51
|
Xiang Q, Kim KS, Roy S, Judelson HS. A motif within a complex promoter from the oomycete Phytophthora infestans determines transcription during an intermediate stage of sporulation. Fungal Genet Biol 2009; 46:400-9. [PMID: 19250972 DOI: 10.1016/j.fgb.2009.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 01/26/2009] [Accepted: 02/03/2009] [Indexed: 11/18/2022]
Abstract
Sporulation in Phytophthora infestans is associated with a major remodeling of the transcriptome. To better understand promoter structure and how sporulation-specific expression is determined in this organism, the Pks1 gene was analyzed. Pks1 encodes a protein kinase that is induced at an intermediate stage of sporulation, prior to sporangium maturation. Major and minor transcription start sites mapped throughout the promoter, which contains many T-rich stretches and Inr-like elements. Within the T-rich region are several motifs which bound nuclear proteins in EMSA. Tests of modified promoters in transformants implicated a CCGTTG located 110-nt upstream of the transcription start point as a major regulator of sporulation-specific transcription. The motif also bound a sporulation-specific nuclear protein complex. A bioinformatics analysis indicated that the motif is highly over-represented within co-expressed promoters, in which it predominantly resides 100-300-nt upstream of transcription start sites. Other sequences, such as a CATTTGTT motif, also bound nuclear proteins but did not play an essential role in spore-specific expression.
Collapse
Affiliation(s)
- Qijun Xiang
- Department of Plant Pathology and Microbiology, University of California, Riverside, 92521, USA
| | | | | | | |
Collapse
|
52
|
Gene expression changes during asexual sporulation by the late blight agent Phytophthora infestans occur in discrete temporal stages. Mol Genet Genomics 2008; 281:193-206. [DOI: 10.1007/s00438-008-0407-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 11/15/2008] [Indexed: 10/21/2022]
|
53
|
Hua C, Wang Y, Zheng X, Dou D, Zhang Z, Govers F, Wang Y. A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. EUKARYOTIC CELL 2008; 7:2133-40. [PMID: 18931042 PMCID: PMC2593195 DOI: 10.1128/ec.00286-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022]
Abstract
For the soybean pathogen Phytophthora sojae, chemotaxis of zoospores to isoflavones is believed to be critical for recognition of the host and for initiating infection. However, the molecular mechanisms underlying this chemotaxis are largely unknown. To investigate the role of G-protein and calcium signaling in chemotaxis, we analyzed the expression of several genes known to be involved in these pathways and selected one that was specifically expressed in sporangia and zoospores but not in mycelium. This gene, named PsGPA1, is a single-copy gene in P. sojae and encodes a G-protein alpha subunit that shares 96% identity in amino acid sequence with that of Phytophthora infestans. To elucidate the function, expression of PsGPA1 was silenced by introducing antisense constructs into P. sojae. PsGPA1 silencing did not disturb hyphal growth or sporulation but severely affected zoospore behavior, including chemotaxis to the soybean isoflavone daidzein. Zoospore encystment and cyst germination were also altered, resulting in the inability of the PsGPA1-silenced mutants to infect soybean. In addition, the expressions of a calmodulin gene, PsCAM1, and two calcium- and calmodulin-dependent protein kinase genes, PsCMK3 and PsCMK4, were increased in the mutant zoospores, suggesting that PsGPA1 negatively regulates the calcium signaling pathways that are likely involved in zoospore chemotaxis.
Collapse
Affiliation(s)
- Chenlei Hua
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Phytophthora infestans remains a problem to production agriculture. Historically there have been many controversies concerning its biology and pathogenicity, some of which remain today. Advances in molecular biology and genomics promise to reveal fascinating insight into its pathogenicity and biology. However, the plasticity of its genome as revealed in population diversity and in the abundance of putative effectors means that this oomycete remains a formidable foe.
