51
|
Andersen PK, Jensen TH, Lykke-Andersen S. Making ends meet: coordination between RNA 3'-end processing and transcription initiation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:233-46. [PMID: 23450686 DOI: 10.1002/wrna.1156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RNA polymerase II (RNAPII)-mediated gene transcription initiates at promoters and ends at terminators. Transcription termination is intimately connected to 3'-end processing of the produced RNA and already when loaded at the promoter, RNAPII starts to become configured for this downstream event. Conversely, RNAPII is 'reset' as part of the 3'-end processing/termination event, thus preparing the enzyme for its next round of transcription--possibly on the same gene. There is both direct and circumstantial evidence for preferential recycling of RNAPII from the gene terminator back to its own promoter, which supposedly increases the efficiency of the transcription process under conditions where RNAPII levels are rate limiting. Here, we review differences and commonalities between initiation and 3'-end processing/termination processes on various types of RNAPII transcribed genes. In doing so, we discuss the requirements for efficient 3'-end processing/termination and how these may relate to proper recycling of RNAPII.
Collapse
Affiliation(s)
- Pia K Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
52
|
Dominski Z, Carpousis AJ, Clouet-d'Orval B. Emergence of the β-CASP ribonucleases: highly conserved and ubiquitous metallo-enzymes involved in messenger RNA maturation and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:532-51. [PMID: 23403287 DOI: 10.1016/j.bbagrm.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023]
Abstract
The β-CASP ribonucleases, which are found in the three domains of life, have in common a core of 460 residues containing seven conserved sequence motifs involved in the tight binding of two catalytic zinc ions. A hallmark of these enzymes is their ability to catalyze both endo- and exo-ribonucleolytic degradation. Exo-ribonucleolytic degradation proceeds in the 5' to 3' direction and is sensitive to the phosphorylation state of the 5' end of a transcript. Recent phylogenomic analyses have shown that the β-CASP ribonucleases can be partitioned into two major subdivisions that correspond to orthologs of eukaryal CPSF73 and bacterial RNase J. We discuss the known functions of the CPSF73 and RNase J orthologs, their association into complexes, and their structure as it relates to mechanism of action. Eukaryal CPSF73 is part of a large multiprotein complex that is involved in the maturation of the 3' end of RNA Polymerase II transcripts and the polyadenylation of messenger RNA. RNase J1 and J2 are paralogs in Bacillus subtilis that are involved in the degradation of messenger RNA and the maturation of non-coding RNA. RNase J1 and J2 co-purify as a heteromeric complex and there is recent evidence that they interact with other enzymes to form a bacterial RNA degradosome. Finally, we speculate on the evolutionary origin of β-CASP ribonucleases and on their functions in Archaea. Orthologs of CPSF73 with endo- and exo-ribonuclease activity are strictly conserved throughout the archaea suggesting a role for these enzymes in the maturation and/or degradation of messenger RNA. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
53
|
Carvalho S, Raposo AC, Martins FB, Grosso AR, Sridhara SC, Rino J, Carmo-Fonseca M, de Almeida SF. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res 2013; 41:2881-93. [PMID: 23325844 PMCID: PMC3597667 DOI: 10.1093/nar/gks1472] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Histone H3 of nucleosomes positioned on active genes is trimethylated at Lys36 (H3K36me3) by the SETD2 (also termed KMT3A/SET2 or HYPB) methyltransferase. Previous studies in yeast indicated that H3K36me3 prevents spurious intragenic transcription initiation through recruitment of a histone deacetylase complex, a mechanism that is not conserved in mammals. Here, we report that downregulation of SETD2 in human cells leads to intragenic transcription initiation in at least 11% of active genes. Reduction of SETD2 prevents normal loading of the FACT (FAcilitates Chromatin Transcription) complex subunits SPT16 and SSRP1, and decreases nucleosome occupancy in active genes. Moreover, co-immunoprecipitation experiments suggest that SPT16 is recruited to active chromatin templates, which contain H3K36me3-modified nucleosomes. Our results further show that within minutes after transcriptional activation, there is a SETD2-dependent reduction in gene body occupancy of histone H2B, but not of histone H3, suggesting that SETD2 coordinates FACT-mediated exchange of histone H2B during transcription-coupled nucleosome displacement. After inhibition of transcription, we observe a SETD2-dependent recruitment of FACT and increased histone H2B occupancy. These data suggest that SETD2 activity modulates FACT recruitment and nucleosome dynamics, thereby repressing cryptic transcription initiation.
Collapse
Affiliation(s)
- Sílvia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Chen J, Waltenspiel B, Warren WD, Wagner EJ. Functional analysis of the integrator subunit 12 identifies a microdomain that mediates activation of the Drosophila integrator complex. J Biol Chem 2013; 288:4867-77. [PMID: 23288851 DOI: 10.1074/jbc.m112.425892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Drosophila integrator complex consists of 14 subunits that associate with the C terminus of Rpb1 and catalyze the endonucleolytic cleavage of nascent snRNAs near their 3' ends. Although disruption of almost any integrator subunit causes snRNA misprocessing, very little is known about the role of the individual subunits or the network of structural and functional interactions that exist within the complex. Here we developed an RNAi rescue assay in Drosophila S2 cells to identify functional domains within integrator subunit 12 (IntS12) required for snRNA 3' end formation. Surprisingly, the defining feature of the Ints12 protein, a highly conserved and centrally located plant homeodomain finger domain, is not required for reporter snRNA 3' end cleavage. Rather, we find a small, 45-amino acid N-terminal microdomain to be both necessary and nearly sufficient for snRNA biogenesis in cells depleted of endogenous IntS12 protein. This IntS12 microdomain can function autonomously, restoring full integrator processing activity when introduced into a heterologous protein. Moreover, mutations within the microdomain not only disrupt IntS12 function but also abolish binding to other integrator subunits. Finally, the IntS12 microdomain is sufficient to interact and stabilize the putative scaffold integrator subunit, IntS1. Collectively, these results identify an unexpected interaction between the largest and smallest integrator subunits that is essential for the 3' end formation of Drosophila snRNA.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
55
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 478] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
56
|
Andersen PK, Lykke-Andersen S, Jensen TH. Promoter-proximal polyadenylation sites reduce transcription activity. Genes Dev 2012; 26:2169-79. [PMID: 23028143 DOI: 10.1101/gad.189126.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ~500 base pairs of the promoter. In contrast, promoter-proximal positioning of a pA site-independent histone gene terminator supports high transcription levels. We propose that optimal communication between a pA site-dependent gene terminator and its promoter critically depends on gene length and that short RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels.
