51
|
Jou RJ, Mateljevic N, Kaiser MD, Sugrue DR, Volkmar FR, Pelphrey KA. Structural neural phenotype of autism: preliminary evidence from a diffusion tensor imaging study using tract-based spatial statistics. AJNR Am J Neuroradiol 2011; 32:1607-13. [PMID: 21799040 PMCID: PMC7965377 DOI: 10.3174/ajnr.a2558] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE There is mounting evidence suggesting widespread aberrations in neural connectivity as the underlying neurobiology of autism. Using DTI to assess white matter abnormalities, this study implemented a voxelwise analysis and tract-labeling strategy to test for a structural neural phenotype in autism. MATERIALS AND METHODS Subjects included 15 boys with autism and 8 controls, group-matched on age, cognitive functioning, sex, and handedness. DTI data were obtained by using a 3T scanner. FSL, including TBSS, was used to process and analyze DTI data where FA was chosen as the primary measure of fiber tract integrity. Affected voxels were labeled by using an integrated white matter tractography atlas. Post hoc correlation analyses were performed between FA of each affected fiber tract and scores on the Social Responsiveness Scale. RESULTS The autism group exhibited bilateral reductions in FA involving numerous association, commissural, and projection tracts, with the most severely affected being the forceps minor. The most affected association tracts were the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. There were no areas of increased FA in the autism group. All post hoc correlation analyses became nonsignificant after controlling for multiple comparisons. CONCLUSIONS This study provides preliminary evidence of reduced FA along many long-range fiber tracts in autism, suggesting aberrant long-range corticocortical connectivity. Although the spatial distribution of these findings suggests widespread abnormalities, there are major differences in the degree to which different tracts are affected, suggesting a more specific neural phenotype in autism.
Collapse
Affiliation(s)
- R J Jou
- Yale Child Study Center; Yale School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Suicidal behavior is associated with reduced corpus callosum area. Biol Psychiatry 2011; 70:320-6. [PMID: 21531383 DOI: 10.1016/j.biopsych.2011.02.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/09/2011] [Accepted: 02/25/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND Corpus callosum (CC) size has been associated with cognitive and emotional deficits in a range of neuropsychiatric and mood disorders. As such deficits are also found in suicidal behavior, we investigated specifically the association between CC atrophy and suicidal behavior. METHODS We studied 435 right-handed individuals without dementia from a cohort of community-dwelling persons aged 65 years and over (the ESPRIT study). They were divided in three groups: suicide attempters (n = 21), affective control subjects (AC) (n = 180) without history of suicide attempt but with a history of depression, and healthy control subjects (HC) (n = 234). T1-weighted magnetic resonance images were traced to measure the midsagittal areas of the anterior, mid, and posterior CC. Multivariate analysis of covariance was used to compare CC areas in the three groups. RESULTS Multivariate analyses adjusted for age, gender, childhood trauma, head trauma, and total brain volume showed that the area of the posterior third of CC was significantly smaller in suicide attempters than in AC (p = .020) and HC (p = .010) individuals. No significant differences were found between AC and HC. No differences were found for the anterior and mid thirds of the CC. CONCLUSIONS Our findings emphasize a reduced size of the posterior third of the CC in subjects with a history of suicide, suggesting a diminished interhemispheric connectivity and a possible role of CC in the pathophysiology of suicidal behavior. Further studies are needed to strengthen these results and clarify the underlying cellular changes leading to these morphometric differences.
Collapse
|
53
|
Sundram F, Deeley Q, Sarkar S, Daly E, Latham R, Craig M, Raczek M, Fahy T, Picchioni M, Barker GJ, Murphy DGM. White matter microstructural abnormalities in the frontal lobe of adults with antisocial personality disorder. Cortex 2011; 48:216-29. [PMID: 21777912 DOI: 10.1016/j.cortex.2011.06.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/20/2011] [Accepted: 06/04/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED Antisocial personality disorder (ASPD) and psychopathy involve significant interpersonal and behavioural impairments. However, little is known about their underlying neurobiology and in particular, abnormalities in white matter (WM) microstructure. A preliminary diffusion tensor magnetic resonance imaging (DT-MRI) study of adult psychopaths employing tractography revealed abnormalities in the right uncinate fasciculus (UF) (Craig et al., 2009), indicating fronto-limbic disconnectivity. However, it is not clear whether WM abnormalities are restricted to this tract or are or more widespread, including other tracts which are involved in connectivity with the frontal lobe. We performed whole brain voxel-based analyses on WM fractional anisotropy (FA) and mean diffusivity (MD) maps acquired with DT-MRI to compare 15 adults with ASPD and healthy age, handedness and IQ-matched controls. Also, within ASPD subjects we related differences in FA and MD to measures of psychopathy. Significant WM FA reduction and MD increases were found respectively in ASPD subjects relative to controls. FA was bilaterally reduced in the genu of corpus callosum while in the right frontal lobe FA reduction was found in the UF, inferior fronto-occipital fasciculus (IFOF), anterior corona radiata and anterior limb and genu of the internal capsule. These differences negatively correlated with measures of psychopathy. Also in the right frontal lobe, increased MD was found in the IFOF and UF, and the corpus callosum and anterior corona radiata. There was a significant positive correlation between MD and psychopathy scores. CONCLUSIONS The present study confirms a previous report of reduced FA in the UF. Additionally, we report for the first time, FA deficits in tracts involved in interhemispheric as well as frontal lobe connectivity in conjunction with MD increases in the frontal lobe. Hence, we provide evidence of significant WM microstructural abnormalities in frontal brain regions in ASPD and psychopathy.
