51
|
Garrett SB, Garrison-Schilling KL, Cooke JT, Pettis GS. Capsular polysaccharide production and serum survival of Vibrio vulnificus are dependent on antitermination control by RfaH. FEBS Lett 2016; 590:4564-4572. [PMID: 27859050 DOI: 10.1002/1873-3468.12490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022]
Abstract
The human pathogen Vibrio vulnificus undergoes phase variation among colonial morphotypes, including a virulent opaque form which produces capsular polysaccharide (CPS) and a translucent phenotype that produces little or no CPS and is attenuated. Here, we found that a V. vulnificus mutant defective for RfaH antitermination control showed a diminished capacity to undergo phase variation and displayed significantly reduced distal gene expression within the Group I CPS operon. Moreover, the rfaH mutant produced negligible CPS and was highly sensitive to killing by normal human serum, results which indicate that RfaH is likely essential for virulence in this bacterium.
Collapse
Affiliation(s)
- Shana B Garrett
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Jeffrey T Cooke
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Gregg S Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
52
|
Xun S, Jiang F, Wu YD. Intrinsically disordered regions stabilize the helical form of the C-terminal domain of RfaH: A molecular dynamics study. Bioorg Med Chem 2016; 24:4970-4977. [DOI: 10.1016/j.bmc.2016.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
|
53
|
Whitfield C, Heinrichs DE, Yethon JA, Amor KL, Monteiro MA, Perry MB. Assembly of the R1-type core oligosaccharide of Escherichia coli lipopolysaccharide. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519990050030901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are 5 known core oligosaccharide (core OS) structures in the lipopolysaccharides of Escherichia coli. The different structures reflect diversity in the chromosomal waa locus, primarily in the central waaQ operon encoding enzymes involved in the assembly of the core OS. The R1 core type is most prevalent among clinical isolates and provides our prototype for functional studies of core OS assembly. To establish the core OS assembly pathway, non-polar insertions were used to mutate each of 9 genes in the major operon of the R1 waa locus. Core OS structures were then determined for each mutant to assign functions to the relevant gene products. From currently available sequence data, five genes (designated waaA, waaC, waaQ, waaP, and waaY) are highly conserved in all of the core types; their products are responsible for assembly and phosphorylation of the inner-core region. Also conserved is waaG, whose product is an α-glucosyltransferase that adds the first residue (HexI) of the outer core. A family of related HexII and HexIII αglycosyltransferases extend the outer core OS backbones in all of the core OS types. The waaO and waaT gene products fulfil these roles in the R1 core OS type. A related glycosyltransferase (WaaW) adds the α-galactosyl substituent on HexIII. The last step in assembly of the core OS carbohydrate backbone involves substitution of HexII by a β-linked glucosyl residue. This residue distinguishes the R1 core OS and it provides the attachment site for ligation of O antigen.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada,
| | - David E. Heinrichs
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A. Yethon
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - Karen L. Amor
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - Mario A. Monteiro
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Malcolm B. Perry
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| |
Collapse
|
54
|
Polysialic acid biosynthesis and production in Escherichia coli: current state and perspectives. Appl Microbiol Biotechnol 2015; 100:1-8. [DOI: 10.1007/s00253-015-7019-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 11/26/2022]
|
55
|
Abstract
Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression.
Collapse
|
56
|
Functional Genomics of the Aeromonas salmonicida Lipopolysaccharide O-Antigen and A-Layer from Typical and Atypical Strains. Mar Drugs 2015; 13:3791-808. [PMID: 26082990 PMCID: PMC4483657 DOI: 10.3390/md13063791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022] Open
Abstract
The A. salmonicida A450 LPS O-antigen, encoded by the wbsalmo gene cluster, is exported through an ABC-2 transporter-dependent pathway. It represents the first example of an O-antigen LPS polysaccharide with three different monosaccharides in their repeating unit assembled by this pathway. Until now, only repeating units with one or two different monosaccharides have been described. Functional genomic analysis of this wbsalmo region is mostly in agreement with the LPS O-antigen structure of acetylated l-rhamnose (Rha), d-glucose (Glc), and 2-amino-2-deoxy-d-mannose (ManN). Between genes of the wbsalmo we found the genes responsible for the biosynthesis and assembly of the S-layer (named A-layer in these strains). Through comparative genomic analysis and in-frame deletions of some of the genes, we concluded that all the A. salmonicida typical and atypical strains, other than A. salmonicida subsp. pectinolytica strains, shared the same wbsalmo and presence of A-layer. A. salmonicida subsp. pectinolytica strains lack wbsalmo and A-layer, two major virulence factors, and this could be the reason they are the only ones not found as fish pathogens.
Collapse
|
57
|
Leskinen K, Li CM, Varjosalo M, Li Z, Skurnik M. Expression of the Yersinia enterocolitica O:3 LPS O-antigen and outer core gene clusters is RfaH-dependent. Microbiology (Reading) 2015; 161:1282-94. [DOI: 10.1099/mic.0.000076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
58
|
Imashimizu M, Takahashi H, Oshima T, McIntosh C, Bubunenko M, Court DL, Kashlev M. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo. Genome Biol 2015; 16:98. [PMID: 25976475 PMCID: PMC4457086 DOI: 10.1186/s13059-015-0666-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transcription elongation is frequently interrupted by pausing signals in DNA, with downstream effects on gene expression. Transcription errors also induce prolonged pausing, which can lead to a destabilized genome by interfering with DNA replication. Mechanisms of pausing associated with translocation blocks and misincorporation have been characterized in vitro, but not in vivo. RESULTS We investigate the pausing pattern of RNA polymerase (RNAP) in Escherichia coli by a novel approach, combining native elongating transcript sequencing (NET-seq) with RNase footprinting of the transcripts (RNET-seq). We reveal that the G-dC base pair at the 5' end of the RNA-DNA hybrid interferes with RNAP translocation. The distance between the 5' G-dC base pair and the 3' end of RNA fluctuates over a three-nucleotide width. Thus, the G-dC base pair can induce pausing in post-translocated, pre-translocated, and backtracked states of RNAP. Additionally, a CpG sequence of the template DNA strand spanning the active site of RNAP inhibits elongation and induces G-to-A errors, which leads to backtracking of RNAP. Gre factors efficiently proofread the errors and rescue the backtracked complexes. We also find that pausing events are enriched in the 5' untranslated region and antisense transcription of mRNA genes and are reduced in rRNA genes. CONCLUSIONS In E. coli, robust transcriptional pausing involves RNAP interaction with G-dC at the upstream end of the RNA-DNA hybrid, which interferes with translocation. CpG DNA sequences induce transcriptional pausing and G-to-A errors.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| | - Taku Oshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Ikoma, Nara, 630-0192, Japan.
| | - Carl McIntosh
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Mikhail Bubunenko
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Donald L Court
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Mikhail Kashlev
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
59
|
Molecular and chemical analysis of the lipopolysaccharide from Aeromonas hydrophila strain AH-1 (Serotype O11). Mar Drugs 2015; 13:2233-49. [PMID: 25874921 PMCID: PMC4413209 DOI: 10.3390/md13042233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 02/02/2023] Open
Abstract
A group of virulent Aeromonas hydrophila, A. sobria, and A. veronii biovar sobria strains isolated from humans and fish have been described; these strains classified to serotype O11 are serologically related by their lipopolysaccharide (LPS) O-antigen (O-polysaccharide), and the presence of an S-layer consisting of multiple copies of a crystalline surface array protein with a molecular weight of 52 kDa in the form of a crystalline surface array which lies peripheral to the cell wall. A. hydrophila strain AH-1 is one of them. We isolated the LPS from this strain and determined the structure of the O-polysaccharide, which was similar to that previously described for another strain of serotype O11. The genetics of the O11-antigen showed the genes (wbO11 cluster) in two sections separated by genes involved in biosynthesis and assembly of the S-layer. The O11-antigen LPS is an example of an ABC-2-transporter-dependent pathway for O-antigen heteropolysaccharide (disaccharide) assembly. The genes involved in the biosynthesis of the LPS core (waaO11 cluster) were also identified in three different chromosome regions being nearly identical to the ones described for A. hydrophila AH-3 (serotype O34). The genetic data and preliminary chemical analysis indicated that the LPS core for strain AH-1 is identical to the one for strain AH-3.