Collapse
Affiliation(s)
- Pia K Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | |
Collapse
|
57
|
Chen J, Ezzeddine N, Waltenspiel B, Albrecht TR, Warren WD, Marzluff WF, Wagner EJ. An RNAi screen identifies additional members of the Drosophila Integrator complex and a requirement for cyclin C/Cdk8 in snRNA 3'-end formation. RNA (NEW YORK, N.Y.) 2012; 18:2148-2156. [PMID: 23097424 PMCID: PMC3504667 DOI: 10.1261/rna.035725.112] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/17/2012] [Indexed: 06/01/2023]
Abstract
Formation of the 3' end of RNA polymerase II-transcribed snRNAs requires a poorly understood group of proteins called the Integrator complex. Here we used a fluorescence-based read-through reporter that expresses GFP in response to snRNA misprocessing and performed a genome-wide RNAi screen in Drosophila S2 cells to identify novel factors required for snRNA 3'-end formation. In addition to the known Integrator complex members, we identified Asunder and CG4785 as additional Integrator subunits. Functional and biochemical experiments revealed that Asunder and CG4785 are additional core members of the Integrator complex. We also identified a conserved requirement in both fly and human snRNA 3'-end processing for cyclin C and Cdk8 that is distinct from their function in the Mediator Cdk8 module. Moreover, we observed biochemical association between Integrator proteins and cyclin C/Cdk8, and that overexpression of a kinase-dead Cdk8 causes snRNA misprocessing. These data functionally define the Drosophila Integrator complex and demonstrate an additional function for cyclin C/Cdk8 unrelated to its function in Mediator.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Nader Ezzeddine
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Bernhard Waltenspiel
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences, James Cook University, Townsville QLD 4811, Queensland, Australia
| | - Todd R. Albrecht
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - William D. Warren
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences, James Cook University, Townsville QLD 4811, Queensland, Australia
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
58
|
Doherty MT, Kang YS, Lee C, Stumph WE. Architectural arrangement of the small nuclear RNA (snRNA)-activating protein complex 190 subunit (SNAP190) on U1 snRNA gene promoter DNA. J Biol Chem 2012; 287:39369-79. [PMID: 23038247 PMCID: PMC3501025 DOI: 10.1074/jbc.m112.407775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/01/2012] [Indexed: 11/06/2022] Open
Abstract
Myb repeats ∼52 amino acid residues in length were first characterized in the oncogenic Myb transcription factor, which contains three tandem Myb repeats in its DNA-binding domain. Proteins of this family normally contain either one, two, or three tandem Myb repeats that are involved in protein-DNA interactions. The small nuclear RNA (snRNA)-activating protein complex (SNAPc) is a heterotrimeric transcription factor that is required for expression of small nuclear RNA genes. This complex binds to an essential promoter element, the proximal sequence element, centered ∼50 base pairs upstream of the transcription start site of snRNA genes. SNAP190, the largest subunit of SNAPc, uncharacteristically contains 4.5 tandem Myb repeats. Little is known about the arrangement of the Myb repeats in the SNAPc-DNA complex, and it has not been clear whether all 4.5 Myb repeats contact the DNA. By using a site-specific protein-DNA photo-cross-linking assay, we have now mapped specific nucleotides where each of the Myb repeats of Drosophila melanogaster SNAP190 interacts with a U1 snRNA gene proximal sequence element. The results reveal the topological arrangement of the 4.5 SNAP190 Myb repeats relative to the DNA and to each other when SNAP190 is bound to a U1 promoter as a subunit of SNAPc.
Collapse
Affiliation(s)
| | - Yoon Soon Kang
- Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Cheryn Lee
- Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - William E. Stumph
- Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| |
Collapse
|
59
|
James Faresse N, Canella D, Praz V, Michaud J, Romascano D, Hernandez N. Genomic study of RNA polymerase II and III SNAPc-bound promoters reveals a gene transcribed by both enzymes and a broad use of common activators. PLoS Genet 2012; 8:e1003028. [PMID: 23166507 PMCID: PMC3499247 DOI: 10.1371/journal.pgen.1003028] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/24/2012] [Indexed: 12/23/2022] Open
Abstract
SNAPc is one of a few basal transcription factors used by both RNA polymerase (pol) II and pol III. To define the set of active SNAPc-dependent promoters in human cells, we have localized genome-wide four SNAPc subunits, GTF2B (TFIIB), BRF2, pol II, and pol III. Among some seventy loci occupied by SNAPc and other factors, including pol II snRNA genes, pol III genes with type 3 promoters, and a few un-annotated loci, most are primarily occupied by either pol II and GTF2B, or pol III and BRF2. A notable exception is the RPPH1 gene, which is occupied by significant amounts of both polymerases. We show that the large majority of SNAPc-dependent promoters recruit POU2F1 and/or ZNF143 on their enhancer region, and a subset also recruits GABP, a factor newly implicated in SNAPc-dependent transcription. These activators associate with pol II and III promoters in G1 slightly before the polymerase, and ZNF143 is required for efficient transcription initiation complex assembly. The results characterize a set of genes with unique properties and establish that polymerase specificity is not absolute in vivo. SNAPc-dependent promoters are unique among cellular promoters in being very similar to each other, even though some of them recruit RNA polymerase II and others RNA polymerase III. We have examined all SNAPc-bound promoters present in the human genome. We find a surprisingly small number of them, some 70 promoters. Among these, the large majority is bound by either RNA polymerase II or RNA polymerase III, as expected, but one gene hitherto considered an RNA polymerase III gene is also occupied by significant levels of RNA polymerase II. Both RNA polymerase II and RNA polymerase III SNAPc-dependent promoters use a largely overlapping set of a few transcription activators, including GABP, a novel factor implicated in snRNA gene transcription.
