51
|
Tsaousis AD, Leger MM, Stairs CAW, Roger AJ. The Biochemical Adaptations of Mitochondrion-Related Organelles of Parasitic and Free-Living Microbial Eukaryotes to Low Oxygen Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
52
|
Hydrogenosomes and Mitosomes: Mitochondrial Adaptations to Life in Anaerobic Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
53
|
Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 2011; 41:1421-34. [PMID: 22079833 PMCID: PMC4437511 DOI: 10.1016/j.ijpara.2011.10.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 01/08/2023]
Abstract
The human pathogen Trichomonas vaginalis lacks conventional mitochondria and instead contains divergent mitochondrial-related organelles. These double-membrane bound organelles, called hydrogenosomes, produce molecular hydrogen. Phylogenetic and biochemical analyses of hydrogenosomes indicate a common origin with mitochondria; however identification of hydrogenosomal proteins and studies on its metabolism have been limited. Here we provide a detailed proteomic analysis of the T. vaginalis hydrogenosome. The proteome of purified hydrogenosomes consists of 569 proteins, a number substantially lower than the 1,000-1,500 proteins reported for fungal and animal mitochondrial proteomes, yet considerably higher than proteins assigned to mitosomes. Pathways common to and distinct from both mitochondria and mitosomes were revealed by the hydrogenosome proteome. Proteins known to function in amino acid and energy metabolism, Fe-S cluster assembly, flavin-mediated catalysis, oxygen stress response, membrane translocation, chaperonin functions, proteolytic processing and ATP hydrolysis account for ∼30% of the hydrogenosome proteome. Of the 569 proteins in the hydrogenosome proteome, many appear to be associated with the external surface of hydrogenosomes, including large numbers of GTPases and ribosomal proteins. Glycolytic proteins were also found to be associated with the hydrogenosome proteome, similar to that previously observed for mitochondrial proteomes. Approximately 18% of the hydrogenosomal proteome is composed of hypothetical proteins of unknown function, predictive of multiple activities and properties yet to be uncovered for these highly adapted organelles.
Collapse
Affiliation(s)
- Rachel E. Schneider
- Department of Microbiology, Immunology & Molecular Genetics David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mark T. Brown
- Department of Microbiology, Immunology & Molecular Genetics David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - April M. Shiflett
- Department of Microbiology, Immunology & Molecular Genetics David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sabrina D. Dyall
- Department of Microbiology, Immunology & Molecular Genetics David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Richard D. Hayes
- Department of Microbiology, Immunology & Molecular Genetics David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yongming Xie
- Department of Chemistry and Biochemistry David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Patricia J. Johnson
- Department of Microbiology, Immunology & Molecular Genetics David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
54
|
Jin W, Cheng YF, Mao SY, Zhu WY. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. BIORESOURCE TECHNOLOGY 2011; 102:7925-7931. [PMID: 21719276 DOI: 10.1016/j.biortech.2011.06.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 05/31/2023]
Abstract
This study aimed to obtain natural cultures of anaerobic fungi and their indigenously associated methanogens from herbivores and investigate their ability to degrade lignocelluloses to methane. Eight natural cultures were obtained by Hungate roll tube technique. The fungi were identified as belonging to Piromyces, Anaeromyces and Neocallimastix respectively by microscopy, and the methanogens as Methanobrevibacter spp. by 16S rRNA gene sequencing. In vitro studies with rice straw showed that these cultures degraded 33.5-48.3% substrate and produced 0.33-0.84 mmol/(100ml culture) methane. Two cultures were further selected for their ability to degrade different lignocellulosic materials and could produce 0.38-1.27 mmol/(100ml culture) methane. When methanogens were inhibited, the lignocellulose-degrading ability of cultures significantly reduced. In conclusion, natural cultures of anaerobic fungi with indigenously associated methanogens with high fiber degradation ability were obtained, and these cultures may have the potential in industrial use in lignocelluloses degradation and methane production.
