51
|
Affiliation(s)
- Miriam K Konkel
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| |
Collapse
|
52
|
Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 2010; 466:769-73. [PMID: 20686575 PMCID: PMC3034402 DOI: 10.1038/nature09209] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 05/28/2010] [Indexed: 02/07/2023]
Abstract
Long INterspersed Element-1 (LINE-1 or L1) retrotransposition continues to impact human genome evolution1,2. L1s can retrotranspose in the germline, during early development, and in select somatic cells3,4,5,6,7,8; however, the host response to L1 retrotransposition remains largely unexplored. Here, we show that reporter genes introduced into the genome of various human embryonic carcinoma-derived cell lines (ECs) by L1 retrotransposition are rapidly and efficiently silenced either during or immediately after their integration. Treating ECs with histone deacetylase inhibitors (IHDACs) rapidly reverses this silencing, and chromatin immunoprecipitation (ChIP) experiments revealed that reactivation of the reporter gene was correlated with changes in chromatin status at the L1 integration site. Under our assay conditions, rapid silencing also was observed when reporter genes were delivered into ECs by mouse L1s and a zebrafish LINE-2 element, but not when similar reporter genes were delivered into ECs by Moloney murine leukemia virus (MMLV) or human immunodeficiency virus (HIV), suggesting these integration events are silenced by distinct mechanisms. Finally, we demonstrate that subjecting ECs to culture conditions that promote differentiation attenuates the silencing of reporter genes delivered by L1 retrotransposition, but that differentiation, per se, is not sufficient to reactivate previously silenced reporter genes. Thus, our data suggest that ECs differ from many differentiated cells in their ability to silence reporter genes delivered by L1 retrotransposition.
Collapse
|
53
|
O'Donnell KA, Burns KH. Mobilizing diversity: transposable element insertions in genetic variation and disease. Mob DNA 2010; 1:21. [PMID: 20813032 PMCID: PMC2941744 DOI: 10.1186/1759-8753-1-21] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/02/2010] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) comprise a large fraction of mammalian genomes. A number of these elements are actively jumping in our genomes today. As a consequence, these insertions provide a source of genetic variation and, in rare cases, these events cause mutations that lead to disease. Yet, the extent to which these elements impact their host genomes is not completely understood. This review will summarize our current understanding of the mechanisms underlying transposon regulation and the contribution of TE insertions to genetic diversity in the germline and in somatic cells. Finally, traditional methods and emerging technologies for identifying transposon insertions will be considered.
Collapse
Affiliation(s)
- Kathryn A O'Donnell
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
54
|
Qureshi IA, Mehler MF. Impact of nuclear organization and dynamics on epigenetic regulation in the central nervous system: implications for neurological disease states. Ann N Y Acad Sci 2010; 1204 Suppl:E20-37. [PMID: 20840166 PMCID: PMC2946117 DOI: 10.1111/j.1749-6632.2010.05718.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic mechanisms that are highly responsive to interoceptive and environmental stimuli mediate the proper execution of complex genomic programs, such as cell type-specific gene transcription and posttranscriptional RNA processing, and are increasingly thought to be important for modulating the development, homeostasis, and plasticity of the central nervous system (CNS). These epigenetic processes include DNA methylation, histone modifications, and chromatin remodeling, all of which play roles in neural cellular diversity, connectivity, and plasticity. Further, large-scale transcriptomic analyses have revealed that the eukaryotic genome is pervasively transcribed, forming interleaved protein-coding RNAs and regulatory nonprotein-coding RNAs (ncRNAs), which act through a broad array of molecular mechanisms. Most of these ncRNAs are transcribed in a cell type- and developmental stage-specific manner in the CNS. A broad array of posttranscriptional processes, such as RNA editing and transport, can modulate the functions of both protein-coding RNAs and ncRNAs. Additional studies implicate nuclear organization and dynamics in mediating epigenetic regulation. The compartmentalization of DNA sequences and other molecular machinery into functional nuclear domains, such as transcription factories, Cajal bodies, promyelocytic leukemia nuclear bodies, nuclear speckles, and paraspeckles, some of which are found prominently in neural cells, is associated with regulation of transcriptional activity and posttranscriptional RNA processing. These observations suggest that genomic architecture and RNA biology in the CNS are much more complex and nuanced than previously appreciated. Increasing evidence now suggests that most, if not all, human CNS diseases are associated with either primary or secondary perturbations in one or more aspects of the epigenome. In this review, we provide an update of our emerging understanding of genomic architecture, RNA biology, and nuclear organization and highlight the interconnected roles that deregulation of these factors may play in diverse CNS disorders.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY
| | - Mark F. Mehler
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY
| |
Collapse
|
55
|
Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res 2010; 1338:20-35. [PMID: 20380817 DOI: 10.1016/j.brainres.2010.03.110] [Citation(s) in RCA: 357] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) development, homeostasis, stress responses, and plasticity are all mediated by epigenetic mechanisms that modulate gene expression and promote selective deployment of functional gene networks in response to complex profiles of interoceptive and environmental signals. Thus, not surprisingly, disruptions of these epigenetic processes are implicated in the pathogenesis of a spectrum of neurological and psychiatric diseases. Epigenetic mechanisms involve chromatin remodeling by relatively generic complexes that catalyze DNA methylation and various types of histone modifications. There is increasing evidence that these complexes are directed to their sites of action by long non-protein-coding RNAs (lncRNAs), of which there are tens if not hundreds of thousands specified in the genome. LncRNAs are transcribed in complex intergenic, overlapping and antisense patterns relative to adjacent protein-coding genes, suggesting that many lncRNAs regulate the expression of these genes. LncRNAs also participate in a wide array of subcellular processes, including the formation and function of cellular organelles. Most lncRNAs are transcribed in a developmentally regulated and cell type specific manner, particularly in the CNS, wherein over half of all lncRNAs are expressed. While the numerous biological functions of lncRNAs are yet to be characterized fully, a number of recent studies suggest that lnRNAs are important for mediating cell identity. This function seems to be especially important for generating the enormous array of regional neuronal and glial cell subtypes that are present in the CNS. Further studies have also begun to elucidate additional roles played by lncRNAs in CNS processes, including homeostasis, stress responses and plasticity. Herein, we review emerging evidence that highlights the expression and function of lncRNAs in the CNS and suggests that lncRNA deregulation is an important factor in various CNS pathologies including neurodevelopmental, neurodegenerative and neuroimmunological disorders, primary brain tumors, and psychiatric diseases.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | | | | |
Collapse
|
56
|
Muñoz-López M, García-Pérez JL. DNA transposons: nature and applications in genomics. Curr Genomics 2010; 11:115-28. [PMID: 20885819 PMCID: PMC2874221 DOI: 10.2174/138920210790886871] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 11/18/2009] [Accepted: 12/01/2009] [Indexed: 12/19/2022] Open
Abstract
Repeated DNA makes up a large fraction of a typical mammalian genome, and some repetitive elements are able to move within the genome (transposons and retrotransposons). DNA transposons move from one genomic location to another by a cut-and-paste mechanism. They are powerful forces of genetic change and have played a significant role in the evolution of many genomes. As genetic tools, DNA transposons can be used to introduce a piece of foreign DNA into a genome. Indeed, they have been used for transgenesis and insertional mutagenesis in different organisms, since these elements are not generally dependent on host factors to mediate their mobility. Thus, DNA transposons are useful tools to analyze the regulatory genome, study embryonic development, identify genes and pathways implicated in disease or pathogenesis of pathogens, and even contribute to gene therapy. In this review, we will describe the nature of these elements and discuss recent advances in this field of research, as well as our evolving knowledge of the DNA transposons most widely used in these studies.
Collapse
Affiliation(s)
- Martín Muñoz-López
- Andalusian Stem Cell Bank, Center for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain
| | - José L. García-Pérez
- Andalusian Stem Cell Bank, Center for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain
| |
Collapse
|
57
|
Khatua AK, Taylor HE, Hildreth JEK, Popik W. Inhibition of LINE-1 and Alu retrotransposition by exosomes encapsidating APOBEC3G and APOBEC3F. Virology 2010; 400:68-75. [PMID: 20153011 DOI: 10.1016/j.virol.2010.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 11/18/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Human cytidine deaminases, including APOBEC3G (A3G) and A3F, are part of a cellular defense system against retroviruses and retroelements including non-LTR retrotransposons LINE-1 (L1) and Alu. Expression of cellular A3 proteins is sufficient for inhibition of L1 and Alu retrotransposition, but the effect of A3 proteins transferred in exosomes on retroelement mobilization is unknown. Here, we demonstrate for the first time that exosomes secreted by CD4(+)H9 T cells and mature monocyte-derived dendritic cells encapsidate A3G and A3F and inhibit L1 and Alu retrotransposition. A3G is the major contributor to the inhibitory activity of exosomes, however, the contribution of A3F in H9 exosomes cannot be excluded. Additionally, we show that exosomes encapsidate mRNAs coding for A3 proteins. A3G mRNA, and less so A3F, was enriched in exosomes secreted by H9 cells. Exosomal A3G mRNA was functional in vitro. Whether exosomes inhibit retrotransposons in vivo requires further investigation.