Collapse
|
60
|
NandyMazumdar M, Artsimovitch I. Ubiquitous transcription factors display structural plasticity and diverse functions: NusG proteins - Shifting shapes and paradigms. Bioessays 2015; 37:324-34. [PMID: 25640595 DOI: 10.1002/bies.201400177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Numerous accessory factors modulate RNA polymerase response to regulatory signals and cellular cues and establish communications with co-transcriptional RNA processing. Transcription regulators are astonishingly diverse, with similar mechanisms arising via convergent evolution. NusG/Spt5 elongation factors comprise the only universally conserved and ancient family of regulators. They bind to the conserved clamp helices domain of RNA polymerase, which also interacts with non-homologous initiation factors in all domains of life, and reach across the DNA channel to form processivity clamps that enable uninterrupted RNA chain synthesis. In addition to this ubiquitous function, NusG homologs exert diverse, and sometimes opposite, effects on gene expression by competing with each other and other regulators for binding to the clamp helices and by recruiting auxiliary factors that facilitate termination, antitermination, splicing, translation, etc. This surprisingly diverse range of activities and the underlying unprecedented structural changes make studies of these "transformer" proteins both challenging and rewarding.
Collapse
Affiliation(s)
- Monali NandyMazumdar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
61
|
Zhang X, Jin H, Yang Z, Lei J. Effects of elongation delay in transcription dynamics. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2014; 11:1431-1448. [PMID: 25365608 DOI: 10.3934/mbe.2014.11.1431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the transcription process, elongation delay is induced by the movement of RNA polymerases (RNAP) along the DNA sequence, and can result in changes in the transcription dynamics. This paper studies the transcription dynamics that involved the elongation delay and effects of cell division and DNA replication. The stochastic process of gene expression is modeled with delay chemical master equation with periodic coefficients, and is studied numerically through the stochastic simulation algorithm with delay. We show that the average transcription level approaches to a periodic dynamics over cell cycles at homeostasis, and the elongation delay can reduce the transcription level and increase the transcription noise. Moreover, the transcription elongation can induce bimodal distribution of mRNA levels that can be measured by the techniques of flow cytometry.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Mathematics and Systems Science, Beihang University, Beijing 100191, China.
| | | | | | | |
Collapse
|
62
|
Navasa N, Rodríguez-Aparicio LB, Ferrero MÁ, Monteagudo-Mera A, Martínez-Blanco H. Transcriptional control of RfaH on polysialic and colanic acid synthesis by Escherichia coli K92. FEBS Lett 2014; 588:922-8. [PMID: 24491998 DOI: 10.1016/j.febslet.2014.01.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/28/2013] [Accepted: 01/13/2014] [Indexed: 01/05/2023]
Abstract
The transcriptional antiterminator RfaH promotes transcription of long operons encoding surface cell components important for the virulence of Escherichiacoli pathogens. In this paper, we show that RfaH enhanced kps expression for the synthesis of group 2 polysialic acid capsule in E. coli K92. In addition, we demonstrate for the first time that RfaH promotes cps expression for the synthesis of colanic acid, a cell wall component with apparently no role on pathogenicity. Finally, we show a novel RfaH requirement for growth at low temperatures.
Collapse
Affiliation(s)
- Nicolás Navasa
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana, 24071 León, Spain
| | - Leandro B Rodríguez-Aparicio
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana, 24071 León, Spain.
| | - Miguel Ángel Ferrero
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana, 24071 León, Spain
| | - Andrea Monteagudo-Mera
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana, 24071 León, Spain
| | - Honorina Martínez-Blanco
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana, 24071 León, Spain.
| |
Collapse
|
63
|
Tomar SK, Artsimovitch I. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 2013; 113:8604-19. [PMID: 23638618 PMCID: PMC4259564 DOI: 10.1021/cr400064k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sushil Kumar Tomar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
64
|
Thomas S, Holland IB, Schmitt L. The Type 1 secretion pathway - the hemolysin system and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1629-41. [PMID: 24129268 DOI: 10.1016/j.bbamcr.2013.09.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022]
Abstract
Type 1 secretion systems (T1SS) are wide-spread among Gram-negative bacteria. An important example is the secretion of the hemolytic toxin HlyA from uropathogenic strains. Secretion is achieved in a single step directly from the cytosol to the extracellular space. The translocation machinery is composed of three indispensable membrane proteins, two in the inner membrane, and the third in the outer membrane. The inner membrane proteins belong to the ABC transporter and membrane fusion protein families (MFPs), respectively, while the outer membrane component is a porin-like protein. Assembly of the three proteins is triggered by accumulation of the transport substrate (HlyA) in the cytoplasm, to form a continuous channel from the inner membrane, bridging the periplasm and finally to the exterior. Interestingly, the majority of substrates of T1SS contain all the information necessary for targeting the polypeptide to the translocation channel - a specific sequence at the extreme C-terminus. Here, we summarize our current knowledge of regulation, channel assembly, translocation of substrates, and in the case of the HlyA toxin, its interaction with host membranes. We try to provide a complete picture of structure function of the components of the translocation channel and their interaction with the substrate. Although we will place the emphasis on the paradigm of Type 1 secretion systems, the hemolysin A secretion machinery from E. coli, we also cover as completely as possible current knowledge of other examples of these fascinating translocation systems. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr, 1, 40225 Düsseldorf, Germany
| | - I Barry Holland
- Institute of Genetics and Microbiology, CNRS UMR 8621, University Paris-Sud XI, Building 409, 91405 Orsay Cedex, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr, 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
65
|
The transfer-messenger RNA-small protein B system plays a role in avian pathogenic Escherichia coli pathogenicity. J Bacteriol 2013; 195:5064-71. [PMID: 24013628 DOI: 10.1128/jb.00628-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is capable of colonizing outside of the intestinal tract and evolving into a systemic infection. Avian pathogenic E. coli (APEC) is a member of the ExPEC group and causes avian colibacillosis. Transfer-mRNA-small protein B (tmRNA-SmpB)-mediated trans-translation is a bacterial translational control system that directs the modification and degradation of proteins, the biosynthesis of which has stalled or has been interrupted, facilitating the rescue of ribosomes stalled at the 3' ends of defective mRNAs that lack a stop codon. We found that disruption of one, or both, of the smpB or ssrA genes significantly decreased the virulence of the APEC strain E058, as assessed by chicken infection assays. Furthermore, the mutants were obviously attenuated in colonization and persistence assays. The results of quantitative real-time reverse transcription-PCR analysis indicated that the transcription levels of the transcriptional regulation gene rfaH and the virulence genes kpsM, chuA, and iss were significantly decreased compared to those of the wild-type strain. Macrophage infection assays showed that the mutant strains reduced the replication and/or survival ability in the macrophage HD11 cell line compared to that of the parent strain, E058. However, no significant differences were observed in ingestion by macrophages and in chicken serum resistance between the mutant and the wild-type strains. These data indicate that the tmRNA-SmpB system is important in the pathogenesis of APEC O2 strain E058.
