51
|
Hwang JY, Holland JE, Valenteros KB, Sun Y, Usherwood YK, Verissimo AF, McLellan JS, Grigoryan G, Usherwood EJ. Dissociating STAT4 and STAT5 Signaling Inhibitory Functions of SOCS3: Effects on CD8 T Cell Responses. Immunohorizons 2019; 3:547-558. [PMID: 31748225 PMCID: PMC7178138 DOI: 10.4049/immunohorizons.1800075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/31/2019] [Indexed: 12/27/2022] Open
Abstract
Cytokines are critical for guiding the differentiation of T lymphocytes to perform specialized tasks in the immune response. Developing strategies to manipulate cytokine-signaling pathways holds promise to program T cell differentiation toward the most therapeutically useful direction. Suppressor of cytokine signaling (SOCS) proteins are attractive targets, as they effectively inhibit undesirable cytokine signaling. However, these proteins target multiple signaling pathways, some of which we may need to remain uninhibited. SOCS3 inhibits IL-12 signaling but also inhibits the IL-2–signaling pathway. In this study, we use computational protein design based on SOCS3 and JAK crystal structures to engineer a mutant SOCS3 with altered specificity. We generated a mutant SOCS3 designed to ablate interactions with JAK1 but maintain interactions with JAK2. We show that this mutant does indeed ablate JAK1 inhibition, although, unexpectedly, it still coimmunoprecipitates with JAK1 and does so to a greater extent than with JAK2. When expressed in CD8 T cells, mutant SOCS3 preserved inhibition of JAK2-dependent STAT4 phosphorylation following IL-12 treatment. However, inhibition of STAT phosphorylation was ablated following stimulation with JAK1-dependent cytokines IL-2, IFN-α, and IL-21. Wild-type SOCS3 inhibited CD8 T cell expansion in vivo and induced a memory precursor phenotype. In vivo T cell expansion was restored by expression of the mutant SOCS3, and this also reverted the phenotype toward effector T cell differentiation. These data show that SOCS proteins can be engineered to fine-tune their specificity, and this can exert important changes to T cell biology.
Collapse
Affiliation(s)
- Ji Young Hwang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03755
| | - John E Holland
- Department of Computer Science, Dartmouth College, Hanover, NH 03755
| | - Kristine B Valenteros
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03755
| | - Yanbo Sun
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03755
| | - Young-Kwang Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03755
| | - Andreia F Verissimo
- Institute for Molecular Targeting, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755; and
| | - Jason S McLellan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755
| | - Edward J Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03755;
| |
Collapse
|
52
|
Tsai CH, Lee Y, Li CH, Cheng YW, Kang JJ. Down-regulation of aryl hydrocarbon receptor intensifies carcinogen-induced retinal lesion via SOCS3-STAT3 signaling. Cell Biol Toxicol 2019; 36:223-242. [DOI: 10.1007/s10565-019-09499-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
|
53
|
Jak-Stat Signaling Induced by Interleukin-6 Family Cytokines in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111704. [PMID: 31683891 PMCID: PMC6896168 DOI: 10.3390/cancers11111704] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. It can be caused by chronic liver cell injury with resulting sustained inflammation, e.g., triggered by infections with hepatitis viruses B (HBV) and C (HCV). Death of hepatocytes leads to the activation of compensatory mechanisms, which can ultimately result in liver fibrosis and cirrhosis. Another common feature is the infiltration of the liver with inflammatory cells, which secrete cytokines and chemokines that act directly on the hepatocytes. Among several secreted proteins, members of the interleukin-6 (IL-6) family of cytokines have emerged as important regulatory proteins that might constitute an attractive target for therapeutic intervention. The IL-6-type cytokines activate multiple intracellular signaling pathways, and especially the Jak/STAT cascade has been shown to be crucial for HCC development. In this review, we give an overview about HCC pathogenesis with respect to IL-6-type cytokines and the Jak/STAT pathway. We highlight the role of mutations in genes encoding several proteins involved in the cytokine/Jak/STAT axis and summarize current knowledge about IL-6 family cytokines in this context. We further discuss possible anti-cytokine therapies for HCC patients in comparison to already established therapies.
Collapse
|
54
|
Genome-Wide Mapping Defines a Role for C/EBPβ and c-Jun in Non-Canonical Cyclic AMP Signalling. Cells 2019; 8:cells8101253. [PMID: 31615122 PMCID: PMC6829624 DOI: 10.3390/cells8101253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 01/06/2023] Open
Abstract
The novel exchange protein activated by cyclic AMP (EPAC1) activator, I942, induces expression of the suppressor of cytokine signalling 3 (SOCS3) gene, thereby inhibiting interleukin 6 (IL6) inflammatory processes in human umbilical vein endothelial cells (HUVECs). Here we use RNA-SEQ and ChIP-SEQ to determine global gene responses to I942, in comparison with cyclic AMP production promoted by forskolin and rolipram (F/R). We found that I942 promoted significant changes in the RNA expression of 1413 genes, largely associated with microtubule stability and cell cycle progression, whereas F/R regulated 197 genes linked to endothelial cell function, including chemokine production and platelet aggregation. A further 108 genes were regulated by both treatments, including endothelial regulatory genes involved in purinergic signalling and cell junction organization. ChIP-SEQ demonstrated that F/R induced genome-wide recruitment of C/EBPβ and c-Jun transcription factors, whereas I942 promoted recruitment of c-Jun to genes associated with IL6 signalling, with little effect on C/EBPβ activation. Despite this, certain key inflammatory genes, including IL6, VEGF, CCL2/MCP1, VCAM1, SELE and ICAM1 were regulated by I942 without significant c-Jun recruitment, suggesting an additional, indirect mode of action for I942. In this regard, SOCS3 induction by I942 was found to require c-Jun and was associated with suppression of IL6-promoted ERK MAP kinase and AKT activity and induction of ICAM1. Pharmacological inhibition of ERK and AKT also potentiated ICAM1 induction by I942. We therefore propose that c-Jun activation by I942 regulates endothelial gene expression in HUVECs through direct mechanisms, involving recruitment of c-Jun or, as for ICAM1, through indirect regulation of tertiary regulators, including SOCS3.
Collapse
|
55
|
Wang X, Jia Y, Ren J, Liu H, Xiao S, Wang X, Yang Z. MicroRNA gga-miR-455-5p suppresses Newcastle disease virus replication via targeting cellular suppressors of cytokine signaling 3. Vet Microbiol 2019; 239:108460. [PMID: 31767079 DOI: 10.1016/j.vetmic.2019.108460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 11/26/2022]
Abstract
Newcastle disease (ND) is an acute and contagious avian disease caused by Newcastle disease virus (NDV). MicroRNAs (miRNAs) play a significant role in host-pathogen interactions and the innate immune response. However, the role of miRNAs in the host response to NDV infection is not clearly understood. In this study, we showed that expression of the cellular miRNA gga-miR-455-5p was downregulated in vivo and in vitro in response to NDV infection. Next, we found that the transfection of chicken embryonic fibroblasts (CEFs) with gga-miR-455-5p suppressed NDV replication, while the blockade of endogenous gga-miR-455-5p expression with inhibitors enhanced NDV replication. In addition, gga-miR-455-5p enhanced the expression of type I interferon and the interferon-inducible genes (ISGs) OASL and Mx1 by targeting SOCS3, a negative regulator of type I IFN signaling. Altogether, these findings highlight the crucial role of gga-miR-455-5p in host defense against NDV by targeting the SOCS3 gene to inhibit NDV replication.
Collapse
Affiliation(s)
- Xiangwei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanqing Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Department of Animal Engineering, Yangling Vocational and Technical College, Yangling, 712100, China
| | - Juan Ren
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
56
|
Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 2019; 27:1984-2009. [PMID: 30267440 DOI: 10.1002/pro.3519] [Citation(s) in RCA: 575] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
More than 50 cytokines signal via the JAK/STAT pathway to orchestrate hematopoiesis, induce inflammation and control the immune response. Cytokines are secreted glycoproteins that act as intercellular messengers, inducing proliferation, differentiation, growth, or apoptosis of their target cells. They act by binding to specific receptors on the surface of target cells and switching on a phosphotyrosine-based intracellular signaling cascade initiated by kinases then propagated and effected by SH2 domain-containing transcription factors. As cytokine signaling is proliferative and often inflammatory, it is tightly regulated in terms of both amplitude and duration. Here we review molecular details of the cytokine-induced signaling cascade and describe the architectures of the proteins involved, including the receptors, kinases, and transcription factors that initiate and propagate signaling and the regulatory proteins that control it.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| |
Collapse
|
57
|
Structural insights into substrate recognition by the SOCS2 E3 ubiquitin ligase. Nat Commun 2019; 10:2534. [PMID: 31182716 PMCID: PMC6557900 DOI: 10.1038/s41467-019-10190-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/26/2019] [Indexed: 01/10/2023] Open
Abstract
The suppressor of cytokine signaling 2 (SOCS2) acts as substrate recognition subunit of a Cullin5 E3 ubiquitin ligase complex. SOCS2 binds to phosphotyrosine-modified epitopes as degrons for ubiquitination and proteasomal degradation, yet the molecular basis of substrate recognition has remained elusive. Here, we report co-crystal structures of SOCS2-ElonginB-ElonginC in complex with phosphorylated peptides from substrates growth hormone receptor (GHR-pY595) and erythropoietin receptor (EpoR-pY426) at 1.98 Å and 2.69 Å, respectively. Both peptides bind in an extended conformation recapitulating the canonical SH2 domain-pY pose, but capture different conformations of the EF loop via specific hydrophobic interactions. The flexible BG loop is fully defined in the electron density, and does not contact the substrate degron directly. Cancer-associated SNPs located around the pY pocket weaken substrate-binding affinity in biophysical assays. Our findings reveal insights into substrate recognition and specificity by SOCS2, and provide a blueprint for small molecule ligand design. The suppressor of cytokine signaling 2 (SOCS2) is a component of the Cullin5 E3 ubiquitin ligase complex. Here the authors provide insights into substrate recognition and specificity of SOCS2 by determining the crystal structures of the SOCS2-ElonginB-ElonginC in complex with phosphorylated peptides from two of its substrates the growth hormone receptor and erythropoietin receptor.