Collapse
Affiliation(s)
- William Fry
- Cornell University, Department of Plant Pathology, Ithaca, NY 14853, USA.
| |
Collapse
|
55
|
Judelson HS, Ah-Fong AMV, Aux G, Avrova AO, Bruce C, Cakir C, da Cunha L, Grenville-Briggs L, Latijnhouwers M, Ligterink W, Meijer HJG, Roberts S, Thurber CS, Whisson SC, Birch PRJ, Govers F, Kamoun S, van West P, Windass J. Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:433-47. [PMID: 18321189 DOI: 10.1094/mpmi-21-4-0433] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Much of the pathogenic success of Phytophthora infestans, the potato and tomato late blight agent, relies on its ability to generate from mycelia large amounts of sporangia, which release zoospores that encyst and form infection structures. To better understand these stages, Affymetrix GeneChips based on 15,650 unigenes were designed and used to profile the life cycle. Approximately half of P. infestans genes were found to exhibit significant differential expression between developmental transitions, with approximately (1)/(10) being stage-specific and most changes occurring during zoosporogenesis. Quantitative reverse-transcription polymerase chain reaction assays confirmed the robustness of the array results and showed that similar patterns of differential expression were obtained regardless of whether hyphae were from laboratory media or infected tomato. Differentially expressed genes encode potential cellular regulators, especially protein kinases; metabolic enzymes such as those involved in glycolysis, gluconeogenesis, or the biosynthesis of amino acids or lipids; regulators of DNA synthesis; structural proteins, including predicted flagellar proteins; and pathogenicity factors, including cell-wall-degrading enzymes, RXLR effector proteins, and enzymes protecting against plant defense responses. Curiously, some stage-specific transcripts do not appear to encode functional proteins. These findings reveal many new aspects of oomycete biology, as well as potential targets for crop protection chemicals.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside 92521, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Architecture of the sporulation-specific Cdc14 promoter from the oomycete Phytophthora infestans. EUKARYOTIC CELL 2007; 6:2222-30. [PMID: 17951514 DOI: 10.1128/ec.00328-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Cdc14 gene of Phytophthora infestans is transcribed specifically during sporulation, with no mRNA detectable in vegetative hyphae, and is required for sporangium development. To unravel the mechanisms regulating its transcription, mutated Cdc14 promoters plus chimeras of selected Cdc14 sequences and a minimal promoter were tested in stable transformants. This revealed that a tandem repeat of three copies of the motif CTYAAC, located between 67 and 90 nucleotides (nt) upstream of the major transcription start site, is sufficient to determine sporulation-specific expression. All three repeats need to be present for activity, suggesting that they bind a transcription factor through a cooperative mechanism. Electrophoretic mobility shift assays indicated that the CTYAAC repeats are specifically bound by a protein in nuclear extracts. Evidence was also obtained for a second region within the promoter that activates Cdc14 transcription during sporulation which does not involve those repeats. The CTYAAC motif also affects the specificity of transcription initiation. Wild-type Cdc14 is transcribed from a major start site and minor site(s) located about 100 nt upstream of the major site. However, stepwise mutations through the CTYAAC triad caused a graded shift to the upstream sites, as did mutating bases surrounding the major start site; transcripts initiated from the upstream site remained sporulation specific. Replacing the Cdc14 initiation region with the Inr-like region of the constitutive Piexo1 gene had no apparent effect on the pattern of transcription. Therefore, this study reports the first motif determining sporulation-induced transcription in oomycetes and helps define oomycete core promoters.
Collapse
|
57
|
Gaulin E, Haget N, Khatib M, Herbert C, Rickauer M, Bottin A. Transgenic sequences are frequently lost in Phytophthora parasitica transformants without reversion of the transgene-induced silenced state. Can J Microbiol 2007; 53:152-7. [PMID: 17496962 DOI: 10.1139/w06-090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little data exist on the mechanism and stability of transformation in Phytophthora parasitica, a major oomycete parasite of plants. Here, we studied the stability of drug-resistant protoplast transformants by analyzing single-zoospore derivatives. We show that the transgenic sequences are not stably integrated into the chromosomes, resulting in the loss of drug resistance in single-zoospore derivatives. However, in strains where the P. parasitica gene encoding the CBEL elicitor was silenced by transformation with sense or antisense constructs, silencing is not reversed when the transgenic sequences are lost. This suggests that instability of P. parasitica transformants is not an obstacle for loss-of-function studies in this organism.
