51
|
Toyama Y, Yuasa S. Effects of neonatal administration of 17beta-estradiol, beta-estradiol 3-benzoate, or bisphenol A on mouse and rat spermatogenesis. Reprod Toxicol 2005; 19:181-8. [PMID: 15501383 DOI: 10.1016/j.reprotox.2004.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 05/28/2004] [Accepted: 08/02/2004] [Indexed: 11/21/2022]
Abstract
Bisphenol A (BPA) is a global environmental contaminant that has been implicated as a potential endocrine disruptor. In the present study, newborn rats and mice were injected subcutaneously with BPA to determine the potential developmental effects on the testis. Testes were examined by light and electron microscopy at 15 weeks of age. Other groups of newborn mice and rats were injected with 17beta-estradiol (E2) or beta-estradiol 3-benzoate (E2B) in a similar manner. BPA, E2, and E2B had similar effects on testes. When treated animals reached puberty and spermiogenesis began, the first sign of the effects was detected in the steps 2-3 spermatids: the acrosomal granule and nucleus were deformed. Henceforth, abnormalities in the acrosome and nucleus were observed in older spermatids and spermatozoa. Ectoplasmic specialization between the Sertoli cell and spermatids was also affected: some specializations were partially or totally deleted. When animals fully matured, the effects of the agents were not found in the testes, and the animals were found to be fertile. The results of the present study show that BPA acts as an estrogen, and causes changes which appear to revert in adults.
Collapse
Affiliation(s)
- Yoshiro Toyama
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | | |
Collapse
|
52
|
Toyama Y, Suzuki-Toyota F, Maekawa M, Ito C, Toshimori K. Adverse effects of bisphenol A to spermiogenesis in mice and rats. ACTA ACUST UNITED AC 2005; 67:373-81. [PMID: 15700544 DOI: 10.1679/aohc.67.373] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Either a 20 or 200 microg/kg body weight/injection of bisphenol A (BPA) was subcutaneously administered to adult mice and rats for 6 days, and the effects on the testes were investigated by electron and light microscopy. Abnormalities were observed in the spermatids: acrosomal vesicles, acrosomal caps, acrosomes and nuclei of the spermatids were severely deformed. The ectoplasmic specialization between the Sertoli cell and spermatids were also affected: incomplete specialization, redundant ectopic specialization and aplasia were observed. Rats and mice responded similarly to BPA. There were no dose dependencies between the 20- and 200 microg/kg body weight/injection groups. The ectoplasmic specialization between adjoining Sertoli cells, or blood-testis barrier, was not affected. Since similar adverse effects were observed when adult mice were treated with beta-estradiol 3-benzoate, the effects of BPA reported here seem to reflect the estrogenic effects on the testes. Animals kept for an additional two months after cessation of the administration were shown to be fertile and the testes showed normal histology, indicating that the adverse effects were transitory.
Collapse
Affiliation(s)
- Yoshiro Toyama
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | |
Collapse
|
53
|
Siu MKY, Wong CH, Lee WM, Cheng CY. Sertoli-germ cell anchoring junction dynamics in the testis are regulated by an interplay of lipid and protein kinases. J Biol Chem 2005; 280:25029-47. [PMID: 15870075 DOI: 10.1074/jbc.m501049200] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When Sertoli and germ cells were co-cultured in vitro in serum-free chemically defined medium, functional anchoring junctions such as cell-cell intermediate filament-based desmosome-like junctions and cell-cell actin-based adherens junctions (e.g. ectoplasmic specialization (ES)) were formed within 1-2 days. This event was marked by the induction of several protein kinases such as phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (PKB; also known as Akt), p21-activated kinase-2 (PAK-2), and their downstream effector (ERK) as well as an increase in PKB intrinsic activity. PI3K, phospho (p)-PKB, and PAK were co-localized to the site of apical ES in the seminiferous epithelium of the rat testis in immunohistochemistry studies. Furthermore, PI3K also co-localized with p-PKB to the same site in the epithelium as determined by fluorescence microscopy, consistent with their localization at the ES. These kinases were shown to associate with ES-associated proteins such as beta1-integrin, phosphorylated focal adhesion kinase, and c-Src by co-immunoprecipitation, suggesting that the integrin.laminin protein complex at the apical ES likely utilizes these protein kinases as regulatory proteins to modulate Sertoli-germ cell adherens junction dynamics via the ERK signaling pathway. To validate this hypothesis further, an in vivo model using AF-2364 (1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide) to perturb Sertoli-germ cell anchoring junction function, inducing germ cell loss from the epithelium in adult rats, was used in conjunction with specific inhibitors. Interestingly, the event of germ cell loss induced by AF-2364 in vivo was also associated with induction of PI3K, p-PKB, PAK-2, and p-ERK as well as a surge in intrinsic PKB activity. Perhaps the most important of all, pretreatment of rats with wortmannin (a PI3K inhibitor) or anti-beta1-integrin antibody via intratesticular injection indeed delayed AF-2364-induced spermatid loss from the epithelium. In summary, these results illustrate that Sertoli-germ cell anchoring junction dynamics in the testis are regulated, at least in part, via the beta1-integrin/PI3K/PKB/ERK signaling pathway.