Collapse
Affiliation(s)
- Nicole James Faresse
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Donatella Canella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joëlle Michaud
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - David Romascano
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
60
|
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:174-85. [PMID: 23085255 PMCID: PMC3793857 DOI: 10.1016/j.bbagrm.2012.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3′ end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Hannah E Mischo
- Cancer Research UK London Research Institute, Blanche Lane South Mimms, Herts, UK.
| | | |
Collapse
|
61
|
O'Reilly D, Dienstbier M, Cowley SA, Vazquez P, Drozdz M, Taylor S, James WS, Murphy S. Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res 2012; 23:281-91. [PMID: 23070852 PMCID: PMC3561869 DOI: 10.1101/gr.142968.112] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human U1 small nuclear (sn)RNA, required for splicing of pre-mRNA, is encoded by genes on chromosome 1 (1p36). Imperfect copies of these U1 snRNA genes, also located on chromosome 1 (1q12-21), were thought to be pseudogenes. However, many of these "variant" (v)U1 snRNA genes produce fully processed transcripts. Using antisense oligonucleotides to block the activity of a specific vU1 snRNA in HeLa cells, we have identified global transcriptome changes following interrogation of the Affymetrix Human Exon ST 1.0 array. Our results indicate that this vU1 snRNA regulates expression of a subset of target genes at the level of pre-mRNA processing. This is the first indication that variant U1 snRNAs have a biological function in vivo. Furthermore, some vU1 snRNAs are packaged into unique ribonucleoproteins (RNPs), and many vU1 snRNA genes are differentially expressed in human embryonic stem cells (hESCs) and HeLa cells, suggesting developmental control of RNA processing through expression of different sets of vU1 snRNPs.
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Heidemann M, Hintermair C, Voß K, Eick D. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:55-62. [PMID: 22982363 DOI: 10.1016/j.bbagrm.2012.08.013] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/09/2012] [Accepted: 08/29/2012] [Indexed: 12/27/2022]
Abstract
The eukaryotic RNA polymerase II (RNAPII) catalyzes the transcription of all protein encoding genes and is also responsible for the generation of small regulatory RNAs. RNAPII has evolved a unique domain composed of heptapeptide repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the C-terminus (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation patterns of serine residues in CTD during gene transcription coordinate the recruitment of factors to the elongating RNAPII and to the nascent transcript. Recent studies identified threonine 4 and tyrosine 1 as new CTD modifications and thereby expanded the "CTD code". In this review, we focus on CTD phosphorylation and its function in the RNAPII transcription cycle. We also discuss in detail the limitations of the phosphospecific CTD antibodies, which are used in all studies. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Martin Heidemann
- Department of Molecular Epigenetics, Center for Integrated Protein Science Munich, Munich, Germany
| | | | | | | |
Collapse
|
63
|
Egloff S. Role of Ser7 phosphorylation of the CTD during transcription of snRNA genes. RNA Biol 2012; 9:1033-8. [PMID: 22858677 DOI: 10.4161/rna.21166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The largest subunit of RNA polymerase (pol) II, Rpb1, contains an unusual carboxyl-terminal domain (CTD) composed of consecutive repeats of the sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser (Y 1S 2P 3T 4S 5P 6S 7). During transcription, Ser2, Ser5 and Ser7 are subjected to dynamic phosphorylation and dephosphorylation by CTD kinases and phosphatases, creating a characteristic CTD phosphorylation pattern along genes. This CTD "code" allows the coupling of transcription with co-transcriptional RNA processing, through the timely recruitment of the appropriate factors at the right point of the transcription cycle. In mammals, phosphorylation of Ser7 (Ser7P) is detected on all pol II-transcribed genes, but is only essential for expression of a sub-class of genes encoding small nuclear (sn)RNAs. The molecular mechanisms by which Ser7P influences expression of these particular genes are becoming clearer. Here, I discuss our recent findings clarifying how Ser7P facilitates transcription of these genes and 3'end processing of the transcripts, through recruitment of the RPAP2 phosphatase and the snRNA gene-specific Integrator complex.