Collapse
|
66
|
Tomar SK, Knauer SH, Nandymazumdar M, Rösch P, Artsimovitch I. Interdomain contacts control folding of transcription factor RfaH. Nucleic Acids Res 2013; 41:10077-85. [PMID: 23990324 PMCID: PMC3905879 DOI: 10.1093/nar/gkt779] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli RfaH activates gene expression by tethering the elongating RNA polymerase to the ribosome. This bridging action requires a complete refolding of the RfaH C-terminal domain (CTD) from an α-helical hairpin, which binds to the N-terminal domain (NTD) in the free protein, to a β-barrel, which interacts with the ribosomal protein S10 following RfaH recruitment to its target operons. The CTD forms a β-barrel when expressed alone or proteolytically separated from the NTD, indicating that the α-helical state is trapped by the NTD, perhaps co-translationally. Alternatively, the interdomain contacts may be sufficient to drive the formation of the α-helical form. Here, we use functional and NMR analyses to show that the denatured RfaH refolds into the native state and that RfaH in which the order of the domains is reversed is fully functional in vitro and in vivo. Our results indicate that all information necessary to determine its fold is encoded within RfaH itself, whereas accessory factors or sequential folding of NTD and CTD during translation are dispensable. These findings suggest that universally conserved RfaH homologs may change folds to accommodate diverse interaction partners and that context-dependent protein refolding may be widespread in nature.
Collapse
Affiliation(s)
- Sushil Kumar Tomar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA, The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA and Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
67
|
Rueggeberg KG, Toba FA, Thompson MG, Campbell BR, Hay AG. A Q-like transcription factor regulates biofilm development in Escherichia coli by controlling expression of the DLP12 lysis cassette. Microbiology (Reading) 2013; 159:691-700. [DOI: 10.1099/mic.0.064741-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Faustino A. Toba
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | - Bryan R. Campbell
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Anthony G. Hay
- Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, NY 14853, USA
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
68
|
RfaH promotes the ability of the avian pathogenic Escherichia coli O2 strain E058 to cause avian colibacillosis. J Bacteriol 2013; 195:2474-80. [PMID: 23504015 DOI: 10.1128/jb.02074-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) infection causes avian colibacillosis, which refers to any localized or systemic infection, such as acute fatal septicemia or subacute pericarditis and airsacculitis. The RfaH transcriptional regulator in E. coli is known to regulate a number of phenotypic traits. The direct effect of RfaH on the virulence of APEC has not been investigated yet. Our results showed that the inactivation of rfaH significantly decreased the virulence of APEC E058. The attenuation was assessed by in vivo and in vitro assays, including chicken infection assays, an ingestion and intracellular survival assay, and a bactericidal assay with serum complement. The virulence phenotype was restored to resemble that of the wild type by complementation of the rfaH gene in trans. The results of the quantitative real-time reverse transcription-PCR (qRT-PCR) analysis and animal system infection experiments indicated that the deletion of rfaH correlated with decreased virulence of the APEC E058 strain.
Collapse
|
69
|
McGary K, Nudler E. RNA polymerase and the ribosome: the close relationship. Curr Opin Microbiol 2013; 16:112-7. [PMID: 23433801 DOI: 10.1016/j.mib.2013.01.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
In bacteria transcription and translation are linked in time and space. When coupled to RNA polymerase (RNAP), the translating ribosome ensures transcriptional processivity by preventing RNAP backtracking. Recent advances in the field have characterized important linker proteins that bridge the gap between transcription and translation: In particular, the NusE(S10):NusG complex and the NusG homolog, RfaH. The direct link between the moving ribosome and RNAP provides a basis for maintaining genomic integrity while enabling efficient transcription and timely translation of various genes within the bacterial cell.
Collapse
Affiliation(s)
- Katelyn McGary
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
70
|
New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog 2012; 58:17-28. [PMID: 23142647 DOI: 10.1016/j.micpath.2012.10.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 01/01/2023]
Abstract
Recombinant attenuated Salmonella vaccine (RASV) vectors producing recombinant gene-encoded protective antigens should have special traits. These features ensure that the vaccines survive stresses encountered in the gastrointestinal tract following oral vaccination to colonize lymphoid tissues without causing disease symptoms and to result in induction of long-lasting protective immune responses. We recently described ways to achieve these goals by using regulated delayed in vivo attenuation and regulated delayed in vivo antigen synthesis, enabling RASVs to efficiently colonize effector lymphoid tissues and to serve as factories to synthesize protective antigens that induce higher protective immune responses. We also developed some additional new strategies to increase vaccine safety and efficiency. Modification of lipid A can reduce the inflammatory responses without compromising the vaccine efficiency. Outer membrane vesicles (OMVs) from Salmonella-containing heterologous protective antigens can be used to increase vaccine efficiency. A dual-plasmid system, possessing Asd+ and DadB+ selection markers, each specifying a different protective antigen, can be used to develop multivalent live vaccines. These new technologies have been adopted to develop a novel, low-cost RASV synthesizing multiple protective pneumococcal protein antigens that could be safe for newborns/infants and induce protective immunity to diverse Streptococcus pneumoniae serotypes after oral immunization.
Collapse
|
71
|
Burmann BM, Knauer SH, Sevostyanova A, Schweimer K, Mooney RA, Landick R, Artsimovitch I, Rösch P. An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 2012; 150:291-303. [PMID: 22817892 DOI: 10.1016/j.cell.2012.05.042] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/28/2012] [Accepted: 05/07/2012] [Indexed: 12/24/2022]
Abstract
NusG homologs regulate transcription and coupled processes in all living organisms. The Escherichia coli (E. coli) two-domain paralogs NusG and RfaH have conformationally identical N-terminal domains (NTDs) but dramatically different carboxy-terminal domains (CTDs), a β barrel in NusG and an α hairpin in RfaH. Both NTDs interact with elongating RNA polymerase (RNAP) to reduce pausing. In NusG, NTD and CTD are completely independent, and NusG-CTD interacts with termination factor Rho or ribosomal protein S10. In contrast, RfaH-CTD makes extensive contacts with RfaH-NTD to mask an RNAP-binding site therein. Upon RfaH interaction with its DNA target, the operon polarity suppressor (ops) DNA, RfaH-CTD is released, allowing RfaH-NTD to bind to RNAP. Here, we show that the released RfaH-CTD completely refolds from an all-α to an all-β conformation identical to that of NusG-CTD. As a consequence, RfaH-CTD binding to S10 is enabled and translation of RfaH-controlled operons is strongly potentiated. PAPERFLICK:
Collapse
Affiliation(s)
- Björn M Burmann
- Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
RNA polymerase is a ratchet machine that oscillates between productive and backtracked states at numerous DNA positions. Since its first description 15 years ago, backtracking--the reversible sliding of RNA polymerase along DNA and RNA--has been implicated in many critical processes in bacteria and eukaryotes, including the control of transcription elongation, pausing, termination, fidelity, and genome instability.
