51
|
|
52
|
Kennington WJ, Gockel J, Partridge L. Testing for asymmetrical gene flow in a Drosophila melanogaster body-size cline. Genetics 2004; 165:667-73. [PMID: 14573478 PMCID: PMC1462776 DOI: 10.1093/genetics/165.2.667] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Asymmetrical gene flow is an important, but rarely examined genetic parameter. Here, we develop a new method for detecting departures from symmetrical migration between two populations using microsatellite data that are based on the difference in the proportion of private alleles. Application of this approach to data collected from wild-caught Drosophila melanogaster along a latitudinal body-size cline in eastern Australia revealed that asymmetrical gene flow could be detected, but was uncommon, nonlocalized, and occurred in both directions. We also show that, in contrast to the findings of a previous study, there is good evidence to suggest that the cline experiences significant levels of gene flow between populations.
Collapse
Affiliation(s)
- W Jason Kennington
- Department of Biology, University College London, London WC1E 2BT, United Kingdom
| | | | | |
Collapse
|
53
|
Prasad NG, Joshi A. What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us? J Genet 2004; 82:45-76. [PMID: 14631102 DOI: 10.1007/bf02715881] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of laboratory selection experiments on Drosophila melanogaster over the past two decades has provided insights into the specifics of life-history tradeoffs in the species and greatly refined our understanding of how ecology and genetics interact in life-history evolution. Much of what has been learnt from these studies about the subtlety of the microevolutionary process also has significant implications for experimental design and inference in organismal biology beyond life-history evolution, as well as for studies of evolution in the wild. Here we review work on the ecology and evolution of life-histories in laboratory populations of D. melanogaster, emphasizing how environmental effects on life-history-related traits can influence evolutionary change. We discuss life-history tradeoffs - many unexpected - revealed by selection experiments, and also highlight recent work that underscores the importance to life-history evolution of cross-generation and cross-life-stage effects and interactions, sexual antagonism and sexual dimorphism, population dynamics, and the possible role of biological clocks in timing life-history events. Finally, we discuss some of the limitations of typical selection experiments, and how these limitations might be transcended in the future by a combination of more elaborate and realistic selection experiments, developmental evolutionary biology, and the emerging discipline of phenomics.
Collapse
Affiliation(s)
- N G Prasad
- Evolutionary Biology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, P.O. Box 6436, Jakkur, Bangalore 560 064, India
| | | |
Collapse
|
54
|
De Jong G, Bochdanovits Z. Latitudinal clines inDrosophila melanogaster: Body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway. J Genet 2003; 82:207-23. [PMID: 15133196 DOI: 10.1007/bf02715819] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many latitudinal clines exist in Drosophila melanogaster: in adult body size, in allele frequency at allozyme loci, and in frequencies of common cosmopolitan inversions. The question is raised whether these latitudinal clines are causally related. This review aims to connect data from two very different fields of study, evolutionary biology and cell biology, in explaining such natural genetic variation in D. melanogaster body size and development time. It is argued that adult body size clines, inversion frequency clines, and clines in allele frequency at loci involved in glycolysis and glycogen storage are part of the same adaptive strategy. Selection pressure is expected to differ at opposite ends of the clines. At high latitudes, selection on D. melanogaster would favour high larval growth rate at low temperatures, and resource storage in adults to survive winter. At low latitudes selection would favour lower larval critical size to survive crowding, and increased male activity leading to high male reproductive success. Studies of the insulin-signalling pathway in D. melanogaster point to the involvement of this pathway in metabolism and adult body size. The genes involved in the insulin-signalling pathway are associated with common cosmopolitan inversions that show latitudinal clines. Each chromosome region connected with a large common cosmopolitan inversion possesses a gene of the insulin transmembrane complex, a gene of the intermediate pathway and a gene of the TOR branch. The hypothesis is presented that temperate D. melanogaster populations have a higher frequency of a 'thrifty' genotype corresponding to high insulin level or high signal level, while tropical populations possess a more 'spendthrift' genotype corresponding to low insulin or low signal level.
Collapse
Affiliation(s)
- Gerdien De Jong
- Evolutionary Population Biology, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, Netherlands.
| | | |
Collapse
|
55
|
Brakefield PM, French V, Zwaan BJ. Development and the Genetics of Evolutionary Change Within Insect Species. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2003. [DOI: 10.1146/annurev.ecolsys.34.011802.132425] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
▪ Abstract Changes in genes and in developmental processes generate the phenotypic variation that is sorted by natural selection in adaptive evolution. We review several case studies in which artificial selection experiments in insects have led to divergent morphologies, and where further work has revealed information about the underlying changes at both the genetic and developmental levels. In addition, we examine several studies of phenotypic plasticity where multidisciplinary approaches are also beginning to reveal more about how developmental processes are modulated. Such integrated research will lead to a richer understanding of the changes in development that occur during evolutionary responses to natural selection, and it will also more rigorously examine how developmental processes can influence the tempo and direction of evolutionary change.