Collapse
|
58
|
Wei Y, Zhang Z, She N, Chen X, Zhao Y, Zhang J. Atomistic insight into the inhibition mechanisms of suppressors of cytokine signaling on Janus kinase. Phys Chem Chem Phys 2019; 21:12905-12915. [PMID: 31157353 DOI: 10.1039/c9cp02257k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Suppressors of cytokine signaling (SOCS) act as negative feedback regulators of the Janus kinase/signal transducer (JAK-STAT) signaling pathway by inhibiting the activity of JAK kinase. The kinase inhibitory region (KIR) of SOCS1 targets the substrate binding groove of JAK with high specificity, as demonstrated by significantly higher IC50 following the mutation of any of residue. To gain a greater understanding of the mechanisms of the inhibition of SOCS1 for JAK1, the binding mode, binding free energy decomposition, and desorption mechanism of JAK-SOCS1 complexes as well as a number of mutant systems were identified by extensive molecular dynamics (MD) simulations and the constant pulling velocity (PCV) method. Electrostatic interactions were identified for their contribution to protein-protein binding, which drove interactions between JAK1 and SOCS1. The polar residues Arg56, Arg59, and Asp105 of SOCS1 and Asp1042 and Asp1040 of JAK1 were key components in the binding, and electrostatic interactions of the side chains were prominent. The binding free energies of the six mutant proteins were lower when compared with those of the control proteins, and the side chain interactions were weakened. The residue Asp1040 played a crucial role in KIR close to the binding groove of JAK1. Moreover, salt bridges contributed significantly to JAK1 and SOCS1 binding and cleavage processes. The study presented herein provides a comprehensive understanding of the thermodynamic and dynamic processes of SOCS1 and JAK1 binding that will contribute meaningfully to the design of future studies related to peptide inhibitors based on SOCS1.
Collapse
Affiliation(s)
- Yaru Wei
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloy, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
59
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Kandhi R, Ramanathan S, Ilangumaran S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 2019; 121:154733. [PMID: 31154249 DOI: 10.1016/j.cyto.2019.154733] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The extraordinary capacity of the liver to regenerate following injury is dependent on coordinated and regulated actions of cytokines and growth factors. Whereas hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are direct mitogens to hepatocytes, inflammatory cytokines such as TNFα and IL-6 also play essential roles in the liver regeneration process. These cytokines and growth factors activate different signaling pathways in a sequential manner to elicit hepatocyte proliferation. The kinetics and magnitude of these hepatocyte-activating stimuli are tightly regulated to ensure restoration of a functional liver mass without causing uncontrolled cell proliferation. Hepatocyte proliferation can become deregulated under conditions of chronic inflammation, leading to accumulation of genetic aberrations and eventual neoplastic transformation. Among the control mechanisms that regulate hepatocyte proliferation, negative feedback inhibition by the 'suppressor of cytokine signaling (SOCS)' family proteins SOCS1 and SOCS3 play crucial roles in attenuating cytokine and growth factor signaling. Loss of SOCS1 or SOCS3 in the mouse liver increases the rate of liver regeneration and renders hepatocytes susceptible to neoplastic transformation. The frequent epigenetic repression of the SOCS1 and SOCS3 genes in hepatocellular carcinoma has stimulated research in understanding the growth regulatory mechanisms of SOCS1 and SOCS3 in hepatocytes. Whereas SOCS3 is implicated in regulating JAK-STAT signaling induced by IL-6 and attenuating EGFR signaling, SOCS1 is crucial for the regulation of HGF signaling. These two proteins also module the functions of certain key proteins that control the cell cycle. In this review, we discuss the current understanding of the functions of SOCS1 and SOCS3 in controlling hepatocyte proliferation, and its implications to liver health and disease.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Amit Ghosh
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Bhavesh Variya
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Madanraj Appiya Santharam
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Rajani Kandhi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Subburaj Ilangumaran
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
60
|
Alston CI, Dix RD. SOCS and Herpesviruses, With Emphasis on Cytomegalovirus Retinitis. Front Immunol 2019; 10:732. [PMID: 31031749 PMCID: PMC6470272 DOI: 10.3389/fimmu.2019.00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins provide selective negative feedback to prevent pathogeneses caused by overstimulation of the immune system. Of the eight known SOCS proteins, SOCS1 and SOCS3 are the best studied, and systemic deletion of either gene causes early lethality in mice. Many viruses, including herpesviruses such as herpes simplex virus and cytomegalovirus, can manipulate expression of these host proteins, with overstimulation of SOCS1 and/or SOCS3 putatively facilitating viral evasion of immune surveillance, and SOCS suppression generally exacerbating immunopathogenesis. This is particularly poignant within the eye, which contains a diverse assortment of specialized cell types working together in a tightly controlled microenvironment of immune privilege. When the immune privilege of the ocular compartment fails, inflammation causing severe immunopathogenesis and permanent, sight-threatening damage may occur, as in the case of AIDS-related human cytomegalovirus (HCMV) retinitis. Herein we review how SOCS1 and SOCS3 impact the virologic, immunologic, and/or pathologic outcomes of herpesvirus infection with particular emphasis on retinitis caused by HCMV or its mouse model experimental counterpart, murine cytomegalovirus (MCMV). The accumulated data suggests that SOCS1 and/or SOCS3 can differentially affect the severity of viral diseases in a highly cell-type-specific manner, reflecting the diversity and complexity of herpesvirus infection and the ocular compartment.
Collapse
Affiliation(s)
- Christine I Alston
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Richard D Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
61
|
Zhou Y, Luo GH. Porphyromonas gingivalis and digestive system cancers. World J Clin Cases 2019; 7:819-829. [PMID: 31024953 PMCID: PMC6473131 DOI: 10.12998/wjcc.v7.i7.819] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is an anaerobic gram-negative bacterium that colonizes in the epithelium and has been strongly associated with periodontal disease. Recently, various degrees of associations between P. gingivalis and digestive system cancers, including oral squamous cell carcinoma in the oral cavity, oesophageal squamous carcinoma in the digestive tract, and pancreatic cancer in pancreatic tissues, have been displayed in multiple clinical and experimental studies. Since P. gingivalis has a strong association with periodontal diseases, not only the relationships between P. gingivalis and digestive system tumours but also the effects induced by periodontal diseases on cancers are well-illustrated in this review. In addition, the prevention and possible treatments for these digestive system tumours induced by P. gingivalis infection are also included in this review. At the end, we also highlighted the possible mechanisms of cancers caused by P. gingivalis. One important carcinogenic effect of P. gingivalis is inhibiting the apoptosis of epithelial cells, which also plays an intrinsic role in protecting cancerous cells. Some signalling pathways activated by P. gingivalis are involved in cell apoptosis, tumourigenesis, immune evasion and cell invasion of tumour cells. In addition, metabolism of potentially carcinogenic substances caused by P. gingivalis is also one of the connections between this bacterium and cancers.
Collapse
Affiliation(s)
- Ying Zhou
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Guang-Hua Luo
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
62
|
Zhou X, Gan F, Hou L, Liu Z, Su J, Lin Z, Le G, Huang K. Aflatoxin B 1 Induces Immunotoxicity through the DNA Methyltransferase-Mediated JAK2/STAT3 Pathway in 3D4/21 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3772-3780. [PMID: 30848898 DOI: 10.1021/acs.jafc.8b07309] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As the most toxic mycotoxin of all of the fungal toxins, aflatoxin B1 (AFB1) has carcinogenesis, heptotoxicity, and immunotoxicity. DNA methylation plays a critical role in gene expression regulation of the pathological process. However, the relationship between DNA methylation and AFB1-induced immunotoxicity was not yet reported. Therefore, the objectives of this study were to verify AFB1-induced immunotoxicity and investigate the potential role of the DNA methyltransferase (DNMT) family in AFB1-induced immunotoxicity and the pathway mechanism in 3D4/21 cells. The results showed that AFB1 could induce cytotoxicity, apoptosis, pro-inflammatory cytokine expression, DNA damage, and oxidative stress and decrease phagocytotic capacity. Meanwhile, the levels of DNMT1 and DNMT3a were significantly increased in 0.04 and 0.08 μg/mL AFB1 compared to the control. Inhibition of DNMT1 and DNMT3a by 5-Aza-2dc could reverse changes of the above parameters. Further, the JAK2/STAT3 pathway was significantly activated in 0.04 μg/mL AFB1. Inhibition of p-JAK2 and p-STAT3 by AG490 could alleviate AFB1-induced immunotoxicity. Moreover, inhibition of DNMT1 and DNMT3a by 5-Aza-2dc could suppress the phosphorylation of JAK2 and STAT3. Taken together, AFB1-induced immunotoxicity is related to the JAK2/STAT3 pathway mediated by DNMTs in 3D4/21 cells.
