interact with the nanosheet surface. Specifically, this review includes both experimental and simulation studies, including some recent machine learning results of a wide range of nanomaterial and peptide/protein systems.
Collapse
Affiliation(s)
- Giuseppe Forte
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy;
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Cristina Satriano
- NanoHybrid Biointerfaces Laboratory (NHBIL), Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| |
Collapse
|
60
|
Mahato RR, Juneja S, Maiti S. Benchmarking Cationic Monolayer Protected Nanoparticles and Micelles for Phosphate-Mediated and Nucleotide-Selective Proton Transfer Catalysis. Chem Asian J 2023; 18:e202300657. [PMID: 37639220 DOI: 10.1002/asia.202300657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
Both micelles and self-assembled monolayer (SAM)-protected nanoparticles are capable of efficiently hosting water-immiscible substrates to carry out organic reactions in aqueous media. Herein, we have analyzed the different catalytic effect of SAM-protected cationic nanoparticles and cationic surfactants of varying chain length towards base-catalyzed proton transfer mediated ring-opening reaction of 5-nitrobenzisoxazole (NBI) (also known as Kemp Elimination (KE) reaction). We use inorganic phosphate ion or different nucleotide (phosphate-ligated different nucleoside) as base to promote the reaction on micellar or nanoparticle interface. We find almost 2-3 orders of magnitude higher concentration of surfactants of comparable hydrophobicity required to reach the similar activity which attained by low cationic head group concentration bound on nanoparticle. Additionally, at low concentration of nanoparticle-bound surfactant or with high surfactant in micellar form, nucleotide-selectivity has been observed in activating KE reaction unlike free surfactant at low concentration. Finally, we showed enzyme-mediated nucleotide hydrolysis to generate phosphate ion which in situ upregulate the KE activity much more in GNP-based system compared to CTAB. Notably, we show a reasonable superiority of SAM-protected nanoparticles in activating chemical reaction in micromolar concentration of headgroup which certainly boost up application of SAM-based nanoparticles not only for selective recognition but also as eco-friendly catalyst.
Collapse
Affiliation(s)
- Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Sakshi Juneja
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| |
Collapse
|
61
|
Omo-Lamai S, Zamora ME, Patel MN, Wu J, Nong J, Wang Z, Peshkova A, Chase LS, Essien EO, Muzykantov V, Marcos-Contreras O, Myerson JW, Brenner JS. Physicochemical Targeting of Lipid Nanoparticles to the Lungs Induces Clotting: Mechanisms and Solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550080. [PMID: 37546837 PMCID: PMC10401951 DOI: 10.1101/2023.07.21.550080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Lipid nanoparticles (LNPs) have become the dominant drug delivery technology in industry, holding the promise to deliver RNA to up- or down-regulate any protein of interest. LNPs have been targeted to specific cell types or organs by physicochemical targeting, in which LNP's lipid compositions are adjusted to find mixtures with the desired tropism. In a popular approach, physicochemical targeting is accomplished by formulating with charged lipids. Negatively charged lipids localize LNPs to the spleen, and positively charged lipids to the lungs. Here we found that lung-tropic LNPs employing cationic lipids induce massive thrombosis. We demonstrate that thrombosis is induced in the lungs and other organs, and greatly exacerbated by pre-existing inflammation. This clotting is induced by a variety of formulations with cationic lipids, including LNPs and non-LNP nanoparticles. The mechanism depends on the LNPs binding to fibrinogen and inducing platelet and thrombin activation. Based on these mechanisms, we engineered multiple solutions which enable positively charged LNPs to target the lungs while not inducing thrombosis. Our findings implicate thrombosis as a major barrier that blood erects against LNPs with cationic components and illustrate how physicochemical targeting approaches must be investigated early for risks and re-engineered with a careful understanding of biological mechanisms.
Collapse
|
62
|
Moghadam ME, Sadeghi M, Mansouri-Torshizi H, Saidifar M. High cancer selectivity and improving drug release from mesoporous silica nanoparticles in the presence of human serum albumin in cisplatin, carboplatin, oxaliplatin, and oxalipalladium treatment. Eur J Pharm Sci 2023:106477. [PMID: 37225004 DOI: 10.1016/j.ejps.2023.106477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
In this project, drug release was examined based on the adsorption of cisplatin, carboplatin, oxaliplatin, and oxalipalladium on aminated mesoporous silica nanoparticles (N-HMSNs) and human serum albumin (HSA). These compounds were characterized by different techniques where three clinical Pt-drugs, cisplatin, carboplatin, oxaliplatin, plus oxalipalladium were loaded and investigated for release. Based on loading analysis, the loading ability of the mentioned metallodrug on N-HMSNs was dependent on the nature of the drug structure as well as hydrophobic or hydrophilic interactions. Different adsorption and release profiles were observed for all mentioned compounds via dialysis and ICP method analysis. Although the maximum to minimum loading occurred for oxalipalladium, cisplatin, and oxaliplatin to carboplatin, respectively, release from a surface with greater control belonged to carboplatin to cisplatin systems in the absence and presence of HSA to 48 hours due to weak interaction for carboplatin drug. The quick release of all mentioned compounds from the protein level at high doses of the drug during chemotherapy occurred very fast within the first 6 hours. In addition, the cytotoxic activity of both free drugs and drug-loaded@N-HMSNs samples on cancerous MCF-7, HCT116, A549, and normal HFF cell lines was evaluated by MTT assay. It was found that free metallodrugs exhibited more active cytotoxic behavior on both cancerous and normal cell lines than drug-loaded@N-HMSNs. Data demonstrated that the Cisplatin@N-HMSNs with SI=6.0 and 6.6 for MCF7 and HCT116 cell lines, respectively, and Oxaliplatin@N-HMSNs with SI=7.4 for HCT116 cell line can be good candidates as an anticancer drug with minimal side effects by protecting cytotoxic drugs as well as controlled release and high selectivity.
Collapse
Affiliation(s)
| | - Maryam Sadeghi
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | | | - Maryam Saidifar
- Materials and Energy Research Center of Chemistry, Karaj, Iran
| |
Collapse
|