Collapse
Affiliation(s)
- Sylvain Egloff
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France.
| |
Collapse
|
64
|
Cecere G, Zheng GXY, Mansisidor AR, Klymko KE, Grishok A. Promoters recognized by forkhead proteins exist for individual 21U-RNAs. Mol Cell 2012; 47:734-45. [PMID: 22819322 DOI: 10.1016/j.molcel.2012.06.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/09/2012] [Accepted: 06/01/2012] [Indexed: 12/29/2022]
Abstract
C. elegans 21U-RNAs are equivalent to the piRNAs discovered in other metazoans and have important roles in gametogenesis and transposon control. The biogenesis and molecular function of 21U-RNAs and piRNAs are poorly understood. Here, we demonstrate that transcription of each 21U-RNA is regulated separately through a conserved upstream DNA motif. We use genomic analysis to show that this motif is associated with low nucleosome occupancy, a characteristic of many promoters that drive expression of protein-coding genes, and that RNA polymerase II is localized to this nucleosome-depleted region. We establish that the most conserved 8-mer sequence in the upstream region of 21U-RNAs, CTGTTTCA, is absolutely required for their individual expression. Furthermore, we demonstrate that the 8-mer is specifically recognized by Forkhead family (FKH) transcription factors and that 21U-RNA expression is diminished in several FKH mutants. Our results suggest that thousands of small noncoding transcription units are regulated by FKH proteins.
Collapse
Affiliation(s)
- Germano Cecere
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
65
|
Egloff S, Dienstbier M, Murphy S. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet 2012; 28:333-41. [PMID: 22622228 DOI: 10.1016/j.tig.2012.03.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
The carboxyl-terminal domain (CTD) of RNA polymerase (pol) II comprises multiple tandem repeats with the consensus sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7) that can be extensively and reversibly modified in vivo. CTD modifications orchestrate the interplay between transcription and processing of mRNA. Although phosphorylation of Ser2 (Ser2P) and Ser5 (Ser5P) residues has been described as being essential for the expression of most pol II-transcribed genes, recent findings highlight gene-specific effects of newly discovered CTD modifications. Here, we incorporate these latest findings in an updated review of the currently known elements that contribute to the CTD code and how it is recognized by proteins involved in transcription and RNA maturation. As modification of the CTD has a major impact on gene expression, a better understanding of the CTD code is integral to the understanding of how gene expression is regulated.
Collapse
Affiliation(s)
- Sylvain Egloff
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
| | | | | |
Collapse
|
66
|
In vitro RNase and nucleic acid binding activities implicate coilin in U snRNA processing. PLoS One 2012; 7:e36300. [PMID: 22558428 PMCID: PMC3338655 DOI: 10.1371/journal.pone.0036300] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/04/2012] [Indexed: 11/21/2022] Open
Abstract
Coilin is known as the marker protein for Cajal bodies (CBs), subnuclear domains important for the biogenesis of small nuclear ribonucleoproteins (snRNPs) which function in pre-mRNA splicing. CBs associate non-randomly with U1 and U2 gene loci, which produce the small nuclear RNA (snRNA) component of the respective snRNP. Despite recognition as the CB marker protein, coilin is primarily nucleoplasmic, and the function of this fraction is not fully characterized. Here we show that coilin binds double stranded DNA and has RNase activity in vitro. U1 and U2 snRNAs undergo a processing event of the primary transcript prior to incorporation in the snRNP. We find that coilin displays RNase activity within the CU region of the U2 snRNA primary transcript in vitro, and that coilin knockdown results in accumulation of the 3′ pre-processed U1 and U2 snRNA. These findings present new characteristics of coilin in vitro, and suggest additional functions of the protein in vivo.
Collapse
|
67
|
Jia Y, Mu JC, Ackerman SL. Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell 2012; 148:296-308. [PMID: 22265417 DOI: 10.1016/j.cell.2011.11.057] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/06/2011] [Accepted: 11/08/2011] [Indexed: 12/30/2022]
Abstract
Although uridine-rich small nuclear RNAs (U-snRNAs) are essential for pre-mRNA splicing, little is known regarding their function in the regulation of alternative splicing or of the biological consequences of their dysfunction in mammals. Here, we demonstrate that mutation of Rnu2-8, one of the mouse multicopy U2 snRNA genes, causes ataxia and neurodegeneration. Coincident with the observed pathology, the level of mutant U2 RNAs was highest in the cerebellum and increased after granule neuron maturation. Furthermore, neuron loss was strongly dependent on the dosage of mutant and wild-type snRNA genes. Comprehensive transcriptome analysis identified a group of alternative splicing events, including the splicing of small introns, which were disrupted in the mutant cerebellum. Our results suggest that the expression of mammalian U2 snRNA genes, previously presumed to be ubiquitous, is spatially and temporally regulated, and dysfunction of a single U2 snRNA causes neuron degeneration through distortion of pre-mRNA splicing.
Collapse
Affiliation(s)
- Yichang Jia
- Howard Hughes Medical Institute and The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
68
|
Zaborowska J, Taylor A, Roeder RG, Murphy S. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes. Transcription 2012; 3:92-104. [PMID: 22441827 PMCID: PMC3337830 DOI: 10.4161/trns.19783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.
Collapse
Affiliation(s)
| | - Alice Taylor
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology; The Rockefeller University; New York, NY USA
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| |
Collapse
|
69
|
Smith ER, Lin C, Garrett AS, Thornton J, Mohaghegh N, Hu D, Jackson J, Saraf A, Swanson SK, Seidel C, Florens L, Washburn MP, Eissenberg JC, Shilatifard A. The little elongation complex regulates small nuclear RNA transcription. Mol Cell 2012; 44:954-65. [PMID: 22195968 DOI: 10.1016/j.molcel.2011.12.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 01/09/2023]
Abstract
Eleven-nineteen lysine-rich leukemia (ELL) participates in the super elongation complex (SEC) with the RNA polymerase II (Pol II) CTD kinase P-TEFb. SEC is a key regulator in the expression of HOX genes in mixed lineage leukemia (MLL)-based hematological malignancies, in the control of induced gene expression early in development, and in immediate early gene transcription. Here, we identify an SEC-like complex in Drosophila, as well as a distinct ELL-containing complex that lacks P-TEFb and other components of SEC named the "little elongation complex" (LEC). LEC subunits are highly enriched at RNA Pol II-transcribed small nuclear RNA (snRNA) genes, and the loss of LEC results in decreased snRNA expression in both flies and mammals. The specialization of the SEC and LEC complexes for mRNA and snRNA-containing genes, respectively, suggests the presence of specific classes of elongation factors for each class of genes transcribed by RNA polymerase II.