Collapse
|
63
|
Therapeutic Targeting of the Proinflammatory IL-6-JAK/STAT Signalling Pathways Responsible for Vascular Restenosis in Type 2 Diabetes Mellitus. Cardiol Res Pract 2019; 2019:9846312. [PMID: 30719343 PMCID: PMC6334365 DOI: 10.1155/2019/9846312] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is increasing worldwide, and it is associated with increased risk of coronary artery disease (CAD). For T2DM patients, the main surgical intervention for CAD is autologous saphenous vein grafting. However, T2DM patients have increased risk of saphenous vein graft failure (SVGF). While the mechanisms underlying increased risk of vascular disease in T2DM are not fully understood, hyperglycaemia, insulin resistance, and hyperinsulinaemia have been shown to contribute to microvascular damage, whereas clinical trials have reported limited effects of intensive glycaemic control in the management of macrovascular complications. This suggests that factors other than glucose exposure may be responsible for the macrovascular complications observed in T2DM. SVGF is characterised by neointimal hyperplasia (NIH) arising from endothelial cell (EC) dysfunction and uncontrolled migration and proliferation of vascular smooth muscle cells (SMCs). This is driven in part by proinflammatory cytokines released from the activated ECs and SMCs, particularly interleukin 6 (IL-6). IL-6 stimulation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT) pathway is a key mechanism through which EC inflammation, SMC migration, and proliferation are controlled and whose activation might therefore be enhanced in patients with T2DM. In this review, we investigate how proinflammatory cytokines, particularly IL-6, contribute to vascular damage resulting in SVGF and how suppression of proinflammatory cytokine responses via targeting the JAK/STAT pathway could be exploited as a potential therapeutic strategy. These include the targeting of suppressor of cytokine signalling (SOCS3), which appears to play a key role in suppressing unwanted vascular inflammation, SMC migration, and proliferation.
Collapse
|
64
|
Lokau J, Garbers C. Activating mutations of the gp130/JAK/STAT pathway in human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:283-309. [PMID: 31036294 DOI: 10.1016/bs.apcsb.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytokines of the interleukin-6 (IL-6) family are involved in numerous physiological and pathophysiological processes. Dysregulated and increased activities of its members can be found in practically all human inflammatory diseases including cancer. All cytokines activate several intracellular signaling cascades, including the Jak/STAT, MAPK, PI3K, and Src/YAP signaling pathways. Additionally, several mutations in proteins involved in these signaling cascades have been identified in human patients, which render these proteins constitutively active and result in a hyperactivation of the signaling pathway. Interestingly, some of these mutations are associated with or even causative for distinct human diseases, making them interesting targets for therapy. This chapter describes the basic biology of the gp130/Jak/STAT pathway, summarizes what is known about the molecular mechanisms of the activating mutations, and gives an outlook how this knowledge can be exploited for targeted therapy in human diseases.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
65
|
Gao Y, Zhao H, Wang P, Wang J, Zou L. The roles of SOCS3 and STAT3 in bacterial infection and inflammatory diseases. Scand J Immunol 2018; 88:e12727. [PMID: 30341772 DOI: 10.1111/sji.12727] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Gao
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
- Department of Microbiology, Tumor and Cell Biology; Karolinska Institutet; Stockholm Sweden
| | - Honglei Zhao
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
| | - Peng Wang
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| | - Jun Wang
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| | - Lili Zou
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| |
Collapse
|
66
|
Wiejak J, van Basten B, Luchowska-Stańska U, Hamilton G, Yarwood SJ. The novel exchange protein activated by cyclic AMP 1 (EPAC1) agonist, I942, regulates inflammatory gene expression in human umbilical vascular endothelial cells (HUVECs). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:264-276. [PMID: 30414891 PMCID: PMC6325792 DOI: 10.1016/j.bbamcr.2018.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
Abstract
Exchange protein activated by cyclic AMP (EPAC1) suppresses multiple inflammatory actions in vascular endothelial cells (VECs), partly due to its ability to induce expression of the suppressor of cytokine signalling 3 (SOCS3) gene, the protein product of which inhibits interleukin 6 (IL6) signalling through the JAK/STAT3 pathway. Here, for the first time, we use the non-cyclic nucleotide EPAC1 agonist, I942, to determine its actions on cellular EPAC1 activity and cyclic AMP-regulated gene expression in VECs. We demonstrate that I942 promotes EPAC1 and Rap1 activation in HEK293T cells and induces SOCS3 expression and suppresses IL6-stimulated JAK/STAT3 signalling in HUVECs. SOCS3 induction by I942 in HUVECs was blocked by the EPAC1 antagonist, ESI-09, and EPAC1 siRNA, but not by the broad-spectrum protein kinase A (PKA) inhibitor, H89, indicating that I942 regulates SOCS3 gene expression through EPAC1. RNA sequencing was carried out to further identify I942-regulated genes in HUVECs. This identified 425 I942-regulated genes that were also regulated by the EPAC1-selective cyclic AMP analogue, 007, and the cyclic AMP-elevating agents, forskolin and rolipram (F/R). The majority of genes identified were suppressed by I942, 007 and F/R treatment and many were involved in the control of key vascular functions, including the gene for the cell adhesion molecule, VCAM1. I942 and 007 also inhibited IL6-induced expression of VCAM1 at the protein level and blocked VCAM1-dependent monocyte adhesion to HUVECs. Overall, I942 represents the first non-cyclic nucleotide EPAC1 agonist in cells with the ability to suppress IL6 signalling and inflammatory gene expression in VECs. The novel EPAC1 ligand I942 activates cellular EPAC1 and Rap1 GTPase. I942 induces SOCS3 gene expression in vascular endothelial cells (VECs). I942 suppresses JAK/STAT3 signalling from the IL6 receptor in VECs. I942 regulates 425 novel gene targets in VECs. I942 suppresses VCAM1 expression and monocyte adhesion in VECs.
Collapse
Affiliation(s)
- Jolanta Wiejak
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK
| | - Boy van Basten
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK
| | - Urszula Luchowska-Stańska
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK
| | - Graham Hamilton
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, University of Glasgow, Bearsden G61 1QH, UK
| | - Stephen J Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK.
| |
Collapse
|
67
|
Leptin Signaling in the Control of Metabolism and Appetite: Lessons from Animal Models. J Mol Neurosci 2018; 66:390-402. [PMID: 30284225 DOI: 10.1007/s12031-018-1185-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
|
68
|
Khaliq M, Ko S, Liu Y, Wang H, Sun Y, Solnica-Krezel L, Shin D. Stat3 Regulates Liver Progenitor Cell-Driven Liver Regeneration in Zebrafish. Gene Expr 2018; 18:157-170. [PMID: 29690953 PMCID: PMC6190120 DOI: 10.3727/105221618x15242506133273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After liver injury, regeneration manifests as either (1) hepatocytes proliferating to restore the lost hepatocyte mass or (2) if hepatocyte proliferation is compromised, biliary epithelial cells (BECs) dedifferentiating into liver progenitor cells (LPCs), which subsequently differentiate into hepatocytes. Following pharmacogenetic ablation of hepatocytes in Tg(fabp10a:CFP-NTR) zebrafish, resulting in severe liver injury, signal transducer and activator of transcription 3 (Stat3) and its target gene and negative regulator, socs3a, were upregulated in regenerating livers. Using either Stat3 inhibitors, JSI-124 and S3I-201, or stat3 zebrafish mutants, we investigated the role of Stat3 in LPC-driven liver regeneration. Although Stat3 suppression reduced the size of regenerating livers, BEC dedifferentiation into LPCs was unaffected. However, regenerating livers displayed a delay in LPC-to-hepatocyte differentiation and a significant reduction in the number of BECs. While no difference in cell death was detected, Stat3 inhibition significantly reduced LPC proliferation. Notably, stat3 mutants phenocopied the effects of Stat3 chemical inhibitors, although the mutant phenotype was incompletely penetrant. Intriguingly, a subset of socs3a mutants also displayed a lower number of BECs in regenerating livers. We conclude that the Stat3/Socs3a pathway is necessary for the proper timing of LPC-to-hepatocyte differentiation and establishing the proper number of BECs during LPC-driven liver regeneration.