Collapse
|
73
|
Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proc Natl Acad Sci U S A 2012; 109:8948-53. [PMID: 22615360 DOI: 10.1073/pnas.1205063109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA polymerase pausing represents an important mechanism of transcriptional regulation. In this study, we use a single-molecule transcription assay to investigate the effect of template base-pair composition on pausing by RNA polymerase II and the evolutionarily distinct mitochondrial polymerase Rpo41. For both enzymes, pauses are shorter and less frequent on GC-rich templates. Significantly, incubation with RNase abolishes the template dependence of pausing. A kinetic model, wherein the secondary structure of the nascent RNA poses an energetic barrier to pausing by impeding backtracking along the template, quantitatively predicts the pause densities and durations observed. The energy barriers extracted from the data correlate well with RNA folding energies obtained from cotranscriptional folding simulations. These results reveal that RNA secondary structures provide a cis-acting mechanism by which sequence modulates transcriptional elongation.
Collapse
|
74
|
Bochkareva A, Yuzenkova Y, Tadigotla VR, Zenkin N. Factor-independent transcription pausing caused by recognition of the RNA-DNA hybrid sequence. EMBO J 2011; 31:630-9. [PMID: 22124324 PMCID: PMC3273390 DOI: 10.1038/emboj.2011.432] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/07/2011] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase pausing during transcription is implicated in controlling gene expression. This study identifies a new type of pausing mechanism, by which the RNAP core recognizes the shape of base pairs of the RNA–DNA hybrid, which determines the rate of translocation and the nucleotide addition cycle. The expression of a number of viral and bacterial genes is shown to be subject to this mechanism. Pausing of transcription is an important step of regulation of gene expression in bacteria and eukaryotes. Here we uncover a factor-independent mechanism of transcription pausing, which is determined by the ability of the elongating RNA polymerase to recognize the sequence of the RNA–DNA hybrid. We show that, independently of thermodynamic stability of the elongation complex, RNA polymerase directly ‘senses' the shape and/or identity of base pairs of the RNA–DNA hybrid. Recognition of the RNA–DNA hybrid sequence delays translocation by RNA polymerase, and thus slows down the nucleotide addition cycle through ‘in pathway' mechanism. We show that this phenomenon is conserved among bacterial and eukaryotic RNA polymerases, and is involved in regulatory pauses, such as a pause regulating the production of virulence factors in some bacteria and a pause regulating transcription/replication of HIV-1. The results indicate that recognition of RNA–DNA hybrid sequence by multi-subunit RNA polymerases is involved in transcription regulation and may determine the overall rate of transcription elongation.
Collapse
Affiliation(s)
- Aleksandra Bochkareva
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
75
|
Pinta E, Li Z, Batzilla J, Pajunen M, Kasanen T, Rabsztyn K, Rakin A, Skurnik M. Identification of three oligo-/polysaccharide-specific ligases in Yersinia enterocolitica. Mol Microbiol 2011; 83:125-36. [DOI: 10.1111/j.1365-2958.2011.07918.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
76
|
Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar typhimurium. Infect Immun 2011; 79:4227-39. [PMID: 21768282 DOI: 10.1128/iai.05398-11] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lipopolysaccharide (LPS) is a major virulence factor of Salmonella enterica serovar Typhimurium and is composed of lipid A, core oligosaccharide (C-OS), and O-antigen polysaccharide (O-PS). While the functions of the gene products involved in synthesis of core and O-antigen have been elucidated, the effect of removing O-antigen and core sugars on the virulence and immunogenicity of Salmonella enterica serovar Typhimurium has not been systematically studied. We introduced nonpolar, defined deletion mutations in waaG (rfaG), waaI (rfaI), rfaH, waaJ (rfaJ), wbaP (rfbP), waaL (rfaL), or wzy (rfc) into wild-type S. Typhimurium. The LPS structure was confirmed, and a number of in vitro and in vivo properties of each mutant were analyzed. All mutants were significantly attenuated compared to the wild-type parent when administered orally to BALB/c mice and were less invasive in host tissues. Strains with ΔwaaG and ΔwaaI mutations, in particular, were deficient in colonization of Peyer's patches and liver. This deficiency could be partially overcome in the ΔwaaI mutant when it was administered intranasally. In the context of an attenuated vaccine strain delivering the pneumococcal antigen PspA, all of the mutations tested resulted in reduced immune responses against PspA and Salmonella antigens. Our results indicate that nonreversible truncation of the outer core is not a viable option for developing a live oral Salmonella vaccine, while a wzy mutant that retains one O-antigen unit is adequate for stimulating the optimal protective immunity to homologous or heterologous antigens by oral, intranasal, or intraperitoneal routes of administration.
Collapse
|
77
|
Wang L, Wang FF, Qian W. Evolutionary rewiring and reprogramming of bacterial transcription regulation. J Genet Genomics 2011; 38:279-88. [DOI: 10.1016/j.jgg.2011.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
|
78
|
Abstract
Termination signals induce rapid and irreversible dissociation of the nascent transcript from RNA polymerase. Terminators at the end of genes prevent unintended transcription into the downstream genes, whereas terminators in the upstream regulatory leader regions adjust expression of the structural genes in response to metabolic and environmental signals. Premature termination within an operon leads to potentially deleterious defects in the expression of the downstream genes, but also provides an important surveillance mechanism. This Review discusses the actions of bacterial and phage antiterminators that allow RNA polymerase to override a terminator when the circumstances demand it.
Collapse
Affiliation(s)
- Thomas J Santangelo
- Department of Microbiology and The RNA Group, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
79
|
Evidence for the horizontal transfer of an unusual capsular polysaccharide biosynthesis locus in marine bacteria. Infect Immun 2010; 78:5214-22. [PMID: 20921143 DOI: 10.1128/iai.00653-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The most intensely studied of the Vibrio vulnificus virulence factors is the capsular polysaccharide (CPS). All virulent strains produce copious amounts of CPS. Acapsular strains are avirulent. The structure of the CPS from the clinical isolate ATCC 27562 is unusual. It is serine modified and contains, surprisingly, N-acetylmuramic acid. We identified the complete 25-kb CPS biosynthesis locus from ATCC 27562. It contained 21 open reading frames and was allelic to O-antigen biosynthesis loci. Two of the genes, murA(CPS) and murB(CPS), were paralogs of the murA(PG) and murB(PG) genes of the peptidoglycan biosynthesis pathway; only a single copy of these genes is present in the strain CMCP6 and YJ016 genomes. Although MurA(CPS) and MurB(CPS) were functional when expressed in Escherichia coli, lesions in either gene had no effect on CPS production, virulence, or growth in V. vulnificus; disruption of 8 other genes within the locus resulted in an acapsular phenotype and attenuated virulence. Thus, murA(CPS) and murB(CPS) were functional but redundant. Comparative genomic analysis revealed that while completely different CPS biosynthesis loci were found in the same chromosomal region in other V. vulnificus strains, most of the CPS locus of ATCC 27562 was conserved in another marine bacterium, Shewanella putrefaciens strain 200. However, the average GC content of the CPS locus was significantly lower than the average GC content of either genome. Furthermore, several of the encoded proteins appeared to be of Gram-positive and archaebacterial origin. These data indicate that the horizontal transfer of intact and partial CPS loci drives CPS diversity in marine bacteria.