Collapse
Affiliation(s)
- Edwin R Smith
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Hung KH, Stumph WE. Localization of residues in a novel DNA-binding domain of DmSNAP43 required for DmSNAPc DNA-binding activity. FEBS Lett 2012; 586:841-6. [PMID: 22449969 DOI: 10.1016/j.febslet.2012.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/05/2012] [Accepted: 02/09/2012] [Indexed: 11/28/2022]
Abstract
Transcription of snRNA genes depends upon the recognition of the proximal sequence element (PSE) by the snRNA activating protein complex SNAPc. In Drosophila melanogaster, all subunits of DmSNAPc (DmSNAP43, DmSNAP50, and DmSNAP190) are required for PSE-binding activity. Previous work demonstrated that a non-canonical DmSNAP43 domain bounded by residues 193-272 was essential for DmSNAPc to bind to the PSE. In this study, the contribution of amino acid residues within this domain to DNA binding by DmSNAPc was investigated by alanine-scanning mutagenesis. The results have identified two clusters of residues within this domain required for the sequence-specific DNA-binding activity of DmSNAPc.
Collapse
Affiliation(s)
- Ko-Hsuan Hung
- Department of Biology, San Diego State University, San Diego, CA 92182-1030, United States
| | | |
Collapse
|
71
|
snRNA 3' end formation requires heterodimeric association of integrator subunits. Mol Cell Biol 2012; 32:1112-23. [PMID: 22252320 DOI: 10.1128/mcb.06511-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Integrator Complex is a group of proteins responsible for the endonucleolytic cleavage of primary small nuclear RNA (snRNA) transcripts within the nucleus. Integrator subunits 9 and 11 (IntS9/11) are thought to contain the catalytic activity based on their high sequence similarity to CPSF100 and CPSF73, which have been shown to be components of both the poly(A)(+) and histone pre-mRNA cleavage complex. Here we demonstrate that the specific heterodimeric interaction between IntS9 and IntS11 is mediated by a discrete domain present at the extreme C terminus of IntS9 and within the C terminus of IntS11, adjacent to the predicted active site of this endonuclease. This domain is highly conserved within IntS11 but conspicuously absent in CPSF73. Using a cell-based complementation assay that measures Integrator activity, we determined that the IntS9 interaction domain within IntS11 is required for its ability to restore snRNA 3' end processing after RNA interference (RNAi)-mediated depletion of IntS11. Moreover, overexpression of these interaction domains alone elicits snRNA misprocessing through a dominant-negative titration of endogenous Integrator subunits. These data collectively explain the mechanism by which the IntS11/9 and, by analogy, the CPSF73/100 heterodimeric cleavage factors distinguish themselves from each other and demonstrate that the heterodimeric interaction is functionally required for snRNA 3' end formation.
Collapse
|
72
|
Selvakumar T, Gjidoda A, Hovde SL, Henry RW. Regulation of human RNA polymerase III transcription by DNMT1 and DNMT3a DNA methyltransferases. J Biol Chem 2012; 287:7039-50. [PMID: 22219193 DOI: 10.1074/jbc.m111.285601] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human small nuclear RNA (snRNA) and small cytoplasmic RNA (scRNA) gene families encode diverse non-coding RNAs that influence cellular growth and division. Many snRNA and scRNA genes are related via their compact and yet powerful promoters that support RNA polymerase III transcription. We have utilized the human U6 snRNA gene family to examine the mechanism for regulated transcription of these potent transcription units. Analysis of nine U6 family members showed enriched CpG density within the promoters of actively transcribed loci relative to inert genes, implying a relationship between gene potency and DNA methylation. Indeed, both pharmacological inhibition of DNA methyltransferase (DNMT) activity and the forced diminution of DNMT-1, DNMT-3a, and DNMT-3b by siRNA targeting resulted in increased U6 levels in asynchronously growing MCF7 adenocarcinoma cells. In vitro transcription assays further showed that template methylation impedes U6 transcription by RNA polymerase III. Both DNMT-1 and DNMT-3a were detected at the U6-1 locus by chromatin immunoprecipitation directly linking these factors to RNA polymerase III regulation. Despite this association, the endogenous U6-1 locus was not substantially methylated in actively growing cells. However, both DNMT occupancy and low frequency methylation were correlated with increased Retinoblastoma tumor suppressor (RB) expression, suggesting that the RB status can influence specific epigenetic marks.
Collapse
Affiliation(s)
- Tharakeswari Selvakumar
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
73
|
Abstract
In most eukaryotes, the generation of the 3' end and transcription termination are initiated by cleavage of the pre-mRNA upstream of the polyadenylation site. This cleavage initiates 5'-3' degradation of the 3' end cleavage product by the exoribonuclease Rat1p leading to the dissociation of the RNA polymerase II (RNAPII) complex. The Rat1p-dependent transcription termination was also shown to be initiated by a polyadenylation-independent cleavage performed by the double-stranded RNA-specific ribonuclease (RNase) III (Rnt1p) suggesting that the majority of transcription termination events are RNase dependent. Therefore, it became essential for future studies on transcription termination to carefully consider both the nature of the RNase-dependent RNA transcripts and the association pattern of the RNAPII with the transcriptional unit. Here, we present methods allowing the evaluation of the impact of yeast RNases on the 3' end formation and their contribution to transcription termination. Northern blot analysis of transcripts generated downstream of known genes in the absence of RNases identifies potential transcription termination sites while chromatin immunoprecipitation of RNAPII differentiates between termination- and transcription-independent processing events.