Collapse
Affiliation(s)
- Wei Jin
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | | | | |
Collapse
|
55
|
Stairs CW, Roger AJ, Hampl V. Eukaryotic Pyruvate Formate Lyase and Its Activating Enzyme Were Acquired Laterally from a Firmicute. Mol Biol Evol 2011; 28:2087-99. [DOI: 10.1093/molbev/msr032] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
56
|
Peng F, Ren JL, Xu F, Sun RC. Chemicals from Hemicelluloses: A Review. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1067.ch009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Feng Peng
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Li Ren
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Xu
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Run-Cang Sun
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
57
|
|
58
|
Paz-Y-Miño C G, Espinosa A. Integrating horizontal gene transfer and common descent to depict evolution and contrast it with "common design". J Eukaryot Microbiol 2009; 57:11-8. [PMID: 20021546 DOI: 10.1111/j.1550-7408.2009.00458.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co-occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree-like representations of life's diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated-tree model, ring of life, symbiogenesis whole-organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron- and NAD(+) as cofactors, and the substrates acetyl-CoA for ALDH and acetaldehyde for ADH. Alternative views invoking "common design" (i.e. the non-naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded.
Collapse
Affiliation(s)
- Guillermo Paz-Y-Miño C
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA
| | | |
Collapse
|
59
|
de Graaf RM, Duarte I, van Alen TA, Kuiper JWP, Schotanus K, Rosenberg J, Huynen MA, Hackstein JHP. The hydrogenosomes of Psalteriomonas lanterna. BMC Evol Biol 2009; 9:287. [PMID: 20003182 PMCID: PMC2796672 DOI: 10.1186/1471-2148-9-287] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 12/09/2009] [Indexed: 11/10/2022] Open
Abstract
Background Hydrogenosomes are organelles that produce molecular hydrogen and ATP. The broad phylogenetic distribution of their hosts suggests that the hydrogenosomes of these organisms evolved several times independently from the mitochondria of aerobic progenitors. Morphology and 18S rRNA phylogeny suggest that the microaerophilic amoeboflagellate Psalteriomonas lanterna, which possesses hydrogenosomes and elusive "modified mitochondria", belongs to the Heterolobosea, a taxon that consists predominantly of aerobic, mitochondriate organisms. This taxon is rather unrelated to taxa with hitherto studied hydrogenosomes. Results Electron microscopy of P. lanterna flagellates reveals a large globule in the centre of the cell that is build up from stacks of some 20 individual hydrogenosomes. The individual hydrogenosomes are surrounded by a double membrane that encloses a homogeneous, dark staining matrix lacking cristae. The "modified mitochondria" are found in the cytoplasm of the cell and are surrounded by 1-2 cisterns of rough endoplasmatic reticulum, just as the mitochondria of certain related aerobic Heterolobosea. The ultrastructure of the "modified mitochondria" and hydrogenosomes is very similar, and they have the same size distribution as the hydrogenosomes that form the central stack. The phylogenetic analysis of selected EST sequences (Hsp60, Propionyl-CoA carboxylase) supports the phylogenetic position of P. lanterna close to aerobic Heterolobosea (Naegleria gruberi). Moreover, this analysis also confirms the identity of several mitochondrial or hydrogenosomal key-genes encoding proteins such as a Hsp60, a pyruvate:ferredoxin oxidoreductase, a putative ADP/ATP carrier, a mitochondrial complex I subunit (51 KDa), and a [FeFe] hydrogenase. Conclusion Comparison of the ultrastructure of the "modified mitochondria" and hydrogenosomes strongly suggests that both organelles are just two morphs of the same organelle. The EST studies suggest that the hydrogenosomes of P. lanterna are physiologically similar to the hydrogenosomes of Trichomonas vaginalis and Trimastix pyriformis. Phylogenetic analysis of the ESTs confirms the relationship of P. lanterna with its aerobic relative, the heterolobosean amoeboflagellate Naegleria gruberi, corroborating the evolution of hydrogenosomes from a common, mitochondriate ancestor.
Collapse
Affiliation(s)
- Rob M de Graaf
- Department of Evolutionary Microbiology, IWWR, Radboud University Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Automated Yeast Transformation Protocol to EngineerSaccharomyces cerevisiaeStrains for Cellulosic Ethanol Production with Open Reading Frames That Express Proteins Binding to Xylose Isomerase Identified Using a Robotic Two-Hybrid Screen. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.jala.2009.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to use pentose sugars. Because S. cerevisiae naturally metabolizes xylulose, one approach involves introducing xylose isomerase (XI), which catalyzes conversion of xylose to xylulose. In this study, an automated two-hybrid interaction protocol was used to find yeast genes encoding proteins that bind XI to identify potential targets for improving xylose utilization by S. cerevisiae. A pDEST32 vector re-engineered for TRP selection and containing the Gal4 binding domain fused with the Piromyces sp. E2 XI open reading frame (ORF) was used as bait with a library of LEU-selectable pOAD vectors containing the Gal4 activation domain in fusion with members of the S. cerevisiae genome ORF collection. Binding of a yeast ORF protein to XI activates two chromosomally located reporter genes in a PJ69–4 yeast strain to give selective growth. Five genes, including ADHI, were identified in the two-hybrid screen, suggesting the proteins encoded by these genes bind to XI. The effect of ADHI overexpression was examined using the pSUMOduoHisADHI vector in an automated protocol to transform eight previously identified yeast strains that showed anaerobic growth on xylose. One transformant consumed all available glucose, xylose, and arabinose during growth on wheat straw hydrolysate.