Collapse
Affiliation(s)
- Mehwish Khaliq
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sungjin Ko
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yinzi Liu
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hualin Wang
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Yonghua Sun
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Lila Solnica-Krezel
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donghun Shin
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
69
|
La Manna S, Lee E, Ouzounova M, Di Natale C, Novellino E, Merlino A, Korkaya H, Marasco D. Mimetics of suppressor of cytokine signaling 3: Novel potential therapeutics in triple breast cancer. Int J Cancer 2018; 143:2177-2186. [DOI: 10.1002/ijc.31594] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/20/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Sara La Manna
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Eunmi Lee
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta; Georgia
| | - Maria Ouzounova
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta; Georgia
| | - Concetta Di Natale
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Ettore Novellino
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Antonello Merlino
- Department of Chemical Sciences; University of Naples “Federico II”; Naples Italy
| | - Hasan Korkaya
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta; Georgia
| | - Daniela Marasco
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| |
Collapse
|
70
|
Wójcik M, Krawczyńska A, Antushevich H, Herman AP. Post-Receptor Inhibitors of the GHR-JAK2-STAT Pathway in the Growth Hormone Signal Transduction. Int J Mol Sci 2018; 19:E1843. [PMID: 29932147 PMCID: PMC6073700 DOI: 10.3390/ijms19071843] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
The growth hormone (GH) plays a key role in the regulation of metabolic processes in an organism. Determination of the correct structure and functioning of the growth hormone receptor (GHR) allowed for a more detailed research of its post-receptor regulators, which substantially influences its signal transduction. This review is focused on the description of the post-receptor inhibitors of the GHR-JAK2-STAT pathway, which is one of the most important pathways in the transduction of the somatotropic axis signal. The aim of this review is the short characterization of the main post-receptor inhibitors, such as: cytokine-inducible SH2-containing protein (CIS), Suppressors of Cytokine Signaling (SOCS) 1, 2 and 3, sirtuin 1 (SIRT1), protein inhibitors of activated STAT (PIAS) 1, 3 and PIAS4, protein tyrosine phosphatases (PTP) 1B and H1, Src homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP) 1, 2 and signal regulatory protein (SIRP) α1. The equilibrium between these regulators activity and inhibition is of special concern because, as many studies showed, even slight imbalance may disrupt the GH activity causing serious diseases. The regulation of the described inhibitors expression and activity may be a point of interest for pharmaceutical industry.
Collapse
Affiliation(s)
- Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| |
Collapse
|
71
|
Nan Y, Wu C, Zhang YJ. Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation. Viruses 2018; 10:v10040196. [PMID: 29662014 PMCID: PMC5923490 DOI: 10.3390/v10040196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
72
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
73
|
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a key regulator of numerous physiological functions, including the immune response. As pathogens elicit an acute phase response with concerted activation of STAT3, they are confronted with two evolutionary options: either curtail it or employ it. This has important consequences for the host, since abnormal STAT3 function is associated with cancer development and other diseases. This review provides a comprehensive outline of how human viruses cope with STAT3-mediated inflammation and how this affects the host. Finally, we discuss STAT3 as a potential target for antiviral therapy.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Nicolaas Van Renne
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
74
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
75
|
Purification of SOCS (Suppressor of Cytokine Signaling) SH2 Domains for Structural and Functional Studies. Methods Mol Biol 2018; 1555:173-182. [PMID: 28092033 DOI: 10.1007/978-1-4939-6762-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Src Homology 2 (SH2) domains are protein domains which have a high binding affinity for specific amino acid sequences containing a phosphorylated tyrosine residue. The Suppressors of Cytokine Signaling (SOCS) proteins use an SH2 domain to bind to components of certain cytokine signaling pathways to downregulate the signaling cascade. The recombinantly produced SH2 domains of various SOCS proteins have been used to undertake structural and functional studies elucidating the method of how such targeting occurs. Here, we describe the protocol for the recombinant production and purification of SOCS SH2 domains, with an emphasis on SOCS3.
Collapse
|
76
|
Williams JJL, Alotaiq N, Mullen W, Burchmore R, Liu L, Baillie GS, Schaper F, Pilch PF, Palmer TM. Interaction of suppressor of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability. Nat Commun 2018; 9:168. [PMID: 29330478 PMCID: PMC5766592 DOI: 10.1038/s41467-017-02585-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
Effective suppression of JAK-STAT signalling by the inducible inhibitor "suppressor of cytokine signalling 3" (SOCS3) is essential for limiting signalling from cytokine receptors. Here we show that cavin-1, a component of caveolae, is a functionally significant SOCS3-interacting protein. Biochemical and confocal imaging demonstrate that SOCS3 localisation to the plasma membrane requires cavin-1. SOCS3 is also critical for cavin-1 stabilisation, such that deletion of SOCS3 reduces the expression of cavin-1 and caveolin-1 proteins, thereby reducing caveola abundance in endothelial cells. Moreover, the interaction of cavin-1 and SOCS3 is essential for SOCS3 function, as loss of cavin-1 enhances cytokine-stimulated STAT3 phosphorylation and abolishes SOCS3-dependent inhibition of IL-6 signalling by cyclic AMP. Together, these findings reveal a new functionally important mechanism linking SOCS3-mediated inhibition of cytokine signalling to localisation at the plasma membrane via interaction with and stabilisation of cavin-1.
Collapse
Affiliation(s)
- Jamie J L Williams
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| | - Nasser Alotaiq
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Libin Liu
- Departments of Biochemistry and Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fred Schaper
- Department of Systems Biology, Institute for Biology, Otto-von-Guericke-University Magdeburg, 39106, Magdeburg, Germany
| | - Paul F Pilch
- Departments of Biochemistry and Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Timothy M Palmer
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| |
Collapse
|
77
|
Liau NPD, Babon JJ. Expression and Purification of JAK1 and SOCS1 for Structural and Biochemical Studies. Methods Mol Biol 2018; 1725:267-280. [PMID: 29322424 DOI: 10.1007/978-1-4939-7568-6_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interferon gamma (IFNγ) is a potent inflammatory and immune cytokine. IFNγ signals via the interferon gamma receptor (IFNGR), which is constitutively bound to Janus Kinase (JAK) 1 and JAK2 via its intracellular domain. These two JAK proteins then initiate the inflammatory signaling cascade. The most potent inhibitor of IFNγ signaling is Suppressor of Cytokine Signaling 1 (SOCS1). SOCS1 negatively regulates IFNγ signaling pathway (and other pathways) by directly inhibiting JAKs. Here, we describe a protocol for the recombinant production and purification of the JAK1 kinase domain and its inhibitor SOCS1, for structural and biochemical studies.
Collapse
Affiliation(s)
- Nicholas P D Liau
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
78
|
Duncan SA, Baganizi DR, Sahu R, Singh SR, Dennis VA. SOCS Proteins as Regulators of Inflammatory Responses Induced by Bacterial Infections: A Review. Front Microbiol 2017; 8:2431. [PMID: 29312162 PMCID: PMC5733031 DOI: 10.3389/fmicb.2017.02431] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/23/2017] [Indexed: 12/31/2022] Open
Abstract
Severe bacterial infections can lead to both acute and chronic inflammatory conditions. Innate immunity is the first defense mechanism employed against invading bacterial pathogens through the recognition of conserved molecular patterns on bacteria by pattern recognition receptors (PRRs), especially the toll-like receptors (TLRs). TLRs recognize distinct pathogen-associated molecular patterns (PAMPs) that play a critical role in innate immune responses by inducing the expression of several inflammatory genes. Thus, activation of immune cells is regulated by cytokines that use the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway and microbial recognition by TLRs. This system is tightly controlled by various endogenous molecules to allow for an appropriately regulated and safe host immune response to infections. Suppressor of cytokine signaling (SOCS) family of proteins is one of the central regulators of microbial pathogen-induced signaling of cytokines, principally through the inhibition of the activation of JAK/STAT signaling cascades. This review provides recent knowledge regarding the role of SOCS proteins during bacterial infections, with an emphasis on the mechanisms involved in their induction and regulation of antibacterial immune responses. Furthermore, the implication of SOCS proteins in diverse processes of bacteria to escape host defenses and in the outcome of bacterial infections are discussed, as well as the possibilities offered by these proteins for future targeted antimicrobial therapies.
Collapse
Affiliation(s)
- Skyla A Duncan
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Dieudonné R Baganizi
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
79
|
Nicholson SE, Keating N, Belz GT. Natural killer cells and anti-tumor immunity. Mol Immunol 2017; 110:40-47. [PMID: 29233542 DOI: 10.1016/j.molimm.2017.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/20/2017] [Accepted: 12/01/2017] [Indexed: 01/10/2023]
Abstract
Immune checkpoint inhibitors harness the power of the immune system to fight cancer. The clinical success achieved with antibodies against the inhibitory T cell receptors PD-1 and CTLA4 has focused attention on the possibility of manipulating other immune cells, in particular those involved in innate immunity. Here we review the role of innate lymphoid cells (ILCs) and their contribution to tumor immunity. As the prototypical ILC, the natural killer (NK) cell has an intrinsic ability to detect and kill cancer cells. NK cells are dependent on the cytokine interleukin (IL)-15 for their development and effector activity. We discuss the role of the Suppressor of cytokine (SOCS) proteins in negatively regulating IL-15 and NK cell responses and the potential for targeting these small intracellular regulators as new immune checkpoints.
