51
|
Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:435-78. [PMID: 10354709 DOI: 10.1016/s0079-6107(98)00052-2] [Citation(s) in RCA: 902] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integrin receptor binding to extracellular matrix proteins generates intracellular signals via enhanced tyrosine phosphorylation events that are important for cell growth, survival, and migration. This review will focus on the functions of the focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) and its role in linking integrin receptors to intracellular signaling pathways. FAK associates with several different signaling proteins such as Src-family PTKs, p130Cas, Shc, Grb2, PI 3-kinase, and paxillin. This enables FAK to function within a network of integrin-stimulated signaling pathways leading to the activation of targets such as the ERK and JNK/mitogen-activated protein kinase pathways. Focus will be placed on the structural domains and sites of FAK tyrosine phosphorylation important for FAK-mediated signaling events and how these sites are conserved in the FAK-related PTK, Pyk2. We will review what is known about FAK activation by integrin receptor-mediated events and also non-integrin stimuli. In addition, we discuss the emergence of a consensus FAK substrate phosphorylation sequence. Emphasis will also be placed on the role of FAK in generating cell survival signals and the cleavage of FAK during caspase-mediated apoptosis. An in-depth discussion will be presented of integrin-stimulated signaling events occurring in the FAK knockout fibroblasts (FAK-) and how these cells exhibit deficits in cell migration. FAK re-expression in the FAK- cells confirms the role of this PTK in the regulation of cell morphology and in promoting cell migration events. In addition, these results reinforce the potential role for FAK in promoting an invasive phenotype in human tumors.
Collapse
Affiliation(s)
- D D Schlaepfer
- Scripps Research Institute, Department of Immunology, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
52
|
Rosfjord EC, Maemura M, Johnson MD, Torri JA, Akiyama SK, Woods VL, Dickson RB. Activation of protein kinase C by phorbol esters modulates alpha2beta1 integrin on MCF-7 breast cancer cells. Exp Cell Res 1999; 248:260-71. [PMID: 10094832 DOI: 10.1006/excr.1998.4390] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular adhesions to other cells and to the extracellular matrix play crucial roles in the malignant progression of cancer. In this study, we investigated the role of protein kinase C (PKC) in the regulation of cell-substratum adhesion by the breast adenocarcinoma cell line MCF-7. A PKC activator, 12-O-tetradecanoylphorbol-l, 3-acetate (TPA), stimulated cell adhesion to laminin and collagen I in a dose-dependent manner over a 1- to 4-h interval. This enhanced adhesion was mediated by alpha2beta1 integrin, since both anti-alpha2 and anti-beta1 blocking antibodies each completely abrogated the TPA-induced adhesion. FACS analysis determined that TPA treatment does not change the cell surface expression of alpha2beta1 integrin over a 4-h time interval. However, alpha2beta1 levels were increased after 24 h of TPA treatment. Thus, the enhanced avidity of alpha2beta1-dependent cellular adhesion preceded the induction of alpha2beta1 cell surface expression. Northern blot analysis revealed that mRNA levels of both alpha2 and beta1 subunits were increased after exposure to TPA for 4 h, indicating that the induction of alpha2beta1 mRNA preceded that of its cell surface expression. This further suggested that the TPA-induced avidity of alpha2beta1 was independent of increased expression of alpha2beta1. Pretreatment of cells with the PKC inhibitor calphostin C partially antagonized the TPA-induced increase in expression of alpha2beta1 integrin expression and of alpha2beta1-mediated cellular adhesion. To identify a possible mechanism by which TPA could be acting to promote the rapid induction of alpha2beta1 adhesion, we treated the cells with the Rho-GTPase inhibitor Clostridium botulinumexotoxin C3. C3 inhibited TPA-induced adhesion to laminin and collagen I in a dose-dependant manner, suggesting a likely role for Rho in TPA-induced adhesion. Together, these results suggest that PKC can modulate the alpha2beta1-dependent adhesion of MCF-7 cells by two distinct mechanisms: altering the gene expression of integrins alpha2 and beta1 and altering the avidity of the alpha2beta1 integrin by a Rho-dependant mechanism.