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Center for Biomedical Research, Population Council, New York, New York 10021, USA
| | | | | | | |
Collapse
|
54
|
Abstract
Src family non-receptor tyrosine kinases are involved in signaling pathways which mediate cell growth, differentiation, transformation and tissue remodeling in various organs. In an effort to elucidate functional involvement of p60c-Src (c-Src) in spermatogenesis, the postnatal changes in c-src mRNA and c-Src protein together with kinase activity and subcellular localization were examined in mouse testes. c-src mRNA levels in testes increased during the first 2 weeks of postnatal development (PND). Following a decrease at puberty (PND 28), the c-src mRNA levels re-increased at adulthood (PND 50). Src kinase activity of testes was low at PND 7 but sharply increased prepubertally (PND 15) and highest at adulthood. Upon Western blotting, the level of c-Src protein was the highest in prepubertal testes but rather decreased in adult testes at PND 50. In adult testes, ubiquitination of c-Src proteins was apparent compared with immature one at PND 7, suggesting active turnover of c-Src by ubiquitination. In immature testes, c-Src immunoreactivity was largely found in the cytoplasm of the Sertoli cells. By contrast, in pubertal and adult testes intense immunoreactivity was localized at the adluminal and basal cytoplasm of Sertoli cells bearing elongated spermatids and early germ cells, respectively. The immunoreactivity of c-Src in the Leydig cells was increased during pubertal development, suggesting the functional involvement of c-Src in differentiated adult Leydig cells. Throughout postnatal development, some spermatogonia and spermatocytes showed intensive c-Src immunoreactivity compared with other germ cells, suggesting a possible role of c-Src in germ cell death. Taken together, it is suggested that c-Src may participate in the remodeling of the seminiferous epithelia and functional differentiation of Leydig cells during the postnatal development of mouse testes.
Collapse
Affiliation(s)
- Myung Chan Gye
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea.
| | | | | | | |
Collapse
|
55
|
Wong CH, Cheng CY. The Blood‐Testis Barrier: Its Biology, Regulation, and Physiological Role in Spermatogenesis. Curr Top Dev Biol 2005; 71:263-96. [PMID: 16344108 DOI: 10.1016/s0070-2153(05)71008-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The blood-testis barrier (BTB) in mammals, such as rats, is composed of the tight junction (TJ), the basal ectoplasmic specialization (basal ES), the basal tubulobulbar complex (basal TBC) (both are testis-specific actin-based adherens junction [AJ] types), and the desmosome-like junction that are present side-by-side in the seminiferous epithelium. The BTB physically divides the seminiferous epithelium into basal and apical (or adluminal) compartments, and is pivotal to spermatogenesis. Besides its function as an immunological barrier to segregate the postmeiotic germ-cell antigens from the systemic circulation, it creates a unique microenvironment for germ-cell development and confers cell polarity. During spermatogenesis, the BTB in rodents must physically disassemble to permit the passage of preleptotene and leptotene spermatocytes. This occurs at late stage VII through early stage VIII of the epithelial cycle. Studies have shown that this dynamic BTB restructuring to facilitate germ-cell migration is regulated by two cytokines, namely transforming growth factor-beta3 (TGF-beta3) and tumor necrosis factor-alpha (TNFalpha), via downstream mitogen-activated protein kinases. These cytokines determine the homeostasis of TJ- and basal ES-structural proteins, proteases, protease inhibitors, and other extracellular matrix (ECM) proteins (e.g., collagen) in the seminiferous epithelium. Some of these molecules are known regulators of focal contacts between the ECM and other actively migrating cells, such as macrophages, fibroblasts, or malignant cells. These findings also illustrate that cell-cell junction restructuring at the BTB is regulated by mechanisms involved in the junction turnover at the cell-matrix interface. This review critically discusses these latest findings in the field in light of their significance in the biology and regulation of the BTB pertinent to spermatogenesis.