Collapse
|
80
|
Chatzidaki-Livanis M, Weinacht KG, Comstock LE. Trans locus inhibitors limit concomitant polysaccharide synthesis in the human gut symbiont Bacteroides fragilis. Proc Natl Acad Sci U S A 2010; 107:11976-80. [PMID: 20547868 PMCID: PMC2900635 DOI: 10.1073/pnas.1005039107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteroides is an abundant genus of bacteria of the human intestinal microbiota. Bacteroides species synthesize a large number of capsular polysaccharides (PS), a biological property not shared with closely related oral species, suggesting importance for intestinal survival. Bacteroides fragilis, for example, synthesizes eight capsular polysaccharides per strain, each of which phase varies via inversion of the promoters located upstream of seven of the eight polysaccharide biosynthesis operons. In a single cell, many of these polysaccharide loci promoters can be simultaneously oriented on for transcription of the downstream biosynthesis operons. Here, we demonstrate that despite the promoter orientations, concomitant transcription of multiple polysaccharide loci within a cell is inhibited. The proteins encoded by the second gene of each of these eight loci, collectively designated the UpxZ proteins, inhibit the synthesis of heterologous polysaccharides. These unique proteins interfere with the ability of UpxY proteins encoded by other polysaccharide loci to function in transcriptional antitermination of their respective operon. The eight UpxZs have different inhibitory spectra, thus establishing a hierarchical regulatory network for polysaccharide synthesis. Limitation of concurrent polysaccharide synthesis strongly suggests that these bacteria evolved this property as an evasion-type mechanism to avoid killing by polysaccharide-targeting factors in the ecosystem.
Collapse
Affiliation(s)
| | | | - Laurie E. Comstock
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
81
|
Genome dynamics and its impact on evolution of Escherichia coli. Med Microbiol Immunol 2010; 199:145-54. [PMID: 20445988 DOI: 10.1007/s00430-010-0161-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Indexed: 02/08/2023]
Abstract
The Escherichia coli genome consists of a conserved part, the so-called core genome, which encodes essential cellular functions and of a flexible, strain-specific part. Genes that belong to the flexible genome code for factors involved in bacterial fitness and adaptation to different environments. Adaptation includes increase in fitness and colonization capacity. Pathogenic as well as non-pathogenic bacteria carry mobile and accessory genetic elements such as plasmids, bacteriophages, genomic islands and others, which code for functions required for proper adaptation. Escherichia coli is a very good example to study the interdependency of genome architecture and lifestyle of bacteria. Thus, these species include pathogenic variants as well as commensal bacteria adapted to different host organisms. In Escherichia coli, various genetic elements encode for pathogenicity factors as well as factors, which increase the fitness of non-pathogenic bacteria. The processes of genome dynamics, such as gene transfer, genome reduction, rearrangements as well as point mutations contribute to the adaptation of the bacteria into particular environments. Using Escherichia coli model organisms, such as uropathogenic strain 536 or commensal strain Nissle 1917, we studied mechanisms of genome dynamics and discuss these processes in the light of the evolution of microbes.
Collapse
|
82
|
Belogurov GA, Sevostyanova A, Svetlov V, Artsimovitch I. Functional regions of the N-terminal domain of the antiterminator RfaH. Mol Microbiol 2010; 76:286-301. [PMID: 20132437 PMCID: PMC2871177 DOI: 10.1111/j.1365-2958.2010.07056.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RfaH is a bacterial elongation factor that increases expression of distal genes in several long, horizontally acquired operons. RfaH is recruited to the transcription complex during RNA chain elongation through specific interactions with a DNA element called ops. Following recruitment, RfaH remains bound to RNA polymerase (RNAP) and acts as an antiterminator by reducing RNAP pausing and termination at some factor-independent and Rho-dependent signals. RfaH consists of two domains connected by a flexible linker. The N-terminal RfaH domain (RfaHN) recognizes the ops element, binds to the RNAP and reduces pausing and termination in vitro. Functional analysis of single substitutions in this domain reported here suggests that three separate RfaHN regions mediate these functions. We propose that a polar patch on one side of RfaHN interacts with the non-template DNA strand during recruitment, whereas a hydrophobic surface on the opposite side of RfaHN remains bound to the β′ subunit clamp helices domain throughout transcription of the entire operon. The third region is apparently dispensable for RfaH binding to the transcription complex but is required for the antitermination modification of RNAP.
Collapse
Affiliation(s)
- Georgiy A Belogurov
- Department of Microbiology and The RNA Group, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
83
|
Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob Agents Chemother 2010; 54:1393-403. [PMID: 20065048 DOI: 10.1128/aac.00906-09] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have defined a sensitivity profile for 22 antibiotics by extending previous work testing the entire KEIO collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to 1 of 14 different antibiotics (ciprofloxacin, rifampin [rifampicin], vancomycin, ampicillin, sulfamethoxazole, gentamicin, metronidazole, streptomycin, fusidic acid, tetracycline, chloramphenicol, nitrofurantoin, erythromycin, and triclosan). We screened one or more subinhibitory concentrations of each antibiotic, generating more than 80,000 data points and allowing a reduction of the entire collection to a set of 283 strains that display significantly increased sensitivity to at least one of the antibiotics. We used this reduced set of strains to determine a profile for eight additional antibiotics (spectinomycin, cephradine, aztreonem, colistin, neomycin, enoxacin, tobramycin, and cefoxitin). The profiles for the 22 antibiotics represent a growing catalog of sensitivity fingerprints that can be separated into two components, multidrug-resistant mutants and those mutants that confer relatively specific sensitivity to the antibiotic or type of antibiotic tested. The latter group can be represented by a set of 20 to 60 strains that can be used for the rapid typing of antibiotics by generating a virtual bar code readout of the specific sensitivities. Taken together, these data reveal the complexity of intrinsic resistance and provide additional targets for the design of codrugs (or combinations of drugs) that potentiate existing antibiotics.
Collapse
|
84
|
Abstract
The O antigen, consisting of many repeats of an oligosaccharide unit, is part of the lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria. It is on the cell surface and appears to be a major target for both immune system and bacteriophages, and therefore becomes one of the most variable cell constituents. The variability of the O antigen provides the major basis for serotyping schemes of Gram-negative bacteria. The genes responsible for the synthesis of O antigen are usually in a single cluster known as O antigen gene cluster, and their location on the chromosome within a species is generally conserved. Three O antigen biosynthesis pathways including Wzx/Wzy, ABC-transporter and Synthase have been discovered. In this chapter, the traditional and molecular O serotyping schemes are compared, O antigen structures and gene clusters of well-studied species are described, processes for formation and distribution of the variety of O antigens are discussed, and finally, the role of O antigen in bacterial virulence.