Collapse
Affiliation(s)
- Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia.
| | - Narelle Keating
- Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia.
| |
Collapse
|
80
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
81
|
Barker G, Parnell E, van Basten B, Buist H, Adams DR, Yarwood SJ. The Potential of a Novel Class of EPAC-Selective Agonists to Combat Cardiovascular Inflammation. J Cardiovasc Dev Dis 2017; 4:jcdd4040022. [PMID: 29367551 PMCID: PMC5753123 DOI: 10.3390/jcdd4040022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
The cyclic 3′,5′-adenosine monophosphate (cAMP) sensor enzyme, EPAC1, is a candidate drug target in vascular endothelial cells (VECs) due to its ability to attenuate proinflammatory cytokine signalling normally associated with cardiovascular diseases (CVDs), including atherosclerosis. This is through the EPAC1-dependent induction of the suppressor of cytokine signalling gene, SOCS3, which targets inflammatory signalling proteins for ubiquitinylation and destruction by the proteosome. Given this important role for the EPAC1/SOCS3 signalling axis, we have used high throughput screening (HTS) to identify small molecule EPAC1 regulators and have recently isolated the first known non-cyclic nucleotide (NCN) EPAC1 agonist, I942. I942 therefore represents the first in class, isoform selective EPAC1 activator, with the potential to suppress pro-inflammatory cytokine signalling with a reduced risk of side effects associated with general cAMP-elevating agents that activate multiple response pathways. The development of augmented I942 analogues may therefore provide improved research tools to validate EPAC1 as a potential therapeutic target for the treatment of chronic inflammation associated with deadly CVDs.
Collapse
Affiliation(s)
- Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Euan Parnell
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Boy van Basten
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Hanna Buist
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Stephen J Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
82
|
Altered expression of interferon-stimulated genes is strongly associated with therapeutic outcomes in hepatitis B virus infection. Antiviral Res 2017; 147:75-85. [DOI: 10.1016/j.antiviral.2017.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/28/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022]
|
83
|
Cianciulli A, Calvello R, Porro C, Trotta T, Panaro MA. Understanding the role of SOCS signaling in neurodegenerative diseases: Current and emerging concepts. Cytokine Growth Factor Rev 2017; 37:67-79. [DOI: 10.1016/j.cytogfr.2017.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/15/2022]
|
84
|
A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18102010. [PMID: 28934129 PMCID: PMC5666700 DOI: 10.3390/ijms18102010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of diabetes mellitus, proteins play several important roles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database has information on 34 human proteins experimentally shown to be related to the T2DM pathogenesis. It is known that many proteins associated with different human maladies are intrinsically disordered as a whole, or contain intrinsically disordered regions. The presented study shows that T2DM is not an exception to this rule, and many proteins known to be associated with pathogenesis of this malady are intrinsically disordered. The multiparametric bioinformatics analysis utilizing several computational tools for the intrinsic disorder characterization revealed that IRS1, IRS2, IRS4, MAFA, PDX1, ADIPO, PIK3R2, PIK3R5, SoCS1, and SoCS3 are expected to be highly disordered, whereas VDCC, SoCS2, SoCS4, JNK9, PRKCZ, PRKCE, insulin, GCK, JNK8, JNK10, PYK, INSR, TNF-α, MAPK3, and Kir6.2 are classified as moderately disordered proteins, and GLUT2, GLUT4, mTOR, SUR1, MAPK1, IKKA, PRKCD, PIK3CB, and PIK3CA are predicted as mostly ordered. More focused computational analyses and intensive literature mining were conducted for a set of highly disordered proteins related to T2DM. The resulting work represents a comprehensive survey describing the major biological functions of these proteins and functional roles of their intrinsically disordered regions, which are frequently engaged in protein–protein interactions, and contain sites of various posttranslational modifications (PTMs). It is also shown that intrinsic disorder-associated PTMs may play important roles in controlling the functions of these proteins. Consideration of the T2DM proteins from the perspective of intrinsic disorder provides useful information that can potentially lead to future experimental studies that may uncover latent and novel pathways associated with the disease.
Collapse
|
85
|
How Does the L884P Mutation Confer Resistance to Type-II Inhibitors of JAK2 Kinase: A Comprehensive Molecular Modeling Study. Sci Rep 2017; 7:9088. [PMID: 28831147 PMCID: PMC5567357 DOI: 10.1038/s41598-017-09586-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023] Open
Abstract
Janus kinase 2 (JAK2) has been regarded as an essential target for the treatment of myeloproliferative neoplasms (MPNs). BBT594 and CHZ868, Type-II inhibitors of JAK2, illustrate satisfactory efficacy in preclinical MPNs and acute lymphoblastic leukemia (ALL) models. However, the L884P mutation of JAK2 abrogates the suppressive effects of BBT594 and CHZ868. In this study, conventional molecular dynamics (MD) simulations, umbrella sampling (US) simulations and MM/GBSA free energy calculations were employed to explore how the L884P mutation affects the binding of BBT594 and CHZ868 to JAK2 and uncover the resistance mechanism induced by the L884P mutation. The results provided by the US and MD simulations illustrate that the L884P mutation enhances the flexibility of the allosteric pocket and alters their conformations, which amplify the conformational entropy change (−TΔS) and weaken the interactions between the inhibitors and target. Additionally, the structural analyses of BBT594 and CHZ868 in complex with the WT JAK2 illustrate that the drug tail with strong electronegativity and small size located in the allosteric pocket of JAK2 may enhance anti-resistance capability. In summary, our results highlight that both of the changes of the conformational entropies and enthalpies contribute to the L884P-induced resistance in the binding of two Type-II inhibitors into JAK2 kinase.
Collapse
|
86
|
Duan WN, Xia ZY, Liu M, Sun Q, Lei SQ, Wu XJ, Meng QT, Leng Y. Protective effects of SOCS3 overexpression in high glucose‑induced lung epithelial cell injury through the JAK2/STAT3 pathway. Mol Med Rep 2017; 16:2668-2674. [PMID: 28713982 PMCID: PMC5547984 DOI: 10.3892/mmr.2017.6941] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
Previous studies have suggested that the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway is involved in hyperglycemia-induced lung injury. The present study aimed to investigate the roles of suppressor of cytokine signaling3 (SOCS3) in the regulation of JAK2/STAT3 activation following high glucose (HG) treatment in A549 human pulmonary epithelial cells. Cell viability was evaluated using Cell Counting Kit-8 and lactate dehydrogenase assays. HG-induced inflammatory injury in A549 cells was assessed through the evaluation of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels using ELISA. The protein expression levels of SOCS3, JAK2, STAT3, phosphorylated (p)-JAK2 and p-STAT3 were determined using western blot analysis. Cellular viability was significantly decreased, whereas IL-6 and TNF-α levels were significantly increased, following HG stimulation of A549 cells. In addition, the protein levels of SOCS3, p-JAK2 and p-STAT3 were significantly increased in HG-treated cells. Treatment with the JAK2/STAT3 inhibitor tyrphostin AG490, or SOCS3 overexpression, appeared to prevent the HG-induced alterations in protein expression. Furthermore, cellular viability was enhanced, whereas the levels of proinflammatory cytokines were suppressed. These finding suggested the involvement of the SOCS3/JAK2/STAT3 signaling pathway in HG-induced responses in lung cells. Therefore, it may be hypothesized that the inhibition of the JAK2/STAT3 pathway through SOCS3 overexpression may prevent hyperglycemia-induced lung injury, and may have therapeutic potential for the treatment of patients with diabetic lung injury.
Collapse
Affiliation(s)
- Wei-Na Duan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Min Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao-Jing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
87
|
Johdi NA, Ait-Tahar K, Sagap I, Jamal R. Molecular Signatures of Human Regulatory T Cells in Colorectal Cancer and Polyps. Front Immunol 2017; 8:620. [PMID: 28611777 PMCID: PMC5447675 DOI: 10.3389/fimmu.2017.00620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/10/2017] [Indexed: 01/26/2023] Open
Abstract
Regulatory T cells (Tregs), a subset of CD4+ or CD8+ T cells, play a pivotal role in regulating immune homeostasis. An increase in Tregs was reported in many tumors to be associated with immune suppression and evasion in cancer patients. Despite the importance of Tregs, the molecular signatures that contributed to their pathophysiological relevance remain poorly understood and controversial. In this study, we explored the gene expression profiles in Tregs derived from patients with colorectal cancer [colorectal carcinoma (CRC), n = 15], colorectal polyps (P, n = 15), and in healthy volunteers (N, n = 15). Tregs were analyzed using CD4+CD25+CD127lowFoxP3+ antibody markers. Gene expression profiling analysis leads to the identification of 61 and 66 immune-related genes in Tregs derived from CRC and P patients, respectively, but not in N-derived Treg samples. Of these, 30 genes were differentially expressed both in CRC- and P-derived Tregs when compared to N-derived Tregs. Most of the identified genes were involved in cytokine/chemokine mediators of inflammation, chemokine receptor, lymphocyte activation, and T cell receptor (TCR) signaling pathways. This study highlights some of the molecular signatures that may affect Tregs’ expansion and possible suppression of function in cancer development. Our findings may provide a better understanding of the immunomodulatory nature of Tregs and could, therefore, open up new avenues in immunotherapy.