Collapse
Affiliation(s)
- Paul M. Brakefield
- Institute of Biology, Leiden University, Leiden, 2300 RA The Netherlands
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Vernon French
- Institute of Biology, Leiden University, Leiden, 2300 RA The Netherlands
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Bas J. Zwaan
- Institute of Biology, Leiden University, Leiden, 2300 RA The Netherlands
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
56
|
Abstract
Control mechanisms that regulate body size and tissue size have been sought at both the cellular and organismal level. Cell-level studies have revealed much about the control of cell growth and cell division, and how these processes are regulated by nutrition. Insulin signaling is the key mediator between nutrition and the growth of internal organs, such as imaginal disks, and is required for the normal proportional growth of the body and its various parts. The insulin-related peptides of insects do not appear to control growth by themselves, but act in conjunction with other hormones and signaling molecules, such as ecdysone and IDGFs. Size regulation cannot be understood solely on the basis of the mechanisms that control cell size and cell number. Size regulation requires mechanisms that gather information on a scale appropriate to the tissue or organ being regulated. A new model mechanism, using autocrine signaling, is outlined by which tissue and organ size regulation can be achieved. Body size regulation likewise requires a mechanism that integrates information at an appropriate scale. In insects, this mechanism operates by controlling the secretion of ecdysone, which is the signal that terminates the growth phase of development. The mechanisms for size assessment and the pathways by which they trigger ecdysone secretion are diverse and can be complex. The ways in which these higher-level regulatory mechanisms interact with cell- and molecular- level mechanisms are beginning to be elucidated.
Collapse
Affiliation(s)
- H F Nijhout
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
57
|
Calboli FCF, Gilchrist GW, Partridge L. Different cell size and cell number contribution in two newly established and one ancient body size cline of Drosophila subobscura. Evolution 2003; 57:566-73. [PMID: 12703946 DOI: 10.1111/j.0014-3820.2003.tb01548.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Latitudinal genetic clines in body size occur in many ectotherms including Drosophila species. In the wing of D. melanogaster, these clines are generally based on latitudinal variation in cell number. In contrast, differences in wing area that evolve by thermal selection in the laboratory are in general based on cell size. To investigate possible reasons for the different cellular bases of these two types of evolutionary response, we compared the newly established North and South American wing size clines of Drosophila subobscura. The new clines are based on latitudinal variation in cell area in North America and cell number in South America. The ancestral European cline is also based on latitudinal variation in cell number. The difference in the cellular basis of wing size variation in the American clines, which are roughly the same age, together with the similar cellular basis of the new South American cline and the ancient European one, suggest that the antiquity of a cline does not explain its cellular basis. Furthermore, the results indicate that wing size as a whole, rather than its cellular basis, is under selection. The different cellular bases of different size clines are most likely explained either entirely by chance or by different patterns of genetic variance--or its expression--in founding populations.
Collapse
Affiliation(s)
- Federico C F Calboli
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
58
|
Calboli FCF, Gilchrist GW, Partridge L. DIFFERENT CELL SIZE AND CELL NUMBER CONTRIBUTION IN TWO NEWLY ESTABLISHED AND ONE ANCIENT BODY SIZE CLINE OF DROSOPHILA SUBOBSCURA. Evolution 2003. [DOI: 10.1554/0014-3820(2003)057[0566:dcsacn]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
59
|
Gockel J, Robinson SJW, Kennington WJ, Goldstein DB, Partridge L. Quantitative genetic analysis of natural variation in body size in Drosophila melanogaster. Heredity (Edinb) 2002; 89:145-53. [PMID: 12136418 DOI: 10.1038/sj.hdy.6800121] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2001] [Accepted: 04/28/2002] [Indexed: 11/08/2022] Open
Abstract
Latitudinal, genetic variation in body size is a commonly observed phenomenon in many invertebrate species and is shaped by natural selection. In this study, we use a chromosome substitution and a quantitative trait locus (QTL) mapping approach to identify chromosomes and genomic regions associated with adaptive variation in body size in natural populations of Drosophila melanogaster from the extreme ends of clines in South America and Australia. Chromosome substitution revealed the largest effects on chromosome three in both continents, and minor effects on the X and second chromosome. Similarly, QTL analysis of the Australian cline identified QTL with largest effects on the third chromosome, with smaller effects on the second. However, no QTL were found on the X chromosome. We also compared the coincidence of locations of QTL with the locations of five microsatellite loci previously shown to vary clinally in Australia. Permutation tests using both the sum of the LOD scores and the sum distance to nearest QTL peak revealed there were no significant associations between locations of clinal markers and QTL's. The lack of significance may, in part, be due to broad QTL peaks identified in this study. Future studies using higher resolution QTL maps should reveal whether the degree of clinality in microsatellite allele frequencies can be used to identify QTL in traits that vary along an environmental gradient.