Collapse
Affiliation(s)
- Frederick Sundram
- King's College London, Institute of Psychiatry, Department of Forensic and Neurodevelopmental Science, London, UK; Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Diffusion tensor imaging (DTI) is a neuroimaging technique with a potential to elucidate white matter integrity. Recently, it has been used in the field of psychiatry to further understand the pathophysiology of major diseases, including bipolar disorder (BD). This review sought to focus on existing DTI findings on white matter organization in BD.
Collapse
|
55
|
Affiliation(s)
- Moriah E. Thomason
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan 48202-3897
- Merrill Palmer Skillman Institute on Child and Family Development, Wayne State University, Detroit, Michigan 48202
| | - Paul M. Thompson
- Department of Neurology, School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1769;
| |
Collapse
|
56
|
Bearden CE, van Erp TGM, Dutton RA, Boyle C, Madsen S, Luders E, Kieseppa T, Tuulio-Henriksson A, Huttunen M, Partonen T, Kaprio J, Lönnqvist J, Thompson PM, Cannon TD. Mapping corpus callosum morphology in twin pairs discordant for bipolar disorder. ACTA ACUST UNITED AC 2011; 21:2415-24. [PMID: 21383237 DOI: 10.1093/cercor/bhr030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Callosal volume reduction has been observed in patients with bipolar disorder, but whether these deficits reflect genetic vulnerability to the illness remains unresolved. Here, we used computational methods to map corpus callosum abnormalities in a population-based sample of twin pairs discordant for bipolar disorder. Twenty-one probands with bipolar I disorder (mean age 44.4 ± 7.5 years; 48% female), 19 of their non-bipolar co-twins, and 34 demographically matched control twin individuals underwent magnetic resonance imaging. Three-dimensional callosal surface models were created to visualize its morphologic variability and to localize group differences. Neurocognitive correlates of callosal area differences were additionally investigated in a subsample of study participants. Bipolar (BPI) probands, but not their co-twins, showed significant callosal thinning and area reduction, most pronounced in the genu and splenium, relative to healthy twins. Altered callosal curvature was additionally observed in BPI probands. In bipolar probands and co-twins, genu and splenium midsagittal areas were significantly correlated with verbal processing speed and response inhibition. These findings suggest that aberrant connections between cortical regions--possibly reflecting decreased myelination of white matter tracts--may be involved in bipolar pathophysiology. However, findings of callosal thinning appear to be disease related, rather than reflecting genetic vulnerability to bipolar illness.
Collapse
Affiliation(s)
- Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
James A, Hough M, James S, Burge L, Winmill L, Nijhawan S, Matthews PM, Zarei M. Structural brain and neuropsychometric changes associated with pediatric bipolar disorder with psychosis. Bipolar Disord 2011; 13:16-27. [PMID: 21320249 DOI: 10.1111/j.1399-5618.2011.00891.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To identify neuropsychological and structural brain changes using a combination of high-resolution structural and diffusion tensor imaging in pediatric bipolar disorder (PBD) with psychosis (presence of delusions and or hallucinations). METHODS We recruited 15 patients and 20 euthymic age- and gender-matched healthy controls. All subjects underwent high-resolution structural and diffusion tensor imaging. Voxel-based morphometry (VBM), tract-based spatial statistics (TBSS), and probabilistic tractography were used to analyse magnetic resonance imaging data. RESULTS The PBD subjects had normal overall intelligence with specific impairments in working memory, executive function, language function, and verbal memory. Reduced gray matter (GM) density was found in the left orbitofrontal cortex, left pars triangularis, right premotor cortex, occipital cortex, right occipital fusiform gyrus, and right crus of the cerebellum. TBSS analysis showed reduced fractional anisotropy (FA) in the anterior corpus callosum. Probabilistic tractography from this cluster showed that this region of the corpus callosum is connected with the prefrontal cortices, including those regions whose density is decreased in PBD. In addition, FA change was correlated with verbal memory and working memory, while more widespread reductions in GM density correlated with working memory, executive function, language function, and verbal memory. CONCLUSIONS The findings suggest widespread cortical changes as well as specific involvement of interhemispheric prefrontal tracts in PBD, which may reflect delayed myelination in these tracts.