Collapse
|
61
|
Mentel M, Martin W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos Trans R Soc Lond B Biol Sci 2008; 363:2717-29. [PMID: 18468979 PMCID: PMC2606767 DOI: 10.1098/rstb.2008.0031] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much attention. From the standpoint of energy metabolism (the biochemical means through which eukaryotes gain their ATP, thereby enabling any and all evolution of other traits), understanding of mitochondria among eukaryotic anaerobes has improved. The mainstream formulations of endosymbiotic theory did not predict the ubiquity of mitochondria among anaerobic eukaryotes, while an alternative hypothesis that specifically addressed the evolutionary origin of energy metabolism among eukaryotic anaerobes did. Those developments in biology have been paralleled by a similar upheaval in the Earth sciences regarding views about the prevalence of oxygen in the oceans during the Proterozoic (the time from ca 2.5 to 0.6 Ga ago). The new model of Proterozoic ocean chemistry indicates that the oceans were anoxic and sulphidic during most of the Proterozoic. Its proponents suggest the underlying geochemical mechanism to entail the weathering of continental sulphides by atmospheric oxygen to sulphate, which was carried into the oceans as sulphate, fueling marine sulphate reducers (anaerobic, hydrogen sulphide-producing prokaryotes) on a global scale. Taken together, these two mutually compatible developments in biology and geology underscore the evolutionary significance of oxygen-independent ATP-generating pathways in mitochondria, including those of various metazoan groups, as a watermark of the environments within which eukaryotes arose and diversified into their major lineages.
Collapse
Affiliation(s)
| | - William Martin
- Institute of Botany, University of DüsseldorfUniversitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
62
|
Biochemical and physiological characterization of the pyruvate formate-lyase Pfl1 of Chlamydomonas reinhardtii, a typically bacterial enzyme in a eukaryotic alga. EUKARYOTIC CELL 2008; 7:518-26. [PMID: 18245276 DOI: 10.1128/ec.00368-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has a special type of anaerobic metabolism that is quite unusual for eukaryotes. It has two oxygen-sensitive [Fe-Fe] hydrogenases (EC 1.12.7.2) that are coupled to photosynthesis and, in addition, a formate- and ethanol-producing fermentative metabolism, which was proposed to be initiated by pyruvate formate-lyase (Pfl; EC 2.3.1.54). Pfl enzymes are commonly found in prokaryotes but only rarely in eukaryotes. Both the hydrogen- and the formate/ethanol-producing pathways are involved in a sustained anaerobic metabolism of the alga, which can be induced by sulfur depletion in illuminated cultures. Before now, the presence of a Pfl protein in C. reinhardtii was predicted from formate secretion and the homology of the deduced protein of the PFL1 gene model to known Pfl enzymes. In this study, we proved the formate-producing activity of the putative Pfl1 enzyme by heterologous expression of the C. reinhardtii PFL1 cDNA in Escherichia coli and subsequent in vitro activity tests of the purified protein. Furthermore, a Pfl-deficient E. coli strain secretes formate when expressing the PFL1 cDNA of C. reinhardtii. We also examined the Pfl1 fermentation pathway of C. reinhardtii under the physiological condition of sulfur depletion. Genetic and biochemical analyses show that sulfur-depleted algae express genes encoding enzymes acting downstream of Pfl1 and also potentially ethanol-producing enzymes, such as pyruvate decarboxylase (EC 4.1.1.1) or pyruvate ferredoxin oxidoreductase (EC 1.2.7.1). The latter enzymes might substitute for Pfl1 activity when Pfl1 is specifically inhibited by hypophosphite.