Collapse
Affiliation(s)
- Elodie Gaulin
- UMR5546 CNRS-Université Paul Sabatier, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
58
|
Judelson HS, Tani S. Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. EUKARYOTIC CELL 2007; 6:1200-9. [PMID: 17483289 PMCID: PMC1951104 DOI: 10.1128/ec.00311-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clustered within the genome of the oomycete phytopathogen Phytophthora infestans are four genes encoding spore-specific nuclear LIM interactor-interacting factors (NIF proteins, a type of transcriptional regulator) that are moderately conserved in DNA sequence. NIFC1, NIFC2, and NIFC3 are zoosporogenesis-induced and grouped within 4 kb, and 20 kb away resides a sporulation-induced form, NIFS. To test the function of the NIFC family, plasmids expressing full-length hairpin constructs of NIFC1 or NIFC2 were stably transformed into P. infestans. This triggered silencing of the cognate gene in about one-third of transformants, and all three NIFC genes were usually cosilenced. However, NIFS escaped silencing despite its high sequence similarity to the NIFC genes. Silencing of the three NIFC genes impaired zoospore cyst germination by 60% but did not affect other aspects of the life cycle. Silencing was transcriptional based on nuclear run-on assays and associated with tighter chromatin packing based on nuclease accessibility experiments. The chromatin alterations extended a few hundred nucleotides beyond the boundaries of the transcribed region of the NIFC cluster and were not associated with increased DNA methylation. A plasmid expressing a short hairpin RNA having sequence similarity only to NIFC1 silenced both that gene and an adjacent member of the gene cluster, likely due to the expansion of a heterochromatic domain from the targeted locus. These data help illuminate the mechanism of silencing in Phytophthora and suggest that caution should be used when interpreting silencing experiments involving closely spaced genes.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA.
| | | |
Collapse
|
59
|
Judelson HS, Narayan R, Fong AMVA, Tani S, Kim KS. Performance of a tetracycline-responsive transactivator system for regulating transgenes in the oomycete Phytophthora infestans. Curr Genet 2007; 51:297-307. [PMID: 17377792 DOI: 10.1007/s00294-007-0125-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/23/2007] [Accepted: 02/24/2007] [Indexed: 11/27/2022]
Abstract
The oomycete genus Phytophthora includes many important plant pathogens for which extensive genome data exist, but lacking is an inducible expression system to study contributions of their genes to growth and pathogenicity. Here the adaptation of the reverse tetracycline transactivator (rtTA) system to P. infestans is described. Vectors were developed containing rtTA expressed from an oomycete promoter, and beta-glucuronidase (GUS) controlled by TetR binding sites fused to a minimal oomycete promoter. Transformants were obtained in which GUS was expressed in a dose-dependent manner by the rtTA inducer doxycycline, indicating that the gene switch functions in P. infestans. However, toxicity of rtTA hindered the isolation of transformants if expressed on the same plasmid as the nptII selection marker. Better results were obtained by cotransforming those genes on separate plasmids, with 92% of transformants acquiring both DNAs although only 4% expressed rtTA at detectable levels. Low levels of reporter activity were measured in such transformants, suggesting that rtTA activated transcription weakly. Also, significant variation in the sensitivity of isolates to doxycycline and tetracycline was observed. These results are useful both in terms of developing tools for functional genomics and understanding the fate of DNA during Phytophthora transformation.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology, University of California, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
60
|
Prakob W, Judelson HS. Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 2007; 44:726-39. [PMID: 17215149 DOI: 10.1016/j.fgb.2006.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/21/2006] [Accepted: 11/28/2006] [Indexed: 11/24/2022]
Abstract
A large-scale screen for genes induced during sexual development was performed in the heterothallic oomycete Phytophthora infestans, the potato blight agent. Of 15,644 unigenes on an Affymetrix chip, 87 were induced >10-fold during mating, with 28 induced >100-fold. This was validated in independent matings using RNA blots and RT-PCR. Only 44 genes resembled sequences in GenBank. These encoded regulators such as protein kinases, protein phosphatases, and transcription factors, plus enzymes with metabolic, transport, or cell-cycle activities. Several genes were induced during both mating and asexual sporogenesis, suggesting crosstalk between those pathways. In the homothallic species P. phaseoli, 20% of the 87 genes were expressed at higher levels during conditions conducive to oosporogenesis than non-conducive conditions, while the rest were at similar levels. Many of the latter exhibited higher mRNA concentrations in P. phaseoli than in any non-mating culture of P. infestans, suggesting that part of the sexual pathway is active constitutively in homothallics.