Collapse
|
74
|
Egloff S, Zaborowska J, Laitem C, Kiss T, Murphy S. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol Cell 2011; 45:111-22. [PMID: 22137580 PMCID: PMC3262128 DOI: 10.1016/j.molcel.2011.11.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/07/2011] [Accepted: 09/30/2011] [Indexed: 11/30/2022]
Abstract
The carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II) comprises multiple heptapeptide repeats of the consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Reversible phosphorylation of Ser2, Ser5, and Ser7 during the transcription cycle mediates the sequential recruitment of transcription/RNA processing factors. Phosphorylation of Ser7 is required for recruitment of the gene type-specific Integrator complex to the Pol II-transcribed small nuclear (sn)RNA genes. Here, we show that RNA Pol II-associated protein 2 (RPAP2) specifically recognizes the phospho-Ser7 mark on the Pol II CTD and also interacts with Integrator subunits. siRNA-mediated knockdown of RPAP2 and mutation of Ser7 to alanine cause similar defects in snRNA gene expression. In addition, we show that RPAP2 is a CTD Ser5 phosphatase. Taken together, our results indicate that during transcription of snRNA genes, Ser7 phosphorylation facilitates recruitment of RPAP2, which in turn both recruits Integrator and dephosphorylates Ser5.
Collapse
Affiliation(s)
- Sylvain Egloff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
75
|
Cazalla D, Xie M, Steitz JA. A primate herpesvirus uses the integrator complex to generate viral microRNAs. Mol Cell 2011; 43:982-92. [PMID: 21925386 PMCID: PMC3176678 DOI: 10.1016/j.molcel.2011.07.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/05/2011] [Accepted: 07/28/2011] [Indexed: 11/17/2022]
Abstract
Herpesvirus saimiri (HVS) is a γ-herpesvirus that expresses Sm class U RNAs (HSURs) in latently infected marmoset T cells. By deep sequencing, we identified six HVS microRNAs (miRNAs) that are derived from three hairpin structures located immediately downstream of the 3' end processing signals of three of the HSURs. The viral miRNAs associate with Ago proteins and are biologically active. We confirmed that the expression of the two classes of viral noncoding RNAs is linked by identifying chimeric HSUR-pre-miRNA transcripts. We show that HVS miRNA biogenesis relies on cis-acting elements specifically required for synthesis and processing of Sm class RNAs. Knockdown of protein components in vivo and processing assays in vitro demonstrated that HVS does not utilize the Microprocessor complex that generates most host miRNAs. Instead, the Integrator complex cleaves to generate the 3' end of the HSUR and the pre-miRNA hairpin. Exportin-5 and Dicer are then required to generate mature viral miRNAs.
Collapse
Affiliation(s)
- Demián Cazalla
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | |
Collapse
|
76
|
Bartkowiak B, Mackellar AL, Greenleaf AL. Updating the CTD Story: From Tail to Epic. GENETICS RESEARCH INTERNATIONAL 2011; 2011:623718. [PMID: 22567360 PMCID: PMC3335468 DOI: 10.4061/2011/623718] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 12/03/2022]
Abstract
Eukaryotic RNA polymerase II (RNAPII) not only synthesizes mRNA but also coordinates transcription-related processes via its unique C-terminal repeat domain (CTD). The CTD is an RNAPII-specific protein segment consisting of repeating heptads with the consensus sequence Y1S2P3T4S5P6S7 that has been shown to be extensively post-transcriptionally modified in a coordinated, but complicated, manner. Recent discoveries of new modifications, kinases, and binding proteins have challenged previously established paradigms. In this paper, we examine results and implications of recent studies related to modifications of the CTD and the respective enzymes; we also survey characterizations of new CTD-binding proteins and their associated processes and new information regarding known CTD-binding proteins. Finally, we bring into focus new results that identify two additional CTD-associated processes: nucleocytoplasmic transport of mRNA and DNA damage and repair.
Collapse
Affiliation(s)
- Bartlomiej Bartkowiak
- Department of Biochemistry and Center for RNA Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
77
|
Kishi S. The search for evolutionary developmental origins of aging in zebrafish: A novel intersection of developmental and senescence biology in the zebrafish model system. ACTA ACUST UNITED AC 2011; 93:229-48. [DOI: 10.1002/bdrc.20217] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
78
|
Jung S, Swart EC, Minx PJ, Magrini V, Mardis ER, Landweber LF, Eddy SR. Exploiting Oxytricha trifallax nanochromosomes to screen for non-coding RNA genes. Nucleic Acids Res 2011; 39:7529-47. [PMID: 21715380 PMCID: PMC3177221 DOI: 10.1093/nar/gkr501] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We took advantage of the unusual genomic organization of the ciliate Oxytricha trifallax to screen for eukaryotic non-coding RNA (ncRNA) genes. Ciliates have two types of nuclei: a germ line micronucleus that is usually transcriptionally inactive, and a somatic macronucleus that contains a reduced, fragmented and rearranged genome that expresses all genes required for growth and asexual reproduction. In some ciliates including Oxytricha, the macronuclear genome is particularly extreme, consisting of thousands of tiny 'nanochromosomes', each of which usually contains only a single gene. Because the organism itself identifies and isolates most of its genes on single-gene nanochromosomes, nanochromosome structure could facilitate the discovery of unusual genes or gene classes, such as ncRNA genes. Using a draft Oxytricha genome assembly and a custom-written protein-coding genefinding program, we identified a subset of nanochromosomes that lack any detectable protein-coding gene, thereby strongly enriching for nanochromosomes that carry ncRNA genes. We found only a small proportion of non-coding nanochromosomes, suggesting that Oxytricha has few independent ncRNA genes besides homologs of already known RNAs. Other than new members of known ncRNA classes including C/D and H/ACA snoRNAs, our screen identified one new family of small RNA genes, named the Arisong RNAs, which share some of the features of small nuclear RNAs.
