Simpson PB, Russell JT. Mitochondrial Ca2+ uptake and release influence metabotropic and ionotropic cytosolic Ca2+ responses in rat oligodendrocyte progenitors.
J Physiol 1998;
508 ( Pt 2):413-26. [PMID:
9508806 PMCID:
PMC2230887 DOI:
10.1111/j.1469-7793.1998.413bq.x]
[Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Many physiologically important activities of oligodendrocyte progenitor cells (O-2A cells), including proliferation, migration and differentiation, are regulated by cytosolic Ca2+ signals. However, little is known concerning the mechanisms of Ca2+ signalling in this cell type. We have studied the interactions between Ca2+ entry, Ca2+ release from endoplasmic reticulum and Ca2+ regulation by mitochondria in influencing cytosolic Ca2+ responses in O-2A cells. 2. Methacholine (MCh; 100 microM) activated Ca2+ waves that propagated from several initiation sites along O-2A processes. 3. During a Ca2+ wave evoked by MCh, mitochondrial membrane potential was often either depolarized (21 % of mitochondria) or hyperpolarized (20 % of mitochondria), as measured by changes in the fluorescence of 5,5',6,6'-tetrachloro-1,1',3, 3'-tetraethylbenzimidazole carbocyanine iodide (JC-1). 4. Stimulation with kainate (100 microM) evoked a slowly rising, sustained cytosolic Ca2+ elevation in O-2A cells. This also, in some cases, resulted in either a depolarization (15 % of mitochondria) or hyperpolarization (12 % of mitochondria) of mitochondrial membrane potential. 5. Simultaneous measurement of cytosolic (fluo-3 AM) and mitochondrial (rhod-2 AM) Ca2+ responses revealed that Ca2+ elevations in the cytosol evoked by either MCh or kainate were translated into long-lasting Ca2+ elevations in subpopulations of mitochondria. In some mitochondria, Ca2+ signals appeared to activate Ca2+ release into the cytosol. 6. Inhibition of the mitochondrial Na+-Ca2+ exchanger by CGP-37157 (25 microM) decreased kainate Ca2+ response amplitude and increased the rate of return of the response to basal Ca2+ levels. 7. Thus, both ionotropic and metabotropic stimulation evoke changes in mitochondrial membrane potential and Ca2+ levels in O-2A cells. Ca2+ uptake into some mitochondria is activated by Ca2+ entry into cells or release from stores. Mitochondrial Ca2+ release appears to play a key role in shaping kainate-evoked Ca2+ responses.
Collapse