Collapse
Affiliation(s)
- Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| | | | | |
Collapse
|
85
|
Regulated delayed expression of rfaH in an attenuated Salmonella enterica serovar typhimurium vaccine enhances immunogenicity of outer membrane proteins and a heterologous antigen. Infect Immun 2009; 77:5572-82. [PMID: 19805538 DOI: 10.1128/iai.00831-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RfaH is a transcriptional antiterminator that reduces the polarity of long operons encoding secreted and surface-associated cell components of Salmonella enterica serovar Typhimurium, including O antigen and lipopolysaccharide core sugars. A DeltarfaH mutant strain is attenuated in mice (50% lethal dose [LD(50)], >10(8) CFU). To examine the potential for using rfaH in conjunction with other attenuating mutations, we designed a series of strains in which we replaced the native rfaH promoter with the tightly regulated arabinose-dependent araC P(BAD) promoter so that rfaH expression was dependent on exogenously supplied arabinose provided during in vitro growth. Following colonization of host lymphoid tissues, where arabinose was not available, the P(BAD) promoter was no longer active and rfaH was not expressed. In the absence of RfaH, O antigen and core sugars were not synthesized. We constructed three mutant strains that expressed different levels of RfaH by altering the ribosome-binding sequence and start codon. One mutation, DeltaP(rfaH178), was introduced into the attenuated vaccine strain chi9241 (DeltapabA DeltapabB DeltaasdA) expressing the pneumococcal surface protein PspA from an Asd(+) balanced-lethal plasmid. Mice immunized with this strain and boosted 4 weeks later induced higher levels of serum immunoglobulin G specific for PspA and for outer membrane proteins from other enteric bacteria than either an isogenic DeltarfaH derivative or the isogenic RfaH(+) parent. Eight weeks after primary oral immunization, mice were challenged with 200 LD(50) of virulent Streptococcus pneumoniae WU2. Immunization with DeltaP(rfaH178) mutant strains led to increased levels of protection compared to that of the parent chi9241 and of a DeltarfaH derivative of chi9241.
Collapse
|
86
|
A family of transcriptional antitermination factors necessary for synthesis of the capsular polysaccharides of Bacteroides fragilis. J Bacteriol 2009; 191:7288-95. [PMID: 19801412 DOI: 10.1128/jb.00500-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A single strain of Bacteroides fragilis synthesizes eight distinct capsular polysaccharides, designated PSA to PSH. These polysaccharides are synthesized by-products encoded by eight separate polysaccharide biosynthesis loci. The genetic architecture of each of these eight loci is similar, including the fact that the first gene of each locus is a paralog of the first gene of each of the other PS loci. These proteins are designated the UpxY family, where x is replaced by a to h, depending upon the polysaccharide locus from which it is produced. Mutational analysis of three separate upxY genes demonstrated that they are necessary and specific for transcription of their respective polysaccharide biosynthesis operon and that they function in trans. Transcriptional reporter constructs, reverse transcriptase PCR, and deletion analysis demonstrated that the UpxYs do not affect initiation of transcription, but rather prevent premature transcriptional termination within the 5' untranslated region between the promoter and the upxY gene. The UpxYs have conserved motifs that are present in NusG and NusG-like proteins. Mutation of two conserved residues within the conserved KOW motif abrogated UpaY activity, further confirming that these proteins belong to the NusG-like (NusG(SP)) family. Alignment of highly similar UpxYs led to the identification of a small region of these proteins predicted to confer specificity for their respective loci. Construction of an upaY-upeY hybrid that produced a protein in which a 17-amino-acid segment of UpaY was changed to that of UpeY altered UpaY's specificity, as it was now able to function in transcriptional antitermination of the PSE biosynthesis operon.
Collapse
|
87
|
Sannigrahi S, Zhang X, Tzeng YL. Regulation of the type I protein secretion system by the MisR/MisS two-component system in Neisseria meningitidis. MICROBIOLOGY-SGM 2009; 155:1588-1601. [PMID: 19372150 DOI: 10.1099/mic.0.023945-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis, an obligate human pathogen, remains a leading cause of meningitis and fatal sepsis. Meningococci are known to secrete a family of proteins, such as FrpC, with sequence similarity to the repeat-in-toxin (RTX) proteins via the type I secretion system. The meningococcal type I secretion proteins are encoded at two distant genetic loci, NMB1400 (hlyB) and NMB1738/1737 (hlyD/tolC), and are separated from the RTX toxin-like substrates. We have characterized the promoter elements of both hlyB and hlyD by primer extension and lacZ reporter fusions and revealed the growth phase-dependent upregulation of both genes. In addition, we showed that the MisR/MisS two-component system negatively regulates the expression of hlyB and hlyD/tolC. Direct binding of MisR to hlyB and hlyD promoters was demonstrated by electrophoretic mobility shift assay (EMSA), and DNase I protection assays identified MisR binding sites overlapping the promoter elements. Direct repression of hlyB transcription by MisR was supported by in vitro transcription assays. Mutations in the MisR/S system affected, but did not eliminate, the growth phase-dependent upregulation of hlyB, suggesting additional regulatory mechanisms. Increased secretion of RTX toxin-like proteins was detected in the cell-free media from misS mutant cultures, indicating that the amounts of extracellular RTX toxin-like proteins are, in part, controlled by the abundance of the type I secretion apparatus. This is, to our knowledge, the first example of a two-component system mediating secretion of cytotoxin family proteins by controlling expression of the type I secretion proteins.
Collapse
Affiliation(s)
- Soma Sannigrahi
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xinjian Zhang
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yih-Ling Tzeng
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
88
|
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) employs a type III secretion system (T3SS) to export translocator and effector proteins required for mucosal colonization. The T3SS is encoded in a pathogenicity island called the locus of enterocyte effacement (LEE) that is organized in five major operons, LEE1 to LEE5. LEE4 encodes a regulator of secretion (SepL), translocators (EspA, D and B), two chaperones (CesD2 and L0017), a T3SS component (EscF) and an effector protein (EspF). It was originally proposed that the esp transcript is transcribed from a promoter located at the end of sepL but other authors suggested that this transcript is the result of a post-transcriptional processing event. In this study, we established that the espADB mRNA is generated by post-transcriptional processing at the end of the sepL coding sequence. RNase E is the endonuclease involved in the cleavage, but the interaction of this enzyme with other proteins through its C-terminal half is dispensable. A putative transcription termination event in the cesD2 coding region would generate the 3' end of the transcript. Similar to what has been described for other processed transcripts, the cleavage of LEE4 seems a mechanism to differentially regulate SepL and Esp protein production.
Collapse
Affiliation(s)
- Patricia B. Lodato
- Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, Maryland 21201
| | - James B. Kaper
- Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, Maryland 21201
| |
Collapse
|
89
|
Nagy G, Palkovics T, Otto A, Kusch H, Kocsis B, Dobrindt U, Engelmann S, Hecker M, Emödy L, Pál T, Hacker J. "Gently rough": the vaccine potential of a Salmonella enterica regulatory lipopolysaccharide mutant. J Infect Dis 2008; 198:1699-706. [PMID: 18922095 DOI: 10.1086/593069] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND An alternative to multivalent vaccines could be to construct strains capable of conferring broad protection through shared antigens. Down-regulation of immunodominant major antigens has been proposed to enhance the immunogenicity of conserved antigens. METHODS The protection provided by an aroA as well as structural and regulatory lipopolysaccharide (LPS) mutants of Salmonella enterica serovar Typhimurium against homologous and heterologous challenges was assessed in the murine model of typhoid. The reactivity and cross-reactivity of the immune sera raised was tested by enzyme-linked immunospot assay and immunoblots. Conserved outer membrane proteins were identified by mass spectrometry. RESULTS Unlike any structural LPS mutants, the regulatory mutant lacking RfaH was finely balanced between safety and immunogenicity, and its vaccine potential was comparable to that of the well-characterized DeltaaroA mutant. Loss of the transcriptional antiterminator RfaH resulted in a heterogeneous length of LPS chains, designated here as the "gently rough" phenotype. Our study also provides evidence that the rough phenotype enhances the immunogenicity of minor antigens, which may improve cross-protection against heterologous bacteria. A panel of conserved antigens shared by members of the Enterobacteriaceae family was identified as abundant porins and lipoprotein antigens. CONCLUSIONS Fine-tuned down-regulation of immunodominant epitopes can create live vaccine strains that are not only desirably attenuated but that also exhibit an improved cross-protective potential.