Collapse
Affiliation(s)
- Nor Adzimah Johdi
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Kamel Ait-Tahar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Ismail Sagap
- Faculty of Medicine, Department of Surgery, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
88
|
Ding FM, Liao RM, Chen YQ, Xie GG, Zhang PY, Shao P, Zhang M. Upregulation of SOCS3 in lung CD4+ T cells in a mouse model of chronic PA lung infection and suppression of Th17‑mediated neutrophil recruitment in exogenous SOCS3 transfer in vitro. Mol Med Rep 2017; 16:778-786. [PMID: 28560450 PMCID: PMC5482193 DOI: 10.3892/mmr.2017.6630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Neutrophilic airway inflammation in chronic lung infections caused by Pseudomonas aeruginosa (PA) is associated with T helper (Th)17 responses. Suppressor of cytokine signaling 3 (SOCS3) is the major negative modulator of Th17 function through the suppression of signal transducer and activator of transcription (STAT)3 activation. The aim of the present study was to investigate the expression of SOCS3 in lung CD4+ T cells in a mouse model of chronic PA lung infection and the effect of exogenous SOCS3 on Th17‑mediated neutrophil recruitment in vitro. A mouse model of chronic PA lung infection was established and the activation of STAT3 and Th17 response in lung tissues and lung CD4+ T cells was assessed. The protein and mRNA expression of SOCS3 in lung CD4+ T cells was analyzed by western blotting and reverse transcription‑quantitative polymerase chain reaction. The authors constructed a recombinant lentivirus carrying the SOCS3 gene and transferred it into lung CD4+ T cells isolated from a mouse model. These transfected cells were stimulated with interleukin (IL)‑23 in vitro and the protein level of p‑STAT3 and retinoid‑related orphan receptor (ROR)γt was determined by western blotting. The expression of IL‑17A+ cells was analyzed by flow cytometry and the level of IL‑17A in cell culture supernatant was measured by ELISA. The mouse lung epithelial cell line, MLE‑12, was cocultured with lung CD4+ T cells that overexpressed the SOCS3 gene and the culture supernatant was harvested and used for a chemotaxis assay. Compared with control mice, mice with chronic PA lung infection had significantly higher level of p‑STAT3 and Th17 response in both lung tissues and lung CD4+ T cells. The protein and mRNA level of SOCS3 in lung CD4+ T cells increased as the chronic PA lung infection developed. Exogenous SOCS3 gene transfer in PA‑infected lung CD4+ T cells decreased p‑STAT3 and RORγt expression and suppressed the level of IL‑17A+ cells in vitro. MLE‑12 cells cocultured with SOCS3‑overexpressing lung CD4+ T cells expressed a significantly lower level of neutrophil chemoattractants chemokine (C‑X‑C motif) ligand (CXCL) 1 and CXCL5, and recruited significantly smaller numbers of migrating neutrophils than those cocultured with control cells. SOCS3 was upregulated in lung CD4+ T cells following the activation of STAT3/Th17 axis in a mouse model of chronic PA lung infection. Exogenous SOCS3 transfer in PA‑infected lung CD4+ T cells suppresses Th17‑mediated neutrophil recruitment in vitro.
Collapse
Affiliation(s)
- Feng-Ming Ding
- Department of Respiratory Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ruo-Min Liao
- Department of Respiratory Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yu-Qing Chen
- Department of Respiratory Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Guo-Gang Xie
- Department of Respiratory Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Peng-Yu Zhang
- Department of Respiratory Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ping Shao
- Department of Respiratory Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Min Zhang
- Department of Respiratory Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
89
|
Menter T, Juskevicius D, Alikian M, Steiger J, Dirnhofer S, Tzankov A, Naresh KN. Mutational landscape of B-cell post-transplant lymphoproliferative disorders. Br J Haematol 2017; 178:48-56. [PMID: 28419429 DOI: 10.1111/bjh.14633] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/31/2016] [Indexed: 12/14/2022]
Abstract
It is currently unclear whether post-transplant diffuse large B-cell lymphomas (PT-DLBCL) display a similar genomic landscape as DLBCL in immunocompetent patients (IC-DLBCL). We investigated 50 post-transplant lymphoproliferative disorders (PTLDs) including 37 PT-DLBCL samples for somatic mutations frequently observed in IC-DLBCL. Targeted Next Generation Sequencing (NGS) using the Ion Torrent platform and a customized panel of 68 genes was performed on genomic DNA. Non-tumoural tissue was sequenced to exclude germline variants in cases where available. A control cohort of 76 IC-DLBCL was available for comparative analyses. In comparison to IC-DLBCLs, PT-DLBCL showed more frequent mutations of TP53 (P = 0·004), and absence of ATM and B2M mutations (P = 0·004 and P = 0·016, respectively). In comparison to IC-DLBCLs, Epstein-Barr virus (EBV)+ PT-DLBCL had fewer mutated genes (P = 0·007) and particularly fewer mutations in nuclear factor-κB pathway-related genes (P = 0·044). TP53 mutations were more frequent in EBV- PT-DLBCL as compared to IC-DLBCL (P = 0·001). Germinal centre B cell (GCB) subtype of PT-DLBCL had fewer mutations and mutated genes than GCB-IC-DLBCLs (P = 0·048 and 0·04 respectively). Polymorphic PTLD displayed fewer mutations as compared to PT-DLBCL (P = 0·001). PT-DLBCL differs from IC-DLBCL with respect to mutations in genes related to DNA damage control and immune-surveillance, and EBV association is likely to have a bearing on the mutational pattern.
Collapse
Affiliation(s)
- Thomas Menter
- Department of Cellular and Molecular Pathology, Hammersmith Hospital Campus, Imperial College Healthcare NHS Trust, London, UK.,Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Mary Alikian
- Department of Cellular and Molecular Pathology, Hammersmith Hospital Campus, Imperial College Healthcare NHS Trust, London, UK
| | - Juerg Steiger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Stephan Dirnhofer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Kikkeri N Naresh
- Department of Cellular and Molecular Pathology, Hammersmith Hospital Campus, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
90
|
Transcriptional and Molecular Pathways Activated in Mesenteric Adipose Tissue and Intestinal Mucosa of Crohn's Disease Patients. Int J Inflam 2017; 2017:7646859. [PMID: 28487813 PMCID: PMC5401739 DOI: 10.1155/2017/7646859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/05/2017] [Indexed: 01/19/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disorder, characterized by cytokine imbalance and transcription signaling pathways activation. In addition, the increase of mesenteric adipose tissue (MAT) near the affected intestinal area is a hallmark of CD. Therefore, we evaluated the transcription signaling pathways and cytokines expression in intestinal mucosa and MAT of active CD patients. Ten patients with ileocecal CD and eight with noninflammatory diseases were studied. The biopsies of intestinal mucosa and MAT were snap-frozen and protein expression was determined by immunoblotting. RNA levels were measured by qPCR. The pIkB/IkB ratio and TNFα level were significantly higher in intestinal mucosa of CD when compared to controls. However, STAT1 expression was similar between intestinal mucosa of CD and controls. Considering the MAT, the pIkB/IkB ratio was significantly lower and the anti-inflammatory cytokine IL10 was significantly higher in CD when compared to controls. Finally, the protein content of pSTAT1 was higher in MAT of CD compared to controls. These findings reinforce the predominance of the proinflammatory NF-kB pathway in CD intestinal mucosa. For the first time, we showed the activation of STAT1 pathway in MAT of CD patients, which may help to understand the physiopathology of this immune mediated disease.
Collapse
|
91
|
Parnell E, McElroy SP, Wiejak J, Baillie GL, Porter A, Adams DR, Rehmann H, Smith BO, Yarwood SJ. Identification of a Novel, Small Molecule Partial Agonist for the Cyclic AMP Sensor, EPAC1. Sci Rep 2017; 7:294. [PMID: 28331191 PMCID: PMC5428521 DOI: 10.1038/s41598-017-00455-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/27/2017] [Indexed: 11/26/2022] Open
Abstract
Screening of a carefully selected library of 5,195 small molecules identified 34 hit compounds that interact with the regulatory cyclic nucleotide-binding domain (CNB) of the cAMP sensor, EPAC1. Two of these hits (I942 and I178) were selected for their robust and reproducible inhibitory effects within the primary screening assay. Follow-up characterisation by ligand observed nuclear magnetic resonance (NMR) revealed direct interaction of I942 and I178 with EPAC1 and EPAC2-CNBs in vitro. Moreover, in vitro guanine nucleotide exchange factor (GEF) assays revealed that I942 and, to a lesser extent, I178 had partial agonist properties towards EPAC1, leading to activation of EPAC1, in the absence of cAMP, and inhibition of GEF activity in the presence of cAMP. In contrast, there was very little agonist action of I942 towards EPAC2 or protein kinase A (PKA). To our knowledge, this is the first observation of non-cyclic-nucleotide small molecules with agonist properties towards EPAC1. Furthermore, the isoform selective agonist nature of these compounds highlights the potential for the development of small molecule tools that selectively up-regulate EPAC1 activity.