Collapse
Affiliation(s)
- Seolkyoung Jung
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Fischer U, Englbrecht C, Chari A. Biogenesis of spliceosomal small nuclear ribonucleoproteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:718-31. [PMID: 21823231 DOI: 10.1002/wrna.87] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Virtually, all eukaryotic mRNAs are synthesized as precursor molecules that need to be extensively processed in order to serve as a blueprint for proteins. The three most prevalent processing steps are the capping reaction at the 5'-end, the removal of intervening sequences by splicing, and the formation of poly (A)-tails at the 3'-end of the message by polyadenylation. A large number of proteins and small nuclear ribonucleoprotein complexes (snRNPs) interact with the mRNA and enable the different maturation steps. This chapter focuses on the biogenesis of snRNPs, the major components of the pre-mRNA splicing machinery (spliceosome). A large body of evidence has revealed an intricate and segmented pathway for the formation of snRNPs that involves nucleo-cytoplasmic transport events and elaborates assembly strategies. We summarize the knowledge about the different steps with an emphasis on trans-acting factors of snRNP maturation of higher eukaryotes. WIREs RNA 2011 2 718-731 DOI: 10.1002/wrna.87 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry, University of Wuerzburg, Germany.
| | | | | |
Collapse
|
80
|
|
81
|
A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3'-end formation. Mol Cell Biol 2010; 31:328-41. [PMID: 21078872 DOI: 10.1128/mcb.00943-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proper gene expression relies on a class of ubiquitously expressed, uridine-rich small nuclear RNAs (snRNAs) transcribed by RNA polymerase II (RNAPII). Vertebrate snRNAs are transcribed from a unique promoter, which is required for proper 3'-end formation, and cleavage of the nascent transcript involves the activity of a poorly understood set of proteins called the Integrator complex. To examine 3'-end formation in Drosophila melanogaster, we developed a cell-based reporter that monitors aberrant 3'-end formation of snRNA through the gain in expression of green fluorescent protein (GFP). We used this reporter in Drosophila S2 cells to determine requirements for U7 snRNA 3'-end formation and found that processing was strongly dependent upon nucleotides located within the 3' stem-loop as well as sequences likely to comprise the Drosophila equivalent of the vertebrate 3' box. Substitution of the actin promoter for the snRNA promoter abolished proper 3'-end formation, demonstrating the conserved requirement for an snRNA promoter in Drosophila. We tested the requirement for all Drosophila Integrator subunits and found that Integrators 1, 4, 9, and 11 were essential for 3'-end formation and that Integrators 3 and 10 may be dispensable for processing. Depletion of cleavage and polyadenylation factors or of histone pre-mRNA processing factors did not affect U7 snRNA processing efficiency, demonstrating that the Integrator complex does not share components with the mRNA 3'-end processing machinery. Finally, flies harboring mutations in either Integrator 4 or 7 fail to complete development and accumulate significant levels of misprocessed snRNA in the larval stages.
Collapse
|
82
|
Abstract
The ubiquitously expressed uridine-rich snRNAs (small nuclear RNAs) are essential for the removal of introns, proper expression of histone mRNA and biosynthesis of ribosomal RNA. Much is known about their assembly into snRNP (small nuclear ribonucleoprotein) particles and their ultimate function in the expression of other genes; however, in comparison, less is known about the biosynthesis of these critical non-coding RNAs. The sequence elements necessary for 3' end formation of snRNAs have been identified and, intriguingly, the processing of snRNAs is uniquely dependent on the snRNA promoter, indicating that co-transcriptional processing is important. However, the trans-acting RNA-processing factors that mediate snRNA processing remained elusive, hindering overall progress. Recently, the factors involved in this process were biochemically purified, and designated the Integrator complex. Since their initial discovery, Integrator proteins have been implicated not only in the production of snRNA, but also in other cellular processes that may be independent of snRNA biogenesis. In the present study, we discuss snRNA biosynthesis and the roles of Integrator proteins. We compare models of 3' end formation for different classes of RNA polymerase II transcripts and formulate/propose a model of Integrator function in snRNA biogenesis.