Collapse
Affiliation(s)
- J Gockel
- Department of Biology, University College London, London, UK
| | | | | | | | | |
Collapse
|
60
|
Gadau J, Page RE, Werren JH. The genetic basis of the interspecific differences in wing size in Nasonia (Hymenoptera; Pteromalidae): major quantitative trait loci and epistasis. Genetics 2002; 161:673-84. [PMID: 12072464 PMCID: PMC1462138 DOI: 10.1093/genetics/161.2.673] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is a 2.5-fold difference in male wing size between two haplodiploid insect species, Nasonia vitripennis and N. giraulti. The haploidy of males facilitated a full genomic screen for quantitative trait loci (QTL) affecting wing size and the detection of epistatic interactions. A QTL analysis of the interspecific wing-size difference revealed QTL with major effects and epistatic interactions among loci affecting the trait. We analyzed 178 hybrid males and initially found two major QTL for wing length, one for wing width, three for a normalized wing-size variable, and five for wing seta density. One QTL for wing width explains 38.1% of the phenotypic variance, and the same QTL explains 22% of the phenotypic variance in normalized wing size. This corresponds to a region previously introgressed from N. giraulti into N. vitripennis that accounts for 44% of the normalized wing-size difference between the species. Significant epistatic interactions were also found that affect wing size and density of setae on the wing. Screening for pairwise epistatic interactions between loci on different linkage groups revealed four additional loci for wing length and four loci for normalized wing size that were not detected in the original QTL analysis. We propose that the evolution of smaller wings in N. vitripennis males is primarily the result of major mutations at few genomic regions and involves epistatic interactions among some loci.
Collapse
Affiliation(s)
- J Gadau
- Institut für Verhaltensphysiologie und Soziobiologie, Universität Würzburg, 97074 Würzburg, Germany.
| | | | | |
Collapse
|
61
|
Abstract
Research into ageing is among the priorities of the Leiden University Medical Center. Several tight collaborations between basic and clinical departments are the basis of this program. Our focus is to identify determinants of human longevity and disease at old age with an emphasis on inflammation, atherosclerosis, and cognitive decline. To this end we enroll a large series of long-lived families for genetic screening, prospectively follow large cohorts of old people dependent on various genetic and environmental risk factors, and perform randomized controlled trials in the general population testing plausible hypotheses how interventions can maximize rewarding lifespans.
Collapse
Affiliation(s)
- Rudi G J Westendorp
- Section of Gerontology and Geriatrics, Department of General Internal Medicine C2-R, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
62
|
Azevedo RB, French V, Partridge L. Temperature modulates epidermal cell size in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2002; 48:231-237. [PMID: 12770123 DOI: 10.1016/s0022-1910(01)00168-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most ectotherms show increased body size at maturity when reared under colder temperatures. In principle, temperature could produce this outcome by influencing growth, proliferation and/or death of epidermal cells. Here we investigated the effects of rearing temperature on the cell size and cell number in the wing blade, the basitarsus of the leg and the cornea of the eye of Drosophila melanogaster from two populations at opposite ends of a South American latitudinal cline. We found that, in both strains of D. melanogaster and in both sexes, a decrease in rearing temperature increases the size of the wings, legs and eyes through an effect on epidermal cell size, with no significant change in cell number. Our results indicate that temperature has a consistent effect on cell size in the Drosophila epidermis and this may also apply to other cell types. In contrast, the evolutionary effects of temperature on the different organs are not consistent. We discuss our findings in the context of growth control in Drosophila.
Collapse
Affiliation(s)
- R B.R. Azevedo
- Department of Biology, Imperial College, Silwood Park, Ascot, SL5 7PY, Berkshire, UK
| | | | | |
Collapse
|
63
|
Robinson SJW, Partridge L. Temperature and clinal variation in larval growth efficiency inDrosophila melanogaster. J Evol Biol 2001; 14:14-21. [DOI: 10.1046/j.1420-9101.2001.00259.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
64
|
Abstract
Darwin observed that multiple, lowly organized, rudimentary, or exaggerated structures show increased relative variability. However, the cellular basis for these laws has never been investigated. Some animals, such as the nematode Caenorhabditis elegans, are famous for having organs that possess the same number of cells in all individuals, a property known as eutely. But for most multicellular creatures, the extent of cell number variability is unknown. Here we estimate variability in organ cell number for a variety of animals, plants, slime moulds, and volvocine algae. We find that the mean and variance in cell number obey a power law with an exponent of 2, comparable to Taylor's law in ecological processes. Relative cell number variability, as measured by the coefficient of variation, differs widely across taxa and tissues, but is generally independent of mean cell number among homologous tissues of closely related species. We show that the power law for cell number variability can be explained by stochastic branching process models based on the properties of cell lineages. We also identify taxa in which the precision of developmental control appears to have evolved. We propose that the scale independence of relative cell number variability is maintained by natural selection.
Collapse
Affiliation(s)
- R B Azevedo
- Department of Biology, Imperial College of Science, Technology, and Medicine, Silwood Park, Ascot, Berkshire SL5 7PY, United Kingdom
| | | |
Collapse
|