Collapse
|
56
|
Abstract
During spermatogenesis, the movement of developing germ cells across the seminiferous epithelium involves the restructuring of adherens junctions that form between Sertoli cells and between Sertoli and germ cells such as the ectoplasmic specialization (ES). At the ultrastructural level, the ES has been thoroughly studied for the past three decades. Until recently, however, relatively little has been known about the molecular architecture, not to mention the mechanism, that regulates the ES. Recent findings in the field have highlighted several areas of research that deserve attention in future studies. For example, proteins that constitute the ES can be targeted to compromise cell adhesion. This approach will not only provide a better understanding of ES dynamics, but also will yield innovative approaches for the development of male contraceptives.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
57
|
Terada N, Ohno N, Yamakawa H, Baba T, Fujii Y, Zea Z, Ohara O, Ohno S. Immunohistochemical study of protein 4.1B in the normal and W/W(v) mouse seminiferous epithelium. J Histochem Cytochem 2004; 52:769-77. [PMID: 15150285 DOI: 10.1369/jhc.3a6192.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cell-cell adhesion is crucial not only for mechanical adhesion but also for tissue morphogenesis. Protein 4.1B, a member of the protein 4.1 family named from an erythrocyte membrane protein, is a potential organizer of an adherens system. In adult mouse seminiferous tubules, protein 4.1B localized in the basal compartment, especially in the attaching region of spermatogonia and Sertoli cells. Protein 4.1B localization and appearance were not different in each spermatogenic stage. Developmentally, protein 4.1B was not detected at postnatal day 3 (P3), was diffusely localized at P15, and was found in the basal compartment during the third week. By double staining for protein 4.1B and F-actin, their localizations were shown to be different, indicating that protein 4.1B was localized in a region lower than the basal ectoplasmic specialization that formed the Sertoli-Sertoli junction. By electron microscopy, immunoreactive products were seen mainly on the membranes of Sertoli cells. In the W/W(v) mutant mouse, the seminiferous epithelium had few germ cells. Protein 4.1B and beta-catenin were not detected, although the basal ectoplasmic specialization was retained. These results indicate that protein 4.1B may be related to the adhesion between Sertoli cells and germ cells, especially the spermatogonium.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Anahara R, Toyama Y, Mori C. Flutamide induces ultrastructural changes in spermatids and the ectoplasmic specialization between the Sertoli cell and spermatids in mouse testes. Reprod Toxicol 2004; 18:589-96. [PMID: 15135853 DOI: 10.1016/j.reprotox.2004.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 02/10/2004] [Accepted: 02/18/2004] [Indexed: 11/20/2022]
Abstract
Flutamide (Flu) is an anti-androgenic compound that disrupts development of male androgen-dependent tissues. The purpose of the present study was to investigate the effects of Flu on ICR mouse testes by electron microscopic observation. Newborn mice were subcutaneously injected with 0.00012, 0.0012, 0.012, 0.12, 1.2, 12 or 120 microg Flu/g body weight/shot on Days 2, 4, 6, 8, 10 and 12 (Day 1: day of birth). In addition, adult mice were injected with 0.0012, 0.012, 0.12 or 1.2 microg Flu/g body weight/day for 5 sequential days. Testes were processed for electron microscopy. In neonatal treatments, acrosomes and/or nuclei of the spermatids were deformed. In addition, the ectoplasmic specialization between the Sertoli cell and spermatids was partially or completely deleted. Stages of the seminiferous cycle were also disarranged in the neonatal treatments. There were no ultrastructural differences between the effects of neonatal and adult treatments, however, stage disarrangement was not observed in adult treatments. The percentages of abnormal spermatids were higher in neonatally treated mice than in mice treated as adults. Since similar observations were reported after treatment with beta-estradiol-3-benzoate (E2B), the presence of Flu may induce a "xenoestrogenic environment" in mouse testes.