Collapse
Affiliation(s)
- E C Rosfjord
- Lombardi Cancer Research Center, Georgetown University, Washington, DC, 20007, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Nozu F, Tsunoda Y, Ibitayo AI, Bitar KN, Owyang C. Involvement of RhoA and its interaction with protein kinase C and Src in CCK-stimulated pancreatic acini. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G915-23. [PMID: 10198335 DOI: 10.1152/ajpgi.1999.276.4.g915] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We evaluated intracellular pathways responsible for the activation of the small GTP-binding protein Rho p21 in rat pancreatic acini. Intact acini were incubated with or without CCK and carbachol, and Triton X-100-soluble and crude microsomes were used for Western immunoblotting. When a RhoA-specific antibody was used, a single band at the location of 21 kDa was detected. CCK (10 pM-10 nM) and carbachol (0.1-100 microM) dose dependently increased the amount of immunodetectable RhoA with a peak increase occurring at 3 min. High-affinity CCK-A-receptor agonists JMV-180 and CCK-OPE (1-1,000 nM) did not increase the intensities of the RhoA band, suggesting that stimulation of RhoA is mediated by the low-affinity CCK-A receptor. Although an increase in RhoA did not require the presence of extracellular Ca2+, the intracellular Ca2+ chelator 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM abolished the appearance of the RhoA band in response to CCK and carbachol. The Gq protein inhibitor G protein antagonist-2A (10 microM) and the phospholipase C (PLC) inhibitor U-73122 (10 microM) markedly reduced RhoA bands in response to CCK. The protein kinase C (PKC) activator phorbol ester (10-1,000 nM) dose dependently increased the intensities of the RhoA band, which were inhibited by the PKC inhibitor K-252a (1 microM). The pp60(c-src) inhibitor herbimycin A (6 microM) inhibited the RhoA band in response to CCK, whereas the calmodulin inhibitor W-7 (100 microM) and the phosphoinositide 3-kinase inhibitor wortmannin (6 microM) had no effect. RhoA was immunoprecipitated with Src, suggesting association of RhoA with Src. Increases in mass of this complex were observed with CCK stimulation. In permeabilized acini, the Rho inhibitor Clostridium botulinum C3 exoenzyme dose dependently inhibited amylase secretion evoked by a Ca2+ concentration with an IC50 of C3 exoenzyme at 1 ng/ml. We concluded that the small GTP-binding protein RhoA p21 exists in pancreatic acini and appears to be involved in the mediation of pancreatic enzyme secretion evoked by CCK and carbachol. RhoA pathways are involved in the activation of PKC and Src cascades via Gq protein and PLC.
Collapse
Affiliation(s)
- F Nozu
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
54
|
Ferris HA, Tapia JA, García LJ, Jensen RT. CCKA receptor activation stimulates p130(Cas) tyrosine phosphorylation, translocation, and association with Crk in rat pancreatic acinar cells. Biochemistry 1999; 38:1497-1508. [PMID: 9931015 DOI: 10.1021/bi981903w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p130(Cas) (Crk-associated substrate), because of its structure as an adapter protein, can interact when tyrosine-phosphorylated with a large number of cellular proteins and therefore be an important modulator of downstream signals. A number of growth factors, lipids, and a few G protein-coupled receptors can stimulate p130(Cas) tyrosine phosphorylation. Recent studies show that tyrosine phosohorylation of intracellular proteins by the hormone/neurotransmitter cholecystokinin (CCK) in rat pancreatic acinar cells may be an important signaling cascade. In this study, we show in rat dispersed pancreatic acini CCK-8 rapidly stimulates tyrosine phosphorylation of p130(Cas), reaching a maximum (6.6 +/- 1. 4)-fold increase with a half-maximal effect at 0.3 nM. Activation of protein kinase C by TPA or increases in [Ca2+]i by the calcium ionophore A23187 stimulated p130(Cas) phosphorylation. Blockade of CCK increases in [Ca2+]i or PKC activity did not alter CCK-8-stimulated p130(Cas) phosphorylation; however, simultaneous blockage of both cascades caused a 50% inhibition. Partial inactivation by C. botulinum toxin of the small GTP-binding protein Rho caused a 41 +/- 12% decrease in the CCK-stimulated p130(Cas) phosphorylation. Disruption of the actin cytoskeleton with cytochalasin D, but not the microtubule network with colchicine, completely inhibited CCK-8-stimulated p130(Cas) phosphorylation. Total p130(Cas) under basal conditions was largely localized (70 +/- 2%) in the membrane fraction, and stimulation with CCK-8 induced total p130(Cas) translocation from the cytosolic fraction. CCK stimulation also caused a (5 +/- 