Collapse
|
63
|
Hydrogenosomes of Anaerobic Ciliates. HYDROGENOSOMES AND MITOSOMES: MITOCHONDRIA OF ANAEROBIC EUKARYOTES 2008. [DOI: 10.1007/7171_2007_109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
64
|
Boxma B, Ricard G, van Hoek AHAM, Severing E, Moon-van der Staay SY, van der Staay GWM, van Alen TA, de Graaf RM, Cremers G, Kwantes M, McEwan NR, Newbold CJ, Jouany JP, Michalowski T, Pristas P, Huynen MA, Hackstein JHP. The [FeFe] hydrogenase of Nyctotherus ovalis has a chimeric origin. BMC Evol Biol 2007; 7:230. [PMID: 18021395 PMCID: PMC2216082 DOI: 10.1186/1471-2148-7-230] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/16/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis show how mitochondria can evolve into hydrogenosomes because they possess a mitochondrial genome and parts of an electron-transport chain on the one hand, and a hydrogenase on the other hand. The hydrogenase permits direct reoxidation of NADH because it consists of a [FeFe] hydrogenase module that is fused to two modules, which are homologous to the 24 kDa and the 51 kDa subunits of a mitochondrial complex I. RESULTS The [FeFe] hydrogenase belongs to a clade of hydrogenases that are different from well-known eukaryotic hydrogenases. The 24 kDa and the 51 kDa modules are most closely related to homologous modules that function in bacterial [NiFe] hydrogenases. Paralogous, mitochondrial 24 kDa and 51 kDa modules function in the mitochondrial complex I in N. ovalis. The different hydrogenase modules have been fused to form a polyprotein that is targeted into the hydrogenosome. CONCLUSION The hydrogenase and their associated modules have most likely been acquired by independent lateral gene transfer from different sources. This scenario for a concerted lateral gene transfer is in agreement with the evolution of the hydrogenosome from a genuine ciliate mitochondrion by evolutionary tinkering.
Collapse
Affiliation(s)
- Brigitte Boxma
- Department of Evolutionary Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007; 74:937-53. [PMID: 17294186 DOI: 10.1007/s00253-006-0827-2] [Citation(s) in RCA: 368] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/21/2006] [Accepted: 12/25/2006] [Indexed: 10/23/2022]
Abstract
Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Bärbel Hahn-Hägerdal
- Department of Applied Microbiology, Lund University, PO Box 124, Lund 22100, Sweden.
| | | | | | | | | |
Collapse
|
66
|
Hackstein JHP, Tjaden J, Huynen M. Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 2006; 50:225-45. [PMID: 16897087 DOI: 10.1007/s00294-006-0088-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/29/2006] [Accepted: 07/02/2006] [Indexed: 11/29/2022]
Affiliation(s)
- Johannes H P Hackstein
- Department of Evolutionary Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, 6525, ED Nijmegen, The Netherlands.
| | | | | |
Collapse
|
67
|
Andersson JO, Hirt RP, Foster PG, Roger AJ. Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes. BMC Evol Biol 2006; 6:27. [PMID: 16551352 PMCID: PMC1484493 DOI: 10.1186/1471-2148-6-27] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 03/21/2006] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Lateral gene transfer (LGT) in eukaryotes from non-organellar sources is a controversial subject in need of further study. Here we present gene distribution and phylogenetic analyses of the genes encoding the hybrid-cluster protein, A-type flavoprotein, glucosamine-6-phosphate isomerase, and alcohol dehydrogenase E. These four genes have a limited distribution among sequenced prokaryotic and eukaryotic genomes and were previously implicated in gene transfer events affecting eukaryotes. If our previous contention that these genes were introduced by LGT independently into the diplomonad and Entamoeba lineages were true, we expect that the number of putative transfers and the phylogenetic signal supporting LGT should be stable or increase, rather than decrease, when novel eukaryotic and prokaryotic homologs are added to the analyses. RESULTS The addition of homologs from phagotrophic protists, including several Entamoeba species, the pelobiont Mastigamoeba balamuthi, and the parabasalid Trichomonas vaginalis, and a large quantity of sequences from genome projects resulted in an apparent increase in the number of putative transfer events affecting all three domains of life. Some of the eukaryotic transfers affect a wide range of protists, such as three divergent lineages of Amoebozoa, represented by Entamoeba, Mastigamoeba, and Dictyostelium, while other transfers only affect a limited diversity, for example only the Entamoeba lineage. These observations are consistent with a model where these genes have been introduced into protist genomes independently from various sources over a long evolutionary time. CONCLUSION Phylogenetic analyses of the updated datasets using more sophisticated phylogenetic methods, in combination with the gene distribution analyses, strengthened, rather than weakened, the support for LGT as an important mechanism affecting the evolution of these gene families. Thus, gene transfer seems to be an on-going evolutionary mechanism by which genes are spread between unrelated lineages of all three domains of life, further indicating the importance of LGT from non-organellar sources into eukaryotic genomes.