Collapse
Affiliation(s)
- Reiko Anahara
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuoku, 260-8670, Japan
| | | | | |
Collapse
|
59
|
Siu MKY, Cheng CY. Extracellular matrix: recent advances on its role in junction dynamics in the seminiferous epithelium during spermatogenesis. Biol Reprod 2004; 71:375-91. [PMID: 15115723 DOI: 10.1095/biolreprod.104.028225] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Spermatogenesis takes place in the seminiferous epithelium of the mammalian testis in which one type A1 spermatogonium (diploid, 2n) gives rise to 256 spermatids (haploid, 1n). To accomplish this, developing germ cells, such as preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) entering into the adluminal compartment for further development into round, elongating, and elongate spermatids. Recent studies have shown that the basement membrane in the testis (a modified form of extracellular matrix, ECM) is important to the event of germ cell movement across the BTB because proteins in the ECM were shown to regulate BTB dynamics via the interactions between collagens, proteases, and protease inhibitors, possibly under the regulation of cytokines. While these findings are intriguing, they are not entirely unexpected. For one, the basement membrane in the testis is intimately associated with the BTB, which represents the basolateral region of Sertoli cells. Also, Sertoli cell tight junctions (TJs) that constitute the BTB are present side-by-side with cell-cell actin-based adherens junctions (AJ, such as basal ectoplasmic specialization [ES]) and intermediate filament-based desmosome-like junctions. As such, the relative morphological layout between TJs, AJs, and desmosome-like junctions in the seminiferous epithelium is in sharp contrast to other epithelia where TJs are located at the apical portion of an epithelium or endothelium, furthest away from ECM, to be followed by AJs and desmosomes, which in turn constitute the junctional complex. For another, anchoring junctions between a cell epithelium and ECM found in multiple tissues, also known as focal contacts (or focal adhesion complex, FAC, an actin-based cell-matrix anchoring junction type), are the most efficient junction type that permits rapid junction restructuring to accommodate cell movement. It is therefore physiologically plausible, and perhaps essential, that the testis is using some components of the focal contacts to regulate rapid restructuring of AJs between Sertoli and germ cells when germ cells traverse the seminiferous epithelium. Indeed, recent findings have shown that the apical ES, a testis-specific AJ type in the seminiferous epithelium, is equipped with proteins of FAC to regulate its restructuring. In this review, we provide a timely update on this exciting yet rapidly developing field regarding how the homeostasis of basement membrane in the tunica propria regulates BTB dynamics and spermatogenesis in the testis, as well as a critical review on the molecular architecture and the regulation of ES in the seminiferous epithelium.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
60
|
Ito C, Suzuki-Toyota F, Maekawa M, Toyama Y, Yao R, Noda T, Toshimori K. Failure to assemble the peri-nuclear structures in GOPC deficient spermatids as found in round-headed spermatozoa. ACTA ACUST UNITED AC 2004; 67:349-60. [PMID: 15700542 DOI: 10.1679/aohc.67.349] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deletion of the GOPC gene encoding mouse GOPC (Golgi-associated PDZ- and coiled-coil motif-containing protein) causes infertile round-headed spermatozoa, which have acrosome-less round heads and deformed tails (Yao et al, 2002). This study investigated how GOPC deficient spermatids fail to assemble the peri-nuclear structures in round-headed spermatozoa during spermiogenesis in GOPC knockout mouse testes. In step 1-8 spermatids, Golgi-derived proacrosomal vesicles that are transported to the perinuclear region formed acrosome-like vesicles of various sizes, called pseudoacrosomes. The marginal ring of the acroplaxome, which is generally formed between the descending edge of a developing acrosome and nuclear envelope in a wild spermatid, was poorly formed between the pseudoacrosome and nuclear envelope. In step 9-11 elongating spermatids, a majority of pseudoacrosomes were detached from the nucleus and disappeared from the perinuclear region by spermiation. Concomitantly, several failures occurred on the nucleus, manchette, postacrosomal sheath (perinuclear theca), and posterior ring. Ectoplasmic specializations were poorly formed, and did not always associate with developing spermatids. Consequently, spermatid nuclear elongation to form round-headed spermatozoa developed was impaired. In addition to these sequential failures, the posterior ring deficiency was attributed to the tail deformation destined to occur during epididymal maturation as reported in an accompanying paper (Suzuki-Toyota et al, 2004 in this issue), its eventual phenotype being reminiscent of the round-headed spermatozoa of human infertile globozoospermia.