1)-fold increase in p130(Cas) tyrosine phosphorylated in the plasma membrane. Treatment with tyrphostin B44 inhibited CCK-8-stimulated p130(Cas) phosphorylation, but it had no effect on p130(Cas) translocation. CCK-8 caused rapid formation of a p130(Cas)-Crk complex. In conclusion, our results demonstrate CCKA receptor activation causes rapid tyrosine phosphorylation of p130(Cas) through PLC-dependent and -independent mechanisms that require the participation of the small GTP-binding protein Rho and the integrity of the actin cytoskeleton, but not the microtubule network. Moreover, CCKA receptor activation causes translocation of p130(Cas) to the membrane and an increase in membrane tyrosine-phosphorylated p130(Cas). The translocation to the membrane does not require antecedent tyrosine phosphorylation. CCKA activation promotes the rapid formation of a p130(Cas)-Crk complex. These results suggest that p130(Cas) is likely an important modulator of downstream signals activated by CCK-8, possibly involved in regulating numerous cellular effects, such as effects on cell growth or cell shape.
Collapse
Affiliation(s)
- H A Ferris
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
55
|
Leser J, Lührs H, Beil MF, Adler G, Lutz MP. Cholecystokinin-induced redistribution of paxillin in rat pancreatic acinar cells. Biochem Biophys Res Commun 1999; 254:400-5. [PMID: 9918850 DOI: 10.1006/bbrc.1998.9413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) dose-dependently stimulates enzyme secretion or loss of cell integrity in the exocrine pancreas. Signaling mechanims include tyrosine phosphorylation of p125(FAK) and paxillin. Here, we examine their potential function. Maximum phosphorylation of both proteins was observed after stimulation of freshly isolated rat pancreatic acini with 10 nM CCK, a concentration known to initiate breakdown of the terminal actin web and cell damage. Under these conditions, CCK initiated transient redistribution of paxillin from the apical cytosol to the apical and lateral plasma membrane within 2 min, where it colocalized with the terminal actin web. Relocation of paxillin was confirmed in subcellular fractions by western blotting and coincided with maximum phosphorylation of membrane-bound p125(FAK) and paxillin. Subsequently, paxillin was redistributed to the basolateral cytosol and was degraded. p125(FAK) remained membrane-bound. We conclude that phosphorylation and redistribution of paxillin and phosphorylation of p125(FAK) may participate in the CCK-induced disassembly of acinar cell actin.
Collapse
Affiliation(s)
- J Leser
- Department of Internal Medicine I, University of Ulm, Ulm, 89070, Germany
| | | | | | | | | |
Collapse
|
56
|
Tapia JA, Camello C, Jensen RT, García LJ. EGF stimulates tyrosine phosphorylation of focal adhesion kinase (p125FAK) and paxillin in rat pancreatic acini by a phospholipase C-independent process that depends on phosphatidylinositol 3-kinase, the small GTP-binding protein, p21rho, and the integrity of the actin cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1448:486-499. [PMID: 9990300 DOI: 10.1016/s0167-4889(98)00157-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Epidermal growth factor (EGF) is a potent mitogen in many cell types including pancreatic cells. Recent studies show that the effects of some growth factors on growth and cell migration are mediated by tyrosine phosphorylation of the cytosolic tyrosine kinase p125 focal adhesion kinase (p125FAK) and the cytoskeletal protein, paxillin. The aim of the present study was to determine whether EGF activates this pathway in rat pancreatic acini and causes tyrosine phosphorylation of each of these proteins, and to examine the intracellular pathways involved. Treatment of pancreatic acini with EGF induced a rapid, concentration-dependent increase in p125FAK and paxillin tyrosine phosphorylation. Depletion of the intracellular calcium pool or inhibition of PKC activation had no effect on the response to EGF. However, inhibition of the phosphatidylinositol 3-kinase (PI3-kinase) or inactivation of p21rho inhibited EGF-stimulated phosphorylation of p125FAK and paxillin by more than 70%. Finally, cytochalasin D, a selective disrupter of the actin filament network, completely inhibited EGF-stimulated tyrosine phosphorylation of both proteins. All these treatments did not modify EGF receptor autophosphorylation in response to EGF. These results identify p125FAK and paxillin as components of the intracellular pathways stimulated after EGF receptor occupation in rat pancreatic acini. Activation of this cascade requires activation of PI3-kinase and participation of p21rho, but not PKC activation and calcium mobilization.