Collapse
Affiliation(s)
- Jan O Andersson
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, S-751 24 Uppsala, Sweden
| | - Robert P Hirt
- School of Biology, The Devonshire Building, The University of Newcastle upon Tyne, NE1 7RU, UK
| | - Peter G Foster
- Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Andrew J Roger
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| |
Collapse
|
68
|
Rangel-Porras RA, Meza-Carmen V, Martinez-Cadena G, Torres-Guzmán JC, González-Hernández GA, Arnau J, Gutiérrez-Corona JF. Molecular analysis of an NAD-dependent alcohol dehydrogenase from the zygomycete Mucor circinelloides. Mol Genet Genomics 2005; 274:354-63. [PMID: 16179992 DOI: 10.1007/s00438-005-0025-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
NAD-dependent alcohol dehydrogenase (ADH) activity was detected mainly in the cytosol of aerobically cultured mycelium and in anaerobically grown yeast cells of Mucor circinelloides. ADH levels were about 2.5-fold higher in yeast cells than in mycelium; zymogram analysis suggested that the same ADH enzyme is produced in both developmental stages. The enzyme, named ADH1, was purified to homogeneity from yeast cells, using ion-exchange and affinity chromatography. The active ADH1 appears to be a homomeric tetramer of 37,500-kDa subunits. Km values obtained for acetaldehyde, ethanol, NADH and NAD+ indicated that in vivo the enzyme mainly serves to reduce acetaldehyde to ethanol. Amino acid sequences of internal peptides obtained from the purified ADH1 were used to design oligonucleotides that allowed the cloning of the corresponding cDNA by RT-PCR, and the characterization of the genomic DNA sequence. The adh1 ORF is interrupted by two small introns located towards the 5'-end. M. circinelloides adh1 encodes a protein of 348 amino acids, which display moderate to high overall identity to several hypothetical ADH enzymes from the related zygomycete Rhizopus oryzae. adh1 mRNA is expressed at similar levels in aerobic mycelium and anaerobic yeast cells. During exponential growth under aerobic conditions, the level of adh1 transcript was correlated with the glucose concentration in the growth medium.
Collapse
MESH Headings
- Acetaldehyde/chemistry
- Alcohol Dehydrogenase/chemistry
- Alcohol Dehydrogenase/genetics
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Cell-Free System
- Chromatography, Affinity
- Chromatography, Ion Exchange
- Cloning, Molecular
- Culture Media/metabolism
- Cytosol/metabolism
- DNA/chemistry
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Ethanol/chemistry
- Fermentation
- Fungal Proteins/chemistry
- Gene Expression Regulation, Fungal
- Gene Library
- Genes, Fungal
- Introns
- Kinetics
- Molecular Sequence Data
- Molecular Weight
- Mucor/enzymology
- Mucor/genetics
- NAD/chemistry
- NAD/metabolism
- Open Reading Frames
- Peptides/chemistry
- Phylogeny
- Protein Isoforms
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rhizopus/metabolism
- Substrate Specificity
- Time Factors
Collapse
Affiliation(s)
- R A Rangel-Porras
- Instituto de Investigación en Biología Experimental Facultad de Química, Universidad de Guanajuato, Noria Alta s/n Apartado Postal 187, 36000, Guanajuato, México
| | | | | | | | | | | | | |
Collapse
|
69
|
Hemschemeier A, Happe T. The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. Biochem Soc Trans 2005; 33:39-41. [PMID: 15667259 DOI: 10.1042/bst0330039] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The photosynthetic green alga Chlamydomonas reinhardtii is capable of performing a complex fermentative metabolism which is related to the mixed acid fermentation of bacteria such as Escherichia coli. The fermentative pattern includes the products formate, ethanol, acetate, glycerol, lactate, carbon dioxide and molecular hydrogen (H(2)). H(2) production is catalysed by an active [Fe]-hydrogenase (HydA) which is coupled with the photosynthetic electron-transport chain. The most important enzyme of the classic fermentation pathway is pyruvate formate-lyase, which is common in bacteria but seldom found in eukaryotes. An interaction between fermentation, photosynthesis and H(2) evolution allows the algae to overcome long periods of anaerobiosis. In the absence of sulphur, the cells establish a photofermentative metabolism and