Collapse
Affiliation(s)
- Gábor Nagy
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12, Pécs, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Belogurov GA, Mooney RA, Svetlov V, Landick R, Artsimovitch I. Functional specialization of transcription elongation factors. EMBO J 2008; 28:112-22. [PMID: 19096362 DOI: 10.1038/emboj.2008.268] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/26/2008] [Indexed: 11/09/2022] Open
Abstract
Elongation factors NusG and RfaH evolved from a common ancestor and utilize the same binding site on RNA polymerase (RNAP) to modulate transcription. However, although NusG associates with RNAP transcribing most Escherichia coli genes, RfaH regulates just a few operons containing ops, a DNA sequence that mediates RfaH recruitment. Here, we describe the mechanism by which this specificity is maintained. We observe that RfaH action is indeed restricted to those several operons that are devoid of NusG in vivo. We also show that RfaH and NusG compete for their effects on transcript elongation and termination in vitro. Our data argue that RfaH recognizes its DNA target even in the presence of NusG. Once recruited, RfaH remains stably associated with RNAP, thereby precluding NusG binding. We envision a pathway by which a specialized regulator has evolved in the background of its ubiquitous paralogue. We propose that RfaH and NusG may have opposite regulatory functions: although NusG appears to function in concert with Rho, RfaH inhibits Rho action and activates the expression of poorly translated, frequently foreign genes.
Collapse
Affiliation(s)
- Georgiy A Belogurov
- Department of Microbiology and The RNA Group, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
91
|
Nagy G, Pál T. Lipopolysaccharide: a tool and target in enterobacterial vaccine development. Biol Chem 2008; 389:513-20. [PMID: 18953717 DOI: 10.1515/bc.2008.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lipopolysaccharide (LPS) is an essential component of Gram-negative bacteria. While mutants exhibiting truncated LPS molecules are usually over-attenuated, alternative approaches that affect the extent or timing of LPS expression, as well as its modification may establish the optimal balance for a live vaccine strain of sufficient attenuation and retained immunogenicity. On the other hand, a specific immune response to LPS molecules in itself is capable of conferring protective immunity to certain enterobacterial pathogens. Therefore, purified LPS derivatives could be used as parenteral vaccines. This review summarizes various LPS-based vaccination strategies, as well as approaches that utilize LPS mutants as whole-cell vaccines.
Collapse
Affiliation(s)
- Gábor Nagy
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | | |
Collapse
|
92
|
Tyrosine phosphorylation of the UDP-glucose dehydrogenase of Escherichia coli is at the crossroads of colanic acid synthesis and polymyxin resistance. PLoS One 2008; 3:e3053. [PMID: 18725960 PMCID: PMC2516531 DOI: 10.1371/journal.pone.0003053] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/04/2008] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In recent years, an idiosyncratic new class of bacterial enzymes, named BY-kinases, has been shown to catalyze protein-tyrosine phosphorylation. These enzymes share no structural and functional similarities with their eukaryotic counterparts and, to date, only few substrates of BY-kinases have been characterized. BY-kinases have been shown to participate in various physiological processes. Nevertheless, we are at a very early stage of defining their importance in the bacterial cell. In Escherichia coli, two BY-kinases, Wzc and Etk, have been characterized biochemically. Wzc has been shown to phosphorylate the UDP-glucose dehydrogenase Ugd in vitro. Not only is Ugd involved in the biosynthesis of extracellular polysaccharides, but also in the production of UDP-4-amino-4-deoxy-L-arabinose, a compound that renders E. coli resistant to cationic antimicrobial peptides. METHODOLOGY/PRINCIPAL FINDINGS Here, we studied the role of Ugd phosphorylation. We first confirmed in vivo the phosphorylation of Ugd by Wzc and we demonstrated that Ugd is also phosphorylated by Etk, the other BY-kinase identified in E. coli. Tyrosine 71 (Tyr71) was characterized as the Ugd site phosphorylated by both Wzc and Etk. The regulatory role of Tyr71 phosphorylation on Ugd activity was then assessed and Tyr71 mutation was found to prevent Ugd activation by phosphorylation. Further, Ugd phosphorylation by Wzc or Etk was shown to serve distinct physiological purposes. Phosphorylation of Ugd by Wzc was found to participate in the regulation of the amount of the exopolysaccharide colanic acid, whereas Etk-mediated Ugd phosphorylation appeared to participate in the resistance of E. coli to the antibiotic polymyxin. CONCLUSIONS/SIGNIFICANCE Ugd phosphorylation seems to be at the junction between two distinct biosynthetic pathways, illustrating the regulatory potential of tyrosine phosphorylation in bacterial physiology.
Collapse
|
93
|
Li H, Granat A, Stewart V, Gillespie JR. RpoS, H-NS, and DsrA influence EHEC hemolysin operon (ehxCABD) transcription inEscherichia coliO157:H7 strain EDL933. FEMS Microbiol Lett 2008; 285:257-62. [DOI: 10.1111/j.1574-6968.2008.01240.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
94
|
Strategies for the development of vaccines conferring broad-spectrum protection. Int J Med Microbiol 2008; 298:379-95. [DOI: 10.1016/j.ijmm.2008.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/07/2007] [Accepted: 01/14/2008] [Indexed: 11/21/2022] Open
|
95
|
The Aeromonas hydrophila wb*O34 gene cluster: genetics and temperature regulation. J Bacteriol 2008; 190:4198-209. [PMID: 18408022 DOI: 10.1128/jb.00153-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Aeromonas hydrophila wb*(O34) gene cluster of strain AH-3 (serotype O34) was cloned and sequenced. This cluster contains genes necessary for the production of O34-antigen lipopolysaccharide (LPS) in A. hydrophila. We determined, using either mutation or sequence homology, roles for the majority of genes in the cluster by using the chemical O34-antigen LPS structure obtained for strain AH-3. The O34-antigen LPS export system has been shown to be a Wzy-dependent pathway typical of heteropolysaccharide pathways. Furthermore, the production of A. hydrophila O34-antigen LPS in Escherichia coli K-12 strains is dependent on incorporation of the Gne enzyme (UDP-N-acetylgalactosamine 4-epimerase) necessary for the formation of UDP-galactosamine in these strains. By using rapid amplification of cDNA ends we were able to identify a transcription start site upstream of the terminal wzz gene, which showed differential transcription depending on the growth temperature of the strain. The Wzz protein is able to regulate the O34-antigen LPS chain length. The differential expression of this protein at different temperatures, which was substantially greater at 20 degrees C than at 37 degrees C, explains the previously observed differential production of O34-antigen LPS and its correlation with the virulence of A. hydrophila serotype O34 strains.