Collapse
Affiliation(s)
- J A Tapia
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | | | | |
Collapse
|
57
|
Rosado JA, Salido GM, Jensen RT, Garcia LJ. Are tyrosine phosphorylation of p125(FAK) and paxillin or the small GTP binding protein, rho, needed for CCK-stimulated pancreatic amylase secretion? BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:412-426. [PMID: 9739170 DOI: 10.1016/s0167-4889(98)00072-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studies of a possible role of tyrosine phosphorylation in the secretory process in rat pancreatic acinar cells provide conflicting conclusions. Recent studies show that tyrosine phosphorylation of the focal adhesion kinase, p125FAK and the cytoskeletal protein, paxillin, may mediate a number of cellular changes and this phosphorylation is dependent on the activation of the small GTP binding protein, p21Rho (Rho). In this work we have investigated the role of tyrosine phosphorylation of each of these proteins and of the activation of Rho in pancreatic enzyme secretion. Pretreatment with genistein, a tyrosine kinase inhibitor, decreased CCK-8-stimulated tyrosine phosphorylation of p125FAK and paxillin and CCK-8-stimulated amylase secretion by more than 60%, raising the possibility that tyrosine phosphorylation of these two proteins could be important in the ability of CCK-8 to stimulate amylase release. However, genistein did not alter the amylase release stimulated by TPA but inhibited TPA-stimulated p125FAK and paxillin tyrosine phosphorylation by 70%. Pretreatment with C3 transferase, which specifically inactivates Rho, causes a decrease in CCK-8-induced maximal amylase release by 33%. Moreover, C3 transferase pretreatment causes a 48% and a 38% decrease in the tyrosine phosphorylation of p125FAK and paxillin by CCK-8, respectively. Pretreatment with different concentrations of cytochalasin D, an actin cytoskeleton assembly inhibitor, completely inhibited CCK-8-stimulated tyrosine phosphorylation of p125FAK and paxillin without having any effect on either the potency or efficacy of CCK-8 at stimulating amylase release. Furthermore, cytochalasin D completely inhibited TPA-stimulated tyrosine phosphorylation of both proteins without affecting TPA-stimulated amylase release. These results show that tyrosine phosphorylation of p125FAK and paxillin is not required for CCK-8 stimulation of enzyme secretion. However, our results suggest Rho is involved in the CCK-8 stimulation of amylase release by a parallel pathway to its involvement in the CCK-8-stimulated tyrosine phosphorylation of p125FAK and paxillin.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Extremadura, 10071 Cáceres, Spain
| | | | | | | |
Collapse
|
58
|
Feick P, Gilhaus S, Schulz I. Pervanadate stimulates amylase release and protein tyrosine phosphorylation of paxillin and p125(FAK) in differentiated AR4-2J pancreatic acinar cells. J Biol Chem 1998; 273:16366-73. [PMID: 9632700 DOI: 10.1074/jbc.273.26.16366] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have studied the role of protein tyrosine phosphorylation in amylase secretion from differentiated AR4-2J cells. The secretagogue bombesin, the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), and the protein-tyrosine phosphatase inhibitor pervanadate induced tyrosine phosphorylation of different proteins, including paxillin and p125(FAK), which was reduced or blocked by the tyrosine kinase inhibitors genistein and tyrphostin B56, respectively. Both PMA and pervanadate continuously increased amylase secretion with a similar time course, reaching the level of bombesin-induced amylase release after 60 min. Their effects were not additive and could be inhibited by preincubation of AR4-2J cells with genistein or tyrphostin B56, respectively. Inhibition of protein kinase C with Ro 31-8220 nearly abolished the effects of PMA, but had no effect on either pervanadate-induced protein tyrosine phosphorylation or amylase secretion. An increase in cytosolic free Ca2+ concentration by thapsigargin or A23187 caused a rapid increase in amylase release within the initial 5 min. In the presence of PMA or pervanadate, amylase secretion was further stimulated to levels comparable to those induced by bombesin after 30 min of stimulation. Inhibition of PMA-induced amylase secretion by Ro 31-8220 was less at elevated cytosolic free Ca2+ concentrations than without Ca2+. Furthermore, an increase in cytosolic free Ca2+ concentration had no effect on protein tyrosine phosphorylation in either the absence or presence of PMA or pervanadate. We therefore conclude that in the cascade of events that lead to bombesin-induced protein secretion from AR4-2J cells, protein tyrosine phosphorylation occurs downstream of protein kinase C activation. A further step in secretion that is Ca2+-dependent occurs distal to protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- P Feick
- Institute of Physiology II, University of the Saarland, 66421 Homburg/Saar, Germany
| | | | | |
Collapse
|
59
|
Ryan RR, Weber HC, Hou W, Sainz E, Mantey SA, Battey JF, Coy DH, Jensen RT. Ability of various bombesin receptor agonists and antagonists to alter intracellular signaling of the human orphan receptor BRS-3. J Biol Chem 1998; 273:13613-13624. [PMID: 9593699 DOI: 10.1074/jbc.273.22.13613] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bombesin (Bn) receptor subtype 3 (BRS-3) is an orphan receptor that is a predicted member of the heptahelical G-protein receptor family and so named because it shares a 50% amino acid homology with receptors for the mammalian bombesin-like peptides neuromedin B (NMB) and gastrin-releasing peptide. In a recent targeted disruption study, in which BRS-3-deficient mice were generated, the mice developed obesity, diabetes, and hypertension. To date, BRS-3's natural ligand remains unknown, its pharmacology unclear, and cellular basis of action undetermined. Furthermore, there are few tissues or cell lines found that express sufficient levels of BRS-3 protein for study. To define the intracellular signaling properties of BRS-3, we examined the ability of [D-Phe6,beta-Ala11,Phe13, Nle14]Bn-(6-14), a newly discovered peptide with high affinity for BRS-3, and various Bn receptor agonists and antagonists to alter cellular function in hBRS-3-transfected BALB 3T3 cells and hBRS-3-transfected NCI-H1299 non-small cell lung cancer cells, which natively express very low levels of hBRS-3. This ligand stimulated a 4-9-fold increase in [3H]inositol phosphate formation in both cell lines under conditions where it caused no stimulation in untransfected cells and also stimulated an increase in [3H]IP1, [3H]IP2, and 3H]IP3. The elevation of [3H]IP was concentration-dependent, with an EC50 of 20-35 nM in both cell lines. [D-Phe6,beta-Ala11,Phe13,Nle14]Bn-(6-14) stimulated a 2-3-fold increase in [Ca2+]i, a 3-fold increase in tyrosine phosphorylation of p125(FAK) with an EC50 of 0.2-0.7 nM, but failed to either stimulate increases in cyclic AMP or inhibit forskolin-stimulated increases. None of nine naturally occurring Bn peptides or three synthetic Bn analogues reported to activate hBRS-3 did so with high affinity. No high affinity Bn receptor antagonists had high affinity for the hBRS-3 receptor, although two low affinity antagonists for gastrin-releasing peptide and NMB receptors, [D-Arg1,D-Trp7,9, Leu11]substance P and [D-Pro4,D-Trp7,9,10]substance P-(4-11), inhibited hBRS-3 receptor activation. The NMB receptor-specific antagonist D-Nal,Cys,Tyr,D-Trp,Lys,Val, Cys,Nal-NH2 inhibited hBRS-3 receptor activation in a competitive fashion (Ki = 0.5 microM). Stimulation of p125(FAK) tyrosine phosphorylation by hBRS-3 activation was not inhibited by the protein kinase C inhibitor, GF109203X, or thapsigargin, alone or in combination. These results show that hBRS-3 receptor activation increases phospholipase C activity, which causes generation of inositol phosphates and changes in [Ca2+]i and is also coupled to tyrosine kinase activation, but is not coupled to adenylate cyclase activation or inhibition. hBRS-3 receptor activation results in tyrosine phosphorylation of p125(FAK), and it is not dependent on activation of either limb of the phospholipase C cascade. Although the natural ligand is not a known bombesin-related peptide, the availability of [D-Phe6,beta-Ala11, Phe13,Nle14]Bn-(6-14), which functions as a high affinity agonist in conjunction with hBRS-3-transfected cell lines and the recognition of three classes of receptor antagonists including one with affinity of 0.5 microM, should provide important tools to assist in the identification of its natural ligand, the development of more potent selective receptor antagonists and agonists, and further exploration of the signaling properties of the hBRS-3 receptor.
Collapse
Affiliation(s)
- R R Ryan
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Tsuda T, Kusui T, Jensen RT. Neuromedin B receptor activation causes tyrosine phosphorylation of p125FAK by a phospholipase C independent mechanism which requires p21rho and integrity of the actin cytoskeleton. Biochemistry 1997; 36:16328-16337. [PMID: 9405068 DOI: 10.1021/bi971448o] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent studies show that tyrosine phosphorylation by a number of neuropeptides may be an important intracellular pathway in mediating changes in cell function, particularly related to growth. Neuromedin B (NMB), a mammalian bombesin related peptide, functions through a distinct receptor, the neuromedin B receptor (NMB-R), of which little is known about its cellular basis of action. In the present study we explored the ability of NMB-R activation to cause tyrosine phosphorylation of focal adhesion kinase (p125(FAK)), an important substrate for tyrosine phosphorylation by other neuropeptides. NMB caused rapid increases in p125(FAK) phosphorylation which reached maximum at 2 min in both rat C6 glioblastoma cells which possess native NMB-Rs and rat neuromedin B receptor (rNMR-R) transfected BALB 3T3 cells. NMB had a half-maximal effect was at 0.4 nM and was 30-fold more potent than gastrin-releasing peptide (GRP). The stoichiometric relationships between increased p125(FAK) tyrosine phosphorylation and other cellular processes was similar in both C6 cells and rNMB-R transfected cells. TPA (1 microM) caused 45% and the calcium ionophore, A23187, 11% of maximal tyrosine phosphorylation of p125(FAK) seen with NMB. A23187 potentiated the effect of TPA. Pretreatment with the selective PKC inhibitor, GF109203X, inhibited TPA-induced p125(FAK) tyrosine phosphorylation, but it had no effect on the NMB stimulation. Pretreatment with thapsigargin completely inhibited NMB-stimulated increases in [Ca2+]i, but had no effect on NMB-stimulation of p125(FAK) phosphorylation either alone or with GF109203X. The tyrosine kinase inhibitor, tyrphostin A25, inhibited NMB-induced phosphorylation of p125(FAK) by 52%. However, tyrphostin A25 did not inhibit NMB-stimulated increases in [3H]inositol phosphates. Cytochalasin D, an agent which disrupts actin microfilaments, inhibited BN- and TPA-induced tyrosine phosphorylation of p125(FAK) completely. In contrast, colchicine, an agent which disrupts microtubules, had no effect. Pretreatment with Clostridium botulinum C3 exoenzyme which inactivates the small GTP-binding protein rho p21, also inhibited tyrosine phosphorylation of p125(FAK) by 55%. These results demonstrate that activation of NMB-R can cause rapid tyrosine phosphorylation of p125(FAK). NMB-induced tyrosine phosphorylation of p125(FAK) is independent of NMB-induced changes in [Ca2+]i or PKC. The integrity of the actin cytoskeleton but not of microtubules is necessary for NMB-stimulated phosphorylation of p125(FAK). The ras-related small GTP-binding protein rho p21 is at least partially involved in mediating NMB-induced tyrosine phosphorylation of p125(FAK). These results suggest that similar to some other neuropeptides, activation of this pathway may be an important mechanism in mediating cellular changes by this receptor such as growth.
Collapse
Affiliation(s)
- T Tsuda
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | |
Collapse
|