Collapse
Affiliation(s)
- Euan Parnell
- Institute of Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stuart P McElroy
- European Screening Centre, University of Dundee, Biocity Scotland, Newhouse, ML1 5UH, UK
| | - Jolanta Wiejak
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh Campus, Edinburgh, EH14 4AS, UK
| | - Gemma L Baillie
- European Screening Centre, University of Dundee, Biocity Scotland, Newhouse, ML1 5UH, UK
| | - Alison Porter
- European Screening Centre, University of Dundee, Biocity Scotland, Newhouse, ML1 5UH, UK
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh, EH14 4AS, UK
| | - Holger Rehmann
- Department of Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Brian O Smith
- Institute of Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stephen J Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh Campus, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
92
|
Ilangumaran S, Bobbala D, Ramanathan S. SOCS1: Regulator of T Cells in Autoimmunity and Cancer. Curr Top Microbiol Immunol 2017; 410:159-189. [PMID: 28900678 DOI: 10.1007/82_2017_63] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SOCS1 is a negative feedback regulator of cytokine and growth factor receptor signaling, and plays an indispensable role in attenuating interferon gamma signaling. Studies on SOCS1-deficient mice have established a crucial role for SOCS1 in regulating CD8+ T cell homeostasis. In the thymus, SOCS1 prevents thymocytes that had failed positive selection from surviving and expanding, ensures negative selection and prevents inappropriate developmental skewing toward the CD8 lineage. In the periphery, SOCS1 not only controls production of T cell stimulatory cytokines but also attenuates the sensitivity of CD8+ T cells to synergistic cytokine stimulation and antigen non-specific activation. As cytokine stimulation of CD8+ T lymphocytes increases their sensitivity to low affinity TCR ligands, SOCS1 likely contributes to peripheral T cell tolerance by putting brakes on aberrant T cell activation driven by inflammatory cytokines. In addition, SOCS1 is critical to maintain the stability of T regulatory cells and control their plasticity to become pathogenic Th17 and Th1 cells under the harmful influence of inflammatory cytokines. SOCS1 also regulates T cell activation by dendritic cells via modulating their generation, maturation, antigen presentation, costimulatory signaling, and cytokine production. The above control mechanisms of SOCS1 on T cells, T regulatory cells and dendritic cells collectively contribute to immunological tolerance and prevent autoimmune manifestation. On other hand, silencing SOCS1 in dendritic cells or CD8+ T cells stimulates efficient antitumor immunity. Thus, even though SOCS1 is not a cell surface checkpoint inhibitor, its regulatory functions on T cell responses qualify SOCS1as a "non-classical" checkpoint blocker. SOCS1 also functions as a tumor suppressor in cancer cells by regulating oncogenic signal transduction pathways. The loss of SOCS1 expression observed in many tumors may have an impact on classical checkpoint pathways. The potential to exploit SOCS1 to treat inflammatory/autoimmune diseases and elicit antitumor immunity is discussed.
Collapse
Affiliation(s)
- Subburaj Ilangumaran
- Immunology Division, Faculty of Medicine and Health Sciences, Department of Pediatrics, Université de Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada.
| | - Diwakar Bobbala
- Immunology Division, Faculty of Medicine and Health Sciences, Department of Pediatrics, Université de Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Sheela Ramanathan
- Immunology Division, Faculty of Medicine and Health Sciences, Department of Pediatrics, Université de Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
93
|
Thanasaksiri K, Hirono I, Kondo H. Identification and expression analysis of suppressors of cytokine signaling (SOCS) of Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:145-152. [PMID: 27640157 DOI: 10.1016/j.fsi.2016.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/29/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Suppressor of cytokine signaling (SOCS) family members are key regulators of the immune system, particularly cytokine action, and have now been discovered in a number of fish species. Here we identified eight SOCS proteins (CISH, SOCS1a, SOCS1b, SOCS3a, SOCS3b, SOCS5, SOCS6 and SOCS9) in the Japanese flounder and analyzed their mRNA expressions after injection of poly (I:C) and formalin-killed cells (FKC) of Edwardsiella tarda. The expressions of all eight SOCS genes were detected in all the tissues examined. Stimulation of Japanese flounder reared at 15 or 25 °C with poly (I:C) affected the gene expressions of CISH, SOCS1a, SOCS1b and SOCS3a. All SOCS genes mRNA levels were significantly changed after FKC injection. Significant up-regulation of SOCS1a, SOCS1b, SOCS3a and SOCS3b genes was detected at 3, 12 and 24 hpi. SOCS5 and SOCS6 genes were significantly down-regulated at 3 hpi. SOCS9 gene was significantly up-regulated at 12 hpi. These results suggest that all eight of the SOCS genes are involved in immune responses, and that the CISH, SOCS1 and SOCS3 genes have functions distinct from those of the other SOCS members.
Collapse
Affiliation(s)
- Kittipong Thanasaksiri
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
94
|
Zhu X, Bai J, Liu P, Wang X, Jiang P. Suppressor of cytokine signaling 3 plays an important role in porcine circovirus type 2 subclinical infection by downregulating proinflammatory responses. Sci Rep 2016; 6:32538. [PMID: 27581515 PMCID: PMC5007517 DOI: 10.1038/srep32538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated diseases and usually evokes a subclinical infection, without any obvious symptoms, in pigs. It remains unclear how PCV2 leads to a subclinical infection. In this study, we found that peripheral blood mononuclear cells (PBMCs) from PCV2-challenged piglets with no significant clinical symptoms exhibited increased expression of suppressor of cytokine signaling (SOCS) 3, but no significant changes in the expression of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α; this differed from piglets that displayed significant clinical symptoms. IL-6- and TNF-α-mediated signalings were inhibited in PBMCs from subclinical piglets. Elevated SOCS3 levels inhibited IL-6- and TNF-α-mediated NF-kappa-B inhibitor alpha degradation in PBMCs and PK-15 cells. SOCS3 production was also increased in PCV2-infected PK-15 porcine kidney cells, and IL-6 and TNF-α production that was induced by PCV2 in PK-15 cells was significantly increased when SOCS3 was silenced by a small interfering RNA. SOCS3 interacted with signal transducer and activator of transcription 3 and TNF-associated receptor-associated factor 2, suggesting mechanisms by which SOCS3 inhibits IL-6 and TNF-α signaling. We conclude that SOCS3 plays an important role in PCV2 subclinical infection by suppressing inflammatory responses in primary immune cells.
Collapse
Affiliation(s)
- Xuejiao Zhu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Panrao Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
95
|
Ali O, Cerjak D, Kent JW, James R, Blangero J, Carless MA, Zhang Y. Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity. Epigenetics 2016; 11:699-707. [PMID: 27564309 PMCID: PMC5048720 DOI: 10.1080/15592294.2016.1216284] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epigenetic mechanisms, including DNA methylation, mediate the interaction between gene and environment and may play an important role in the obesity epidemic. We assessed the relationship between DNA methylation and obesity in peripheral blood mononuclear cells (PBMCs) at 485,000 CpG sites across the genome in family members (8-90 y of age) using a discovery cohort (192 individuals) and a validation cohort (1,052 individuals) of Northern European ancestry. After Bonferroni-correction (Pα=0.05 = 1.31 × 10−7) for genome-wide significance, we identified 3 loci, cg18181703 (SOCS3), cg04502490 (ZNF771), and cg02988947 (LIMD2), where methylation status was associated with body mass index percentile (BMI%), a clinical index for obesity in children, adolescents, and adults. These sites were also associated with multiple metabolic syndrome (MetS) traits, including central obesity, fat depots, insulin responsiveness, and plasma lipids. The SOCS3 methylation locus was also associated with the clinical definition of MetS. In the validation cohort, SOCS3 methylation status was found to be inversely associated with BMI% (P = 1.75 × 10−6), waist to height ratio (P = 4.18 × 10−7), triglycerides (P = 4.01 × 10−4), and MetS (P = 4.01 × 10−7), and positively correlated with HDL-c (P = 4.57 × 10−8). Functional analysis in a sub cohort (333 individuals) demonstrated SOCS3 methylation and gene expression in PBMCs were inversely correlated (P = 2.93 × 10−4) and expression of SOCS3 was positively correlated with status of MetS (P = 0.012). We conclude that epigenetic modulation of SOCS3, a gene involved in leptin and insulin signaling, may play an important role in obesity and MetS.