Collapse
|
96
|
Further characterization of Vibrio vulnificus rugose variants and identification of a capsular and rugose exopolysaccharide gene cluster. Infect Immun 2008; 76:1485-97. [PMID: 18212074 DOI: 10.1128/iai.01289-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsular polysaccharide (CPS) is a major virulence factor in Vibrio vulnificus, and encapsulated strains have an opaque, smooth (OpS) colony morphology, while nonencapsulated strains have a translucent, smooth (TrS) colony morphology. Previously, we showed that OpS and TrS parental strains can yield a third colony type, rugose (R), and that the resulting strains, with the OpR and TrR phenotypes, respectively, form copious biofilms. Here we show that while OpR and TrR strains both produce three-dimensional biofilm structures that are indicative of rugose extracellular polysaccharide (rEPS) production, OpR strains also retain expression of CPS and are virulent in an iron-supplemented mouse model, while TrR strains lack CPS and are avirulent. Chlorine resistance assays further distinguished OpR and TrR isolates as exposure to 3 microg/ml NaOCl eradicated both OpS and OpR strains, while both TrS and TrR strains survived, but at rates which were significantly different from one another. Taken together, these results further emphasize the importance of CPS for virulence of V. vulnificus and establish a correlation between CPS expression and chlorine sensitivity in this organism. Using reverse transcriptase PCR, we also identified a nine-gene cluster associated with both CPS and rEPS expression in V. vulnificus, designated the wcr (capsular and rugose polysaccharide) locus, with expression occurring primarily in R variants. The latter results set the stage for characterization of functional determinants which individually or collectively contribute to expression of multiple EPS forms in this pathogen.
Collapse
|
97
|
Corbett D, Roberts IS. Capsular Polysaccharides in Escherichia coli. ADVANCES IN APPLIED MICROBIOLOGY 2008; 65:1-26. [DOI: 10.1016/s0065-2164(08)00601-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
98
|
Coordinate regulation of Salmonella pathogenicity island 1 (SPI1) and SPI4 in Salmonella enterica serovar Typhimurium. Infect Immun 2007; 76:1024-35. [PMID: 18160484 DOI: 10.1128/iai.01224-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium harbors five pathogenicity islands (SPI) required for infection in vertebrate hosts. Although the role of SPI1 in promoting epithelial invasion and proinflammatory cell death has been amply documented, SPI4 has only more recently been implicated in Salmonella virulence. SPI4 is a 24-kb pathogenicity island containing six open reading frames, siiA to siiF. Secretion of the 595-kDa SiiE protein requires a type I secretory system encoded by siiC, siiD, and siiF. An operon polarity suppressor (ops) sequence within the 5' untranslated region upstream of siiA is required for optimal SPI4 expression and predicted to bind the antiterminator RfaH. SiiE concentrations are decreased in a SPI1 mutant strain, suggesting that SPI1 and SPI4 may have common regulatory inputs. SPI1 gene expression is positively regulated by the transcriptional activators HilA, HilC, and HilD, encoded within SPI1, and negatively regulated by the regulators HilE and PhoP. Here, we show that mutations in hilA, hilC, or hilD similarly reduce expression of siiE, and mutations in hilE or phoP enhance siiE expression. Individual overexpression of HilA, HilC, or HilD in the absence of SPI1 cannot activate siiE expression, suggesting that these transcriptional regulators act in concert or in combination with additional SPI1-encoded regulatory loci to activate SPI4. HilA is no longer required for siiE expression in an hns mutant strain, suggesting that HilA promotes SPI4 expression by antagonizing the global transcriptional silencer H-NS. Coordinate regulation suggests that SPI1 and SPI4 play complementary roles in the interaction of S. enterica serovar Typhimurium with the host intestinal mucosa.
Collapse
|
99
|
Carter JA, Blondel CJ, Zaldívar M, Álvarez SA, Marolda CL, Valvano MA, Contreras I. O-antigen modal chain length in Shigella flexneri 2a is growth-regulated through RfaH-mediated transcriptional control of the wzy gene. MICROBIOLOGY-SGM 2007; 153:3499-3507. [PMID: 17906147 DOI: 10.1099/mic.0.2007/010066-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Shigella flexneri 2a 2457T produces lipopolysaccharide (LPS) with two O-antigen (OAg) chain lengths: a short (S-OAg) controlled by WzzB and a very long (VL-OAg) determined by Wzz(pHS-2). This study demonstrates that the synthesis and length distribution of the S. flexneri OAg are under growth-phase-dependent regulation. Quantitative electrophoretic analysis showed that the VL-OAg increased during growth while the S-OAg distribution remained constant. Increased production of VL-OAg correlated with the growth-phase-regulated expression of the transcription elongation factor RfaH, and was severely impaired in a DeltarfaH mutant, which synthesized only low-molecular-mass OAg molecules and a small amount of S-OAg. Real-time RT-PCR revealed a drastic reduction of wzy polymerase gene expression in the DeltarfaH mutant. Complementation of this mutant with the wzy gene cloned into a high-copy-number plasmid restored the bimodal OAg distribution, suggesting that cellular levels of Wzy influence not only OAg polymerization but also chain-length distribution. Accordingly, overexpression of wzy in the wild-type strain resulted in production of a large amount of high-molecular-mass OAg molecules. An increased dosage of either wzzB or wzz(pHS-2) also altered OAg chain-length distribution. Transcription of wzzB and wzz(pHS-2) genes was regulated during bacterial growth but in an RfaH-independent manner. Overall, these findings indicate that expression of the wzy, wzzB and wzz(pHS-2) genes is finely regulated to determine an appropriate balance between the proteins responsible for polymerization and chain-length distribution of S. flexneri OAg.
Collapse
Affiliation(s)
- Javier A Carter
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Carlos J Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Mercedes Zaldívar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Sergio A Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Cristina L Marolda
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Miguel A Valvano
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| |
Collapse
|
100
|
Svetlov V, Belogurov GA, Shabrova E, Vassylyev DG, Artsimovitch I. Allosteric control of the RNA polymerase by the elongation factor RfaH. Nucleic Acids Res 2007; 35:5694-705. [PMID: 17711918 PMCID: PMC2034486 DOI: 10.1093/nar/gkm600] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Efficient transcription of long polycistronic operons in bacteria frequently relies on accessory proteins but their molecular mechanisms remain obscure. RfaH is a cellular elongation factor that acts as a polarity suppressor by increasing RNA polymerase (RNAP) processivity. In this work, we provide evidence that RfaH acts by reducing transcriptional pausing at certain positions rather than by accelerating RNAP at all sites. We show that ‘fast’ RNAP variants are characterized by pause-free RNA chain elongation and are resistant to RfaH action. Similarly, the wild-type RNAP is insensitive to RfaH in the absence of pauses. In contrast, those enzymes that may be prone to falling into a paused state are hypersensitive to RfaH. RfaH inhibits pyrophosphorolysis of the nascent RNA and reduces the apparent Michaelis–Menten constant for nucleotides, suggesting that it stabilizes the post-translocated, active RNAP state. Given that the RfaH-binding site is located 75 Å away from the RNAP catalytic center, these results strongly indicate that RfaH acts allosterically. We argue that despite the apparent differences in the nucleic acid targets, the time of recruitment and the binding sites on RNAP, unrelated antiterminators (such as RfaH and λQ) utilize common strategies during both recruitment and anti-pausing modification of the transcription complex.
Collapse
Affiliation(s)
- Vladimir Svetlov
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
| | - Georgiy A. Belogurov
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
| | - Elena Shabrova
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
| | - Dmitry G. Vassylyev
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
- *To whom correspondence should be addressed. 614 292 6777614 292 8120
| |
Collapse
|