Collapse
Affiliation(s)
- Atanu K Khatua
- Center for AIDS Health Disparities Research, Meharry Medical College, 1005 D. B. Todd Blvd., Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
58
|
Unique functions of repetitive transcriptomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:115-88. [PMID: 21035099 DOI: 10.1016/b978-0-12-381047-2.00003-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Repetitive sequences occupy a huge fraction of essentially every eukaryotic genome. Repetitive sequences cover more than 50% of mammalian genomic DNAs, whereas gene exons and protein-coding sequences occupy only ~3% and 1%, respectively. Numerous genomic repeats include genes themselves. They generally encode "selfish" proteins necessary for the proliferation of transposable elements (TEs) in the host genome. The major part of evolutionary "older" TEs accumulated mutations over time and fails to encode functional proteins. However, repeats have important functions also on the RNA level. Repetitive transcripts may serve as multifunctional RNAs by participating in the antisense regulation of gene activity and by competing with the host-encoded transcripts for cellular factors. In addition, genomic repeats include regulatory sequences like promoters, enhancers, splice sites, polyadenylation signals, and insulators, which actively reshape cellular transcriptomes. TE expression is tightly controlled by the host cells, and some mechanisms of this regulation were recently decoded. Finally, capacity of TEs to proliferate in the host genome led to the development of multiple biotechnological applications.
Collapse
|
59
|
Gogvadze E, Buzdin A. Retroelements and their impact on genome evolution and functioning. Cell Mol Life Sci 2009; 66:3727-42. [PMID: 19649766 PMCID: PMC11115525 DOI: 10.1007/s00018-009-0107-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/11/2009] [Accepted: 07/14/2009] [Indexed: 12/31/2022]
Abstract
Retroelements comprise a considerable fraction of eukaryotic genomes. Since their initial discovery by Barbara McClintock in maize DNA, retroelements have been found in genomes of almost all organisms. First considered as a "junk DNA" or genomic parasites, they were shown to influence genome functioning and to promote genetic innovations. For this reason, they were suggested as an important creative force in the genome evolution and adaptation of an organism to altered environmental conditions. In this review, we summarize the up-to-date knowledge of different ways of retroelement involvement in structural and functional evolution of genes and genomes, as well as the mechanisms generated by cells to control their retrotransposition.
Collapse
Affiliation(s)
- Elena Gogvadze
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya st, 117997 Moscow, Russia.
| | | |
Collapse
|
60
|
Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009; 10:691-703. [PMID: 19763152 DOI: 10.1038/nrg2640] [Citation(s) in RCA: 1161] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Their ability to move within genomes gives transposable elements an intrinsic propensity to affect genome evolution. Non-long terminal repeat (LTR) retrotransposons--including LINE-1, Alu and SVA elements--have proliferated over the past 80 million years of primate evolution and now account for approximately one-third of the human genome. In this Review, we focus on this major class of elements and discuss the many ways that they affect the human genome: from generating insertion mutations and genomic instability to altering gene expression and contributing to genetic innovation. Increasingly detailed analyses of human and other primate genomes are revealing the scale and complexity of the past and current contributions of non-LTR retrotransposons to genomic change in the human lineage.
Collapse
Affiliation(s)
- Richard Cordaux
- CNRS UMR 6556 Ecologie, Evolution, Symbiose, Université de Poitiers, 40 Avenue du Recteur Pineau, Poitiers, France
| | | |
Collapse
|
61
|
Mourier T, Willerslev E. Retrotransposons and non-protein coding RNAs. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:493-501. [PMID: 19729447 DOI: 10.1093/bfgp/elp036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retrotransposons constitute a significant fraction of mammalian genomes. Considering the finding of widespread transcriptional activity across entire genomes, it is not surprising that retrotransposons contribute to the collective RNA pool. However, the transcriptional output from retrotransposons does not merely represent spurious transcription. We review examples of functional RNAs transcribed from retrotransposons, and address the collection of non-protein coding RNAs derived from transposable element sequences, including numerous human microRNAs and the neuronal BC RNAs. Finally, we review the emerging understanding of how retrotransposons themselves are regulated by small RNAs.