Collapse
Affiliation(s)
- Omar Ali
- a Department of Pediatrics , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Diana Cerjak
- b TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin , Milwaukee , WI , USA.,c Human and Molecular Genetics Center, Medical College of Wisconsin , Milwaukee , WI , USA
| | - Jack W Kent
- d Department of Genetics , Texas Biomedical Research Institute , San Antonio , TX , USA
| | - Roland James
- b TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin , Milwaukee , WI , USA.,c Human and Molecular Genetics Center, Medical College of Wisconsin , Milwaukee , WI , USA
| | - John Blangero
- e South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley , Brownsville , TX , USA
| | - Melanie A Carless
- d Department of Genetics , Texas Biomedical Research Institute , San Antonio , TX , USA
| | - Yi Zhang
- b TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin , Milwaukee , WI , USA.,c Human and Molecular Genetics Center, Medical College of Wisconsin , Milwaukee , WI , USA
| |
Collapse
|
96
|
McCormick SM, Gowda N, Fang JX, Heller NM. Suppressor of Cytokine Signaling (SOCS)1 Regulates Interleukin-4 (IL-4)-activated Insulin Receptor Substrate (IRS)-2 Tyrosine Phosphorylation in Monocytes and Macrophages via the Proteasome. J Biol Chem 2016; 291:20574-87. [PMID: 27507812 DOI: 10.1074/jbc.m116.746164] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 11/06/2022] Open
Abstract
Allergic asthma is a chronic lung disease initiated and driven by Th2 cytokines IL-4/-13. In macrophages, IL-4/-13 bind IL-4 receptors, which signal through insulin receptor substrate (IRS)-2, inducing M2 macrophage differentiation. M2 macrophages correlate with disease severity and poor lung function, although the mechanisms that regulate M2 polarization are not understood. Following IL-4 exposure, suppressor of cytokine signaling (SOCS)1 is highly induced in human monocytes. We found that siRNA knockdown of SOCS1 prolonged IRS-2 tyrosine phosphorylation and enhanced M2 differentiation, although siRNA knockdown of SOCS3 did not affect either. By co-immunoprecipitation, we found that SOCS1 complexes with IRS-2 at baseline, and this association increased after IL-4 stimulation. Because SOCS1 is an E3 ubiquitin ligase, we examined the effect of proteasome inhibitors on IL-4-induced IRS-2 phosphorylation. Proteasomal inhibition prolonged IRS-2 tyrosine phosphorylation, increased ubiquitination of IRS-2, and enhanced M2 gene expression. siRNA knockdown of SOCS1 inhibited ubiquitin accumulation on IRS-2, although siRNA knockdown of SOCS3 had no effect on ubiquitination of IRS-2. Monocytes from healthy and allergic individuals revealed that SOCS1 is induced by IL-4 in healthy monocytes but not allergic cells, whereas SOCS3 is highly induced in allergic monocytes. Healthy monocytes displayed greater ubiquitination of IRS-2 and lower M2 polarization than allergic monocytes in response to IL-4 stimulation. Here, we identify SOCS1 as a key negative regulator of IL-4-induced IRS-2 signaling and M2 differentiation. Our findings provide novel insight into how dysregulated expression of SOCS increases IL-4 responses in allergic monocytes, and this may represent a new therapeutic avenue for managing allergic disease.
Collapse
Affiliation(s)
- Sarah M McCormick
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Nagaraj Gowda
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Jessie X Fang
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Nicola M Heller
- From the Department of Anesthesiology and Critical Care Medicine and Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
97
|
Linossi EM, Nicholson SE. Kinase inhibition, competitive binding and proteasomal degradation: resolving the molecular function of the suppressor of cytokine signaling (SOCS) proteins. Immunol Rev 2016; 266:123-33. [PMID: 26085211 DOI: 10.1111/imr.12305] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The suppressor of cytokine signaling (SOCS) family of proteins are key negative regulators of cytokine and growth factor signaling. They act at the receptor complex to modulate the intracellular signaling cascade, preventing excessive signaling and restoring homeostasis. This regulation is critical to the normal cessation of signaling, highlighted by the complex inflammatory phenotypes exhibited by mice deficient in SOCS1 or SOCS3. These two SOCS proteins remain the best characterized of the eight family members (CIS, SOCS1-7), and in particular, we now possess a sound understanding of the mechanism of action for SOCS3. Here, we review the mechanistic role of the SOCS proteins and identify examples where clear, definitive data have been generated and discuss areas where the information is less clear. From this functional viewpoint, we discuss how the SOCS proteins achieve exquisite and specific regulation of cytokine signaling and highlight outstanding questions regarding the function of the less well-studied SOCS family members.
Collapse
Affiliation(s)
- Edmond M Linossi
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,The University of Melbourne, Parkville, VIC, Australia
| | - Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
98
|
Hirata Y, Brems H, Suzuki M, Kanamori M, Okada M, Morita R, Llano-Rivas I, Ose T, Messiaen L, Legius E, Yoshimura A. Interaction between a Domain of the Negative Regulator of the Ras-ERK Pathway, SPRED1 Protein, and the GTPase-activating Protein-related Domain of Neurofibromin Is Implicated in Legius Syndrome and Neurofibromatosis Type 1. J Biol Chem 2015; 291:3124-34. [PMID: 26635368 DOI: 10.1074/jbc.m115.703710] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 11/06/2022] Open
Abstract
Constitutional heterozygous loss-of-function mutations in the SPRED1 gene cause a phenotype known as Legius syndrome, which consists of symptoms of multiple café-au-lait macules, axillary freckling, learning disabilities, and macrocephaly. Legius syndrome resembles a mild neurofibromatosis type 1 (NF1) phenotype. It has been demonstrated that SPRED1 functions as a negative regulator of the Ras-ERK pathway and interacts with neurofibromin, the NF1 gene product. However, the molecular details of this interaction and the effects of the mutations identified in Legius syndrome and NF1 on this interaction have not yet been investigated. In this study, using a yeast two-hybrid system and an immunoprecipitation assay in HEK293 cells, we found that the SPRED1 EVH1 domain interacts with the N-terminal 16 amino acids and the C-terminal 20 amino acids of the GTPase-activating protein (GAP)-related domain (GRD) of neurofibromin, which form two crossing α-helix coils outside the GAP domain. These regions have been shown to be dispensable for GAP activity and are not present in p120(GAP). Several mutations in these N- and C-terminal regions of the GRD in NF1 patients and pathogenic missense mutations in the EVH1 domain of SPRED1 in Legius syndrome reduced the binding affinity between the EVH1 domain and the GRD. EVH1 domain mutations with reduced binding to the GRD also disrupted the ERK suppression activity of SPRED1. These data clearly demonstrate that SPRED1 inhibits the Ras-ERK pathway by recruiting neurofibromin to Ras through the EVH1-GRD interaction, and this study also provides molecular basis for the pathogenic mutations of NF1 and Legius syndrome.
Collapse
Affiliation(s)
- Yasuko Hirata
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hilde Brems
- the Department of Human Genetics, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Mayu Suzuki
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuhiro Kanamori
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Okada
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Rimpei Morita
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Isabel Llano-Rivas
- the Department of Genetics, Hospital Universitario Cruces, BioCruces Health Research Institute, Biscay, Spain
| | - Toyoyuki Ose
- Department of Pharmaceutical Sciences, Hokkaido University, N12W6, Sapporo 060-0812, Japan, and
| | - Ludwine Messiaen
- the Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Eric Legius
- the Department of Human Genetics, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Akihiko Yoshimura
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan,
| |
Collapse
|
99
|
McCormick SM, Heller NM. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins. Front Immunol 2015; 6:549. [PMID: 26579124 PMCID: PMC4621458 DOI: 10.3389/fimmu.2015.00549] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte-macrophage phenotype and function are highlighted.
Collapse
Affiliation(s)
- Sarah M McCormick
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| | - Nicola M Heller
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA ; Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
100
|
Boosani CS, Agrawal DK. Methylation and microRNA-mediated epigenetic regulation of SOCS3. Mol Biol Rep 2015; 42:853-72. [PMID: 25682267 DOI: 10.1007/s11033-015-3860-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epigenetic gene silencing of several genes causes different pathological conditions in humans, and DNA methylation has been identified as one of the key mechanisms that underlie this evolutionarily conserved phenomenon associated with developmental and pathological gene regulation. Recent advances in the miRNA technology with high throughput analysis of gene regulation further increased our understanding on the role of miRNAs regulating multiple gene expression. There is increasing evidence supporting that the miRNAs not only regulate gene expression but they also are involved in the hypermethylation of promoter sequences, which cumulatively contributes to the epigenetic gene silencing. Here, we critically evaluated the recent progress on the transcriptional regulation of an important suppressor protein that inhibits cytokine-mediated signaling, SOCS3, whose expression is directly regulated both by promoter methylation and also by microRNAs, affecting its vital cell regulating functions. SOCS3 was identified as a potent inhibitor of Jak/Stat signaling pathway which is frequently upregulated in several pathologies, including cardiovascular disease, cancer, diabetes, viral infections, and the expression of SOCS3 was inhibited or greatly reduced due to hypermethylation of the CpG islands in its promoter region or suppression of its expression by different microRNAs. Additionally, we discuss key intracellular signaling pathways regulated by SOCS3 involving cellular events, including cell proliferation, cell growth, cell migration and apoptosis. Identification of the pathway intermediates as specific targets would not only aid in the development of novel therapeutic drugs, but, would also assist in developing new treatment strategies that could successfully be employed in combination therapy to target multiple signaling pathways.
Collapse
Affiliation(s)
- Chandra S Boosani
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | |
Collapse
|