Collapse
Affiliation(s)
- Waraporn Prakob
- Department of Plant Pathology, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
61
|
Judelson HS. Genomics of the plant pathogenic oomycete Phytophthora: insights into biology and evolution. ADVANCES IN GENETICS 2007; 57:97-141. [PMID: 17352903 DOI: 10.1016/s0065-2660(06)57003-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The genus Phytophthora includes many destructive pathogens of plants. Although having "fungus-like" appearances, Phytophthora species reside in a eukaryotic kingdom separate from that of true fungi. Distinct strategies are therefore required to study and defend against Phytophthora. Large sequence databases have recently been developed for several species, and tools for functional genomics have been enhanced. This chapter will review current progress in understanding the genome and transcriptome of Phytophthora, and provide examples of how genomics resources are advancing molecular studies of pathogenesis, development, transcription, and evolution. A better understanding of these remarkable pathogens should lead to new approaches for managing their diseases.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
62
|
Lamour KH, Finley L, Hurtado-Gonzales O, Gobena D, Tierney M, Meijer HJG. Targeted gene mutation in Phytophthora spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1359-67. [PMID: 17153920 DOI: 10.1094/mpmi-19-1359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The genus Phytophthora belongs to the oomycetes and is composed of plant pathogens. Currently, there are no strategies to mutate specific genes for members of this genus. Whole genome sequences are available or being prepared for Phytophthora sojae, P. ramorum, P. infestans, and P. capsici and the development of molecular biological techniques for functional genomics is encouraged. This article describes the adaptation of the reverse-genetic strategy of targeting induced local lesions in genomes (TILLING) to isolate gene-specific mutants in Phytophthora spp. A genomic library of 2,400 ethylnitrosourea (ENU) mutants of P. sojae was created and screened for induced point mutations in the genes encoding a necrosisinducing protein (PsojNIP) and a Phytophthora-specific phospholipase D (PsPXTM-PLD). Mutations were detected in single individuals and included silent, missense, and nonsense changes. Homozygous mutant isolates carrying a potentially deleterious missense mutation in PsojNIP and a premature stop codon in PsPXTM-PLD were identified. No phenotypic effect has yet been found for the homozygous mutant of PsojNIP. For those of PsPXTM-PLD, a reduction in growth rate and an appressed mycelial growth was observed. This demonstrates the feasibility of target-selected gene disruption for Phytophthora spp. and adds an important tool for functional genomic investigation.
Collapse
Affiliation(s)
- Kurt H Lamour
- Department of Entomology and Plant Pathology, The University of Tennessee, Rm 205 Ellington Plant Science, 2431 Joe Johnson Dr., Knoxville 37996, USA.
| | | | | | | | | | | |
Collapse
|
63
|
Abstract
The last 4 years have seen significant advances in our understanding of the cellular processes that underlie the infection of plants by a range of biotrophic and necrotrophic oomycete pathogens. Given that oomycete and fungal pathogens must overcome the same sets of physical and chemical barriers presented by plants, it is not surprising that many aspects of oomycete infection strategies are similar to those of fungal pathogens. A major difference, however, centres on the role of motile oomycete zoospores in actively moving the pathogen to favourable infection sites. Recent studies have shown that the plant defence response to invading oomycetes is similar to that mounted against fungi, but biochemical differences between oomycete and fungal surface molecules must have implications for plant recognition of and defence against oomycete pathogens. The aim of this short review is to provide a cell biological framework within which emerging data on the molecular basis of oomycete-plant interactions may be placed.