Collapse
Affiliation(s)
- Anthony James
- Highfield Family and Adolescent Unit, Warneford Hospital Oxford Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford GSK Clinical Imaging Centre, Imperial College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Versace A, Ladouceur CD, Romero S, Birmaher B, Axelson DA, Kupfer DJ, Phillips ML. Altered development of white matter in youth at high familial risk for bipolar disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry 2010; 49:1249-59, 1259.e1. [PMID: 21093774 PMCID: PMC2996850 DOI: 10.1016/j.jaac.2010.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To study white matter (WM) development in youth at high familial risk for bipolar disorder (BD). WM alterations are reported in youth and adults with BD. WM undergoes important maturational changes in adolescence. Age-related changes in WM microstructure using diffusion tensor imaging with tract-based spatial statistics in healthy offspring having a parent with BD were compared with those in healthy controls. METHOD A total of 45 offspring participated, including 20 healthy offspring with a parent diagnosed with BD (HBO) and 25 healthy control offspring of healthy parents (CONT). All were free of medical and psychiatric disorders. Mean fractional anisotropy (FA), radial diffusivity (RD), and longitudinal diffusivity were examined using whole-brain analyses, co-varying for age. RESULTS Group-by-age interactions showed a linear increase in FA and a linear decrease in RD in CONT in the left corpus callosum and right inferior longitudinal fasciculus. In HBO, there was a linear decrease in FA and an increase in RD with age in the left corpus callosum and no relation between FA or RD and age in the right inferior longitudinal fasciculus. Curve fitting confirmed linear and showed nonlinear relations between FA and RD and age in these regions in CONT and HBO. CONCLUSIONS This is the first study to examine WM in healthy offspring at high familial risk for BD. Results from this cross-sectional study suggest altered development of WM in HBO compared with CONT in the corpus callosum and temporal associative tracts, which may represent vulnerability markers for future BD and other psychiatric disorders in HBO.
Collapse
Affiliation(s)
- Amelia Versace
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Pitel AL, Chanraud S, Sullivan EV, Pfefferbaum A. Callosal microstructural abnormalities in Alzheimer's disease and alcoholism: same phenotype, different mechanisms. Psychiatry Res 2010; 184:49-56. [PMID: 20832253 PMCID: PMC2949287 DOI: 10.1016/j.pscychresns.2010.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 11/30/2022]
Abstract
Magnetic resonance (MRI) and diffusion tensor imaging (DTI) data were acquired in 13 Alzheimer's disease (AD) patients, 15 elderly alcoholics, and 32 elderly controls. Midsagittal area, length, dorsoventral height, fractional anisotropy (FA), and mean diffusivity (MD) of the total corpus callosum and volume of the lateral ventricles were measured; area, FA, and MD were also determined for the callosal genu, body, and splenium. On DTI, both patient groups had lower FA and higher MD than controls in all callosal regions. On MRI, both patient groups had smaller genu than controls; additional size deficits were present in the alcoholism group's callosal body and the AD group's splenium. The callosal arch was higher in the AD but not the alcoholic group compared with controls. The two patient groups had larger ventricles than controls, and the AD group had larger ventricles than the alcoholic group. Callosal area correlated with its height, and callosal FA and MD correlated with ventricular volume in AD, whereas callosal area correlated only with FA in alcoholics. In AD, the disruption of the callosal integrity, which was associated with distorted callosal shape, was related to ventricular dilation, which has been shown in twin studies to be under a multitude of genetic, polygenetic, and environmental influences. Conversely, in alcoholism, disruption of callosal microstructural integrity was related to shrinkage of the corpus callosum itself.
Collapse
Affiliation(s)
- Anne-Lise Pitel
- Department of Psychiatry and Behavioral Sciences and Neuroscience Program Stanford University School of Medicine, Stanford, CA 94305
| | - Sandra Chanraud
- Department of Psychiatry and Behavioral Sciences and Neuroscience Program Stanford University School of Medicine, Stanford, CA 94305,Neuroscience Program SRI International, Menlo Park, CA 94025
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences and Neuroscience Program Stanford University School of Medicine, Stanford, CA 94305,Corresponding author Edith V. Sullivan, Ph.D., Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, 401 Quarry Road, Stanford, CA 94305-5723, 650-498-7328 (phone), 650-859-2743 (FAX),
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences and Neuroscience Program Stanford University School of Medicine, Stanford, CA 94305,Neuroscience Program SRI International, Menlo Park, CA 94025
| |
Collapse
|
60
|
Employing multiple models, methods and mechanisms in bipolar disorder research. Biochem Soc Trans 2009; 37:1077-9. [DOI: 10.1042/bst0371077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BD (bipolar disorder) is a devastating condition, giving rise to debilitating mood swings and a greatly increased likelihood of suicide. Research into the origins, progression and treatment of BD has been slow, primarily due to lack of suitable model systems for BD research. However, the complexity of the neurological basis for mood, variability in patient populations and the lack of clear readouts for BD diagnosis also provide significant problems for research in this area. In this Biochemical Society Focused Meeting, held at Royal Holloway University of London, approx. 40 national and international delegates met to discuss current research into understanding BD. The talks presented at this conference covered research examining the genetic basis of the disorder, changes in patient populations, pharmacological actions of BD drugs and the development of new models systems for this research. The focus of these talks and the following papers is to help to unify and disseminate research into this important but poorly understood medical condition.
Collapse
|