Collapse
Affiliation(s)
- Chizuru Ito
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Lui WY, Mruk DD, Cheng CY. Interactions among IQGAP1, Cdc42, and the cadherin/catenin protein complex regulate Sertoli-germ cell adherens junction dynamics in the testis. J Cell Physiol 2004; 202:49-66. [PMID: 15389538 DOI: 10.1002/jcp.20098] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The movement of developing germ cells across the seminiferous epithelium during spermatogenesis involves extensive adherens junction (AJ) restructuring between Sertoli cells, as well as between Sertoli and germ cells. In this report, we show that the intricate interactions between Cdc42 (a Rho family protein of Mr approximately 23 kDa originally identified in membranes of human platelets and placenta, and is the homolog of CDC42Sc, which is known to regulate of bud-site assembly in Saccharomyces cerevisiae) and its effector, IQ motif containing GTPase activating protein (IQGAP1, Mr approximately 189 kDa, it is also an actin-binding protein known to interact with Cdc42 and Rac1 GTPases), regulate Sertoli-germ cell, but not Sertoli-Sertoli cell, AJ dynamics. Using testis lysates for immunoprecipitation (IP), IQGAP1 was shown to associate with E-cadherin, N-cadherin, and beta-catenin (but not beta1-integrin and nectin-2), as well as with actin and vimentin (but not alpha-tubulin). Moreover, IQGAP1 was found to localize to the periphery of both Sertoli and germ cells in the seminiferous epithelium, at sites of cell-cell contacts. Using fluorescent microscopy with dual fluorescent probes, IQGAP1 was found to co-localize, at least in part, with N-cadherin in the seminiferous epithelium consistent with their localization at the basal and apical ES. Using Sertoli-germ cell cocultures, it was demonstrated that AJ assembly associated with a transient induction of Cdc42 and IQGAP1, which was not found when Sertoli cells were cultured alone. Lastly, a shift in the interactions of Cdc42, IQGAP1, beta-catenin, and N-cadherin was detected in Sertoli-germ cell cocultures using an Ca2+-induced AJ disruption model, which was used to examine AJ disassembly and its reassembly. In the presence of Ca2+, IQGAP1 bound preferentially to Cdc42 rather than to beta-catenin. However, when Ca2+ was depleted from cocultures using EGTA, a Ca2+ chelating agent, IQGAP1 lost its affinity for Cdc42 and became tightly associated with beta-catenin, destabilizing cadherin-mediated AJs between Sertoli and germ cells. Yet this shift of protein-protein interaction was not detected in Sertoli cells cultured alone. These results illustrate that the interactions among IQGAP1, Cdc42, and beta-catenin are crucial to the regulation of Sertoli-germ cell, but not Sertoli-Sertoli cell, AJ dynamics in the seminiferous epithelium.
Collapse
Affiliation(s)
- Wing Yee Lui
- Population Council, Center for Biomedical Research, New York, New York 10021, USA
| | | | | |
Collapse
|
62
|
Abstract
In the seminiferous tubule of the mammalian testis, one type A1 spermatogonium (diploid, 2n) divides and differentiates into 256 spermatozoa (haploid, n) during spermatogenesis. To complete spermatogenesis and produce approximately 150 x 10(6) spermatozoa each day in a healthy man, germ cells must migrate progressively across the seminiferous epithelium yet remain attach to the nourishing Sertoli cells. This active cell migration process involves precisely controlled restructuring events at the tight (TJ) and anchoring junctions at the cell-cell interface. While the hormonal events that regulate spermatogenesis by follicle-stimulating hormone and testosterone from the pituitary gland and Leydig cells, respectively, are known, less is known about the mechanism(s) that regulates junction restructuring during germ cell movement in the seminiferous epithelium. The relative position of tight (TJs) and anchoring junctions in the testis is of interest. Sertoli cell TJs that constitute the blood-testis barrier (BTB) are present side by side with anchoring junctions and are adjacent to the basement membrane. This intimate physical association with the TJs, the anchoring junctions and the basement membrane (a modified form of extracellular matrix, ECM) suggests a role for the ECM in the junction dynamics of the testis. Indeed, evidence is accumulating that ECM proteins are crucial to Sertoli cell TJ dynamics. In this review, we discuss the pivotal role of tumor necrosis factor alpha (TNFalpha) on BTB dynamics via its effects on the homeostasis of ECM proteins. In addition, discussion will also be focused on the novel findings regarding the role of non-basement-membrane-associated ECM proteins and components of focal adhesion (a cell-matrix anchoring junction type) in the regulation of junction dynamics in the testis.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Population Council, Center for Biomedical Research, New York, New York 10021, USA
| | | |
Collapse
|