Collapse
Affiliation(s)
- Adrienne R Hardham
- Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University, Canberra ACT 2601, Australia.
| |
Collapse
|
64
|
Zeng J, Wang Y, Shen G, Zheng X. A Phytophthora sojae gene of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induced in host infection and its anti-oxidative function in yeast. CHINESE SCIENCE BULLETIN-CHINESE 2006. [DOI: 10.1007/s11434-006-1316-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
65
|
Blanco FA, Judelson HS. A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 2005; 56:638-48. [PMID: 15819621 DOI: 10.1111/j.1365-2958.2005.04575.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Zoospores are critical in the disease cycle of Phytophthora infestans, a member of the oomycete group of fungus-like microbes and the cause of potato late blight. A protein kinase induced during zoosporogenesis, Pipkz1, was shown to interact in the yeast two-hybrid system with a putative bZIP transcription factor. This interaction was confirmed in vitro using a pull-down assay. The transcription factor gene, Pibzp1, was single copy and expressed in all tissues. Transformants of P. infestans stably silenced for Pibzp1 were generated using plasmids expressing its coding region in sense or antisense orientations. A protoplast transformation method induced silencing more efficiently than transformation by an electroporation scheme. Wild-type and silenced strains exhibited no differences in hyphal growth or morphology, mating, sporangia production or zoospore release. However, zoospores from the mutants spun in tight circles, instead of exhibiting the normal pattern of straight swimming punctuated by turns. Zoospore encystment was unaffected by silencing, but cysts germinated more efficiently than controls. Germinated cysts from the mutants failed to develop appressoria and were unable to infect plants; however, they could colonize wounded tissue. These phenotypes indicate that Pibzp1 is a key regulator of several stages of the zoospore-mediated infection pathway.
Collapse
Affiliation(s)
- Flavio A Blanco
- Center for Plant Cell Biology and Department of Plant Pathology, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
66
|
Grenville-Briggs LJ, van West P. The biotrophic stages of oomycete-plant interactions. ADVANCES IN APPLIED MICROBIOLOGY 2005; 57:217-43. [PMID: 16002014 DOI: 10.1016/s0065-2164(05)57007-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Laura J Grenville-Briggs
- Aberdeen Oomycete Group, College of Life Sciences and Medicine University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | |
Collapse
|
67
|
Kamoun S, Smart CD. Late Blight of Potato and Tomato in the Genomics Era. PLANT DISEASE 2005; 89:692-699. [PMID: 30791237 DOI: 10.1094/pd-89-0692] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
68
|
Whisson SC, Avrova AO, VAN West P, Jones JT. A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2005; 6:153-63. [PMID: 20565646 DOI: 10.1111/j.1364-3703.2005.00272.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY Gene silencing, triggered by double-stranded RNA (dsRNA), has proved to be a valuable tool for determining and confirming the function of genes in many organisms. For Phytophthora infestans, the cause of late blight on potato and tomato, gene silencing strategies have relied on stable transformation followed by spontaneous silencing of both the endogenous gene and the transgene. Here we describe the first application of transient gene silencing in P. infestans, by delivering in vitro synthesized dsRNA into protoplasts to trigger silencing. A marker gene, gfp, and two P. infestans genes, inf1 and cdc14, both of which have been silenced previously, were selected to test this strategy. Green fluorescent protein (GFP) fluorescence was reduced in regenerating protoplasts up to 4 days after exposure to gfp dsRNA. A secondary reduction in expression of all genes tested was not fully activated until 12-17 days after introduction of the respective homologous dsRNAs. At this time after exposure to dsRNA, reduced GFP fluorescence in gfp dsRNA-treated lines, and reduced INF1 production in inf1 dsRNA-treated lines, was observed. Introduction of dsRNA for the stage-specific gene, cdc14, yielded the expected phenotype of reduced numbers of sporangia when cdc14 expression was significantly reduced compared with control lines. Silencing was shown to be sequence-specific, because analysis of inf1 expression in gfp-silenced lines yielded wild-type levels of gene expression. This report shows that transient gene silencing can be used to generate detectable phenotypes in P. infestans and should provide a high-throughput tool for P. infestans functional genomics.