Collapse
|
83
|
Hung KH, Stumph WE. Regulation of snRNA gene expression by the Drosophila melanogaster small nuclear RNA activating protein complex (DmSNAPc). Crit Rev Biochem Mol Biol 2010; 46:11-26. [PMID: 20925482 DOI: 10.3109/10409238.2010.518136] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The small nuclear RNAs (snRNAs) are an essential class of non-coding RNAs first identified over 30 years ago. Many of the well-characterized snRNAs are involved in RNA processing events. However, it is now evident that other small RNAs, synthesized using similar mechanisms, play important roles at many stages of gene expression. The accurate and efficient control of the expression of snRNA (and related) genes is thus critical for cell survival. All snRNA genes share a very similar promoter structure, and their transcription is dependent upon the same multi-subunit transcription factor, termed the snRNA activating protein complex (SNAPc). Despite those similarities, some snRNA genes are transcribed by RNA polymerase II (Pol II), but others are transcribed by RNA polymerase III (Pol III). Thus snRNA genes provide a unique opportunity to understand how RNA polymerase specificity is determined and how distinct transcription machineries can interact with a common factor. This review will describe efforts taken toward solving those questions by using the fruit fly as a model organism. Drosophila melanogaster SNAPc (DmSNAPc) binds to a proximal sequence element (PSEA) present in both Pol II and Pol III snRNA promoters. Just a few differences in nucleotide sequence in the Pol II and Pol III PSEAs play a major role in determining RNA polymerase specificity. Furthermore, these same nucleotide differences result in alternative conformations of DmSNAPc on Pol II and Pol III snRNA gene promoters. It seems likely that these DNA-induced alternative DmSNAPc conformations are responsible for the differential recruitment of the distinct transcriptional machineries.
Collapse
Affiliation(s)
- Ko-Hsuan Hung
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-1030, USA
| | | |
Collapse
|
84
|
Hetman M, Vashishta A, Rempala G. Neurotoxic mechanisms of DNA damage: focus on transcriptional inhibition. J Neurochem 2010; 114:1537-49. [PMID: 20557419 DOI: 10.1111/j.1471-4159.2010.06859.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although DNA damage-induced neurotoxicity is implicated in various pathologies of the nervous system, its underlying mechanisms are not completely understood. Transcription is a DNA transaction that is highly active in the nervous system. In addition to its direct role in expression of the genetic information, transcription contributes to DNA damage detection and repair as well as chromatin organization including biogenesis of the nucleolus. Transcription is inhibited by DNA single-strand breaks and DNA adducts. Hence, transcription inhibition may be an important contributor to the neurotoxic consequences of such types of DNA damage. This review discusses the existing evidence in support of the latter hypothesis. The presented literature suggests that neuronal DNA damage interferes with the RNA-Polymerase-2-dependent transcription of genes encoding proteins with critical functions in neurotransmission and intracellular signaling. The latter category includes extracellular signal-regulated kinase-1/2 mitogen-activated protein kinase phosphatases whose lowered expression results in chronic activation of extracellular signal-regulated kinase-1/2 and its reduced responsiveness to physiological stimuli. Conversely, DNA damage-induced inhibition of RNA-Polymerase-1 and the subsequent disruption of the nucleolus induce p53-mediated apoptosis of developing neurons. Finally, decreasing nucleolar transcription may link DNA damage to chronic neurodegeneration in adults.
Collapse
Affiliation(s)
- Michal Hetman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, KY 40292, USA.
| | | | | |
Collapse
|
85
|
Egloff S, Szczepaniak SA, Dienstbier M, Taylor A, Knight S, Murphy S. The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain. J Biol Chem 2010; 285:20564-9. [PMID: 20457598 PMCID: PMC2898319 DOI: 10.1074/jbc.m110.132530] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II) comprises multiple tandem repeats of the heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. This unusual structure serves as a platform for the binding of factors required for expression of pol II-transcribed genes, including the small nuclear RNA (snRNA) gene-specific Integrator complex. The pol II CTD specifically mediates recruitment of Integrator to the promoter of snRNA genes to activate transcription and direct 3′ end processing of the transcripts. Phosphorylation of the CTD and a serine in position 7 are necessary for Integrator recruitment. Here, we have further investigated the requirement of the serines in the CTD heptapeptide and their phosphorylation for Integrator binding. We show that both Ser2 and Ser7 of the CTD are required and that phosphorylation of these residues is necessary and sufficient for efficient binding. Using synthetic phosphopeptides, we have determined the pattern of the minimal Ser2/Ser7 double phosphorylation mark required for Integrator to interact with the CTD. This novel double phosphorylation mark is a new addition to the functional repertoire of the CTD code and may be a specific signal for snRNA gene expression.
Collapse
Affiliation(s)
- Sylvain Egloff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
86
|
Kishi S, Slack BE, Uchiyama J, Zhdanova IV. Zebrafish as a genetic model in biological and behavioral gerontology: where development meets aging in vertebrates--a mini-review. Gerontology 2009; 55:430-41. [PMID: 19654474 DOI: 10.1159/000228892] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 03/12/2009] [Indexed: 01/10/2023] Open
Abstract
Understanding the molecular mechanisms of aging in vertebrates is a major challenge of modern biology and biomedical science. This is due, in part, to the complexity of the aging process and its multifactorial nature, the paucity of animal models that lend themselves to unbiased high-throughput screening for aging phenotypes, and the difficulty of predicting such phenotypes at an early age. We suggest that the zebrafish genetic model offers a unique opportunity to fill in this gap and contributes to advances in biological and behavioral gerontology. Our recent studies demonstrated that this diurnal vertebrate with gradual senescence is an excellent model in which to study age-dependent changes in musculoskeletal and eye morphology, endocrine factors, gene expression, circadian clock, sleep and cognitive functions. Importantly, we have also found that the presence of a senescence-associated biomarker ('senescence-associated beta-galactosidase') can be documented during early zebrafish development and is predictive of premature aging phenotypes later in adult life. The availability of mutant 'genotypes' with identified aging 'phenotypes' in zebrafish, in combination with a wealth of information about zebrafish development and genetics, and the existence of multiple mutant and transgenic lines, should significantly facilitate the use of this outstanding vertebrate model in deciphering the mechanisms of aging, and in developing preventive and therapeutic strategies to prolong the productive life span ('health span') in humans.
Collapse
Affiliation(s)
- Shuji Kishi
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | | | | | | |
Collapse
|
87
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|