Collapse
Affiliation(s)
- Tobias Mourier
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
62
|
Abstract
Retrotransposons, mainly LINEs, SINEs, and endogenous retroviruses, make up roughly 40% of the mammalian genome and have played an important role in genome evolution. Their prevalence in genomes reflects a delicate balance between their further expansion and the restraint imposed by the host. In any human genome only a small number of LINE1s (L1s) are active, moving their own and SINE sequences into new genomic locations and occasionally causing disease. Recent insights and new technologies promise answers to fundamental questions about the biology of transposable elements.
Collapse
Affiliation(s)
- John L Goodier
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
63
|
Aguiar RS, Peterlin BM. APOBEC3 proteins and reverse transcription. Virus Res 2008; 134:74-85. [PMID: 18262674 DOI: 10.1016/j.virusres.2007.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/28/2007] [Accepted: 12/28/2007] [Indexed: 01/01/2023]
Abstract
The ability of members of the APOBEC3 (A3) family of proteins to confer intrinsic immunity to retroviral infection was recognized in several studies. More specifically, A3 proteins are cytidine deaminases (CDAs) that cause hypermutations of nascent retroviral genomes by deamination of cytidine residues. Although A3 proteins can restrict the replication of HIV, this inhibition is overcome by the viral infectivity factor (Vif). Inhibitory effects of APOBEC proteins are not limited to HIV but extend to other viruses and endogenous mobile genetic elements that share a reverse transcription process analogous to that of exogenous retroviruses. In sharp contrast, another conundrum of A3 proteins is that they inhibit viral replication even in the absence of CDA activity and recent advances have defined the inhibition of reverse transcriptase (RT) catalyzed DNA elongation reactions by A3 proteins. Together, these proteins provide strong and immediate intracellular immunity against incoming pathogens and restrict the movement of mobile genetic elements protecting the genome.
Collapse
Affiliation(s)
- Renato S Aguiar
- Department of Medicine, Microbiology and Immunology, University of California, San Francisco (UCSF), 533 Parnassus Avenue U422, San Francisco, CA 94143-0703, USA
| | | |
Collapse
|
64
|
Münk C, Beck T, Zielonka J, Hotz-Wagenblatt A, Chareza S, Battenberg M, Thielebein J, Cichutek K, Bravo IG, O'Brien SJ, Löchelt M, Yuhki N. Functions, structure, and read-through alternative splicing of feline APOBEC3 genes. Genome Biol 2008; 9:R48. [PMID: 18315870 PMCID: PMC2397500 DOI: 10.1186/gb-2008-9-3-r48] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Over the past years a variety of host restriction genes have been identified in human and mammals that modulate retrovirus infectivity, replication, assembly, and/or cross-species transmission. Among these host-encoded restriction factors, the APOBEC3 (A3; apolipoprotein B mRNA-editing catalytic polypeptide 3) proteins are potent inhibitors of retroviruses and retrotransposons. While primates encode seven of these genes (A3A to A3H), rodents carry only a single A3 gene. RESULTS Here we identified and characterized several A3 genes in the genome of domestic cat (Felis catus) by analyzing the genomic A3 locus. The cat genome presents one A3H gene and three very similar A3C genes (a-c), probably generated after two consecutive gene duplications. In addition to these four one-domain A3 proteins, a fifth A3, designated A3CH, is expressed by read-through alternative splicing. Specific feline A3 proteins selectively inactivated only defined genera of feline retroviruses: Bet-deficient feline foamy virus was mainly inactivated by feA3Ca, feA3Cb, and feA3Cc, while feA3H and feA3CH were only weakly active. The infectivity of Vif-deficient feline immunodeficiency virus and feline leukemia virus was reduced only by feA3H and feA3CH, but not by any of the feA3Cs. Within Felidae, A3C sequences show significant adaptive selection, but unexpectedly, the A3H sequences present more sites that are under purifying selection. CONCLUSION Our data support a complex evolutionary history of expansion, divergence, selection and individual extinction of antiviral A3 genes that parallels the early evolution of Placentalia, becoming more intricate in taxa in which the arms race between host and retroviruses is harsher.
Collapse
Affiliation(s)
- Carsten Münk
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|