Collapse
Affiliation(s)
- Stephen C Whisson
- Plant Pathogen Interactions Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | | | | | | |
Collapse
|
69
|
Randall TA, Dwyer RA, Huitema E, Beyer K, Cvitanich C, Kelkar H, Fong AMVA, Gates K, Roberts S, Yatzkan E, Gaffney T, Law M, Testa A, Torto-Alalibo T, Zhang M, Zheng L, Mueller E, Windass J, Binder A, Birch PRJ, Gisi U, Govers F, Gow NA, Mauch F, van West P, Waugh ME, Yu J, Boller T, Kamoun S, Lam ST, Judelson HS. Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:229-243. [PMID: 15782637 DOI: 10.1094/mpmi-18-0229] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To overview the gene content of the important pathogen Phytophthora infestans, large-scale cDNA and genomic sequencing was performed. A set of 75,757 high-quality expressed sequence tags (ESTs) from P. infestans was obtained from 20 cDNA libraries representing a broad range of growth conditions, stress responses, and developmental stages. These included libraries from P. infestans-potato and -tomato interactions, from which 963 pathogen ESTs were identified. To complement the ESTs, onefold coveragethe P. infestans genome was obtained and regions of coding potential identified. A unigene set of 18,256 sequences was derived from the EST and genomic data and characterized for potential functions, stage-specific patterns of expression, and codon bias. Cluster analysis of ESTs revealed major differences between the expressed gene content of mycelial and spore-related stages, and affinities between some growth conditions. Comparisons with databases of fungal pathogenicity genes revealed conserved elements of pathogenicity, such as class III pectate lyases, despite the considerable evolutionary distance between oomycetes and fungi. Thirty-seven genes encoding components of flagella also were identified. Several genes not anticipated to occur in oomycetes were detected, including chitin synthases, phosphagen kinases, and a bacterial-type FtsZ cell-division protein. The sequence data described are available in a searchable public database.
Collapse
Affiliation(s)
- Thomas A Randall
- Syngenta Biotechnology, Inc., Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Members of the genus Phytophthora are among the most serious threats to agriculture and food production, causing devastating diseases in hundreds of plant hosts. These fungus-like eukaryotes, which are taxonomically classified as oomycetes, generate asexual and sexual spores with characteristics that greatly contribute to their pathogenic success. The spores include survival and dispersal structures, and potent infectious propagules capable of actively locating hosts. Genetic tools and genomic resources developed over the past decade are now allowing detailed analysis of these important stages in the Phytophthora life cycle.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Center for Plant Cell Biology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
71
|
Kim KS, Judelson HS. Sporangium-specific gene expression in the oomycete phytopathogen Phytophthora infestans. EUKARYOTIC CELL 2003; 2:1376-85. [PMID: 14665470 PMCID: PMC326645 DOI: 10.1128/ec.2.6.1376-1385.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2003] [Accepted: 08/31/2003] [Indexed: 11/20/2022]
Abstract
The oomycete genus Phytophthora includes many of the world's most destructive plant pathogens, which are generally disseminated by asexual sporangia. To identify factors relevant to the biology of these propagules, genes induced in sporangia of the potato late blight pathogen Phytophthora infestans were isolated using cDNA macroarrays. Of approximately 1,900 genes known to be expressed in sporangia, 61 were up-regulated >5-fold in sporangia versus hyphae based on the arrays, including 17 that were induced >100-fold. A subset were also activated by starvation and in a nonsporulating mutant. mRNAs of some genes declined in abundance after germination, while others persisted through the germinated zoospore cyst stage. Functions were predicted for about three-quarters of the genes, including potential regulators (protein kinases and phosphatases, transcription factors, and G-protein subunits), transporters, and metabolic enzymes. Predominant among the last were several dehydrogenases, especially a highly expressed sorbitol dehydrogenase that accounted for 3% of the mRNA. Sorbitol dehydrogenase activity also rose during sporulation and several stress treatments, paralleling the expression of the gene. Another interesting metabolic enzyme resembled creatine kinases, which previously were reported only in animals and trypanosomes. These results provide insight into the transcriptional and cellular processes occurring in sporangia and identify potential targets for crop protection strategies.
Collapse
Affiliation(s)
- Kyoung Su Kim
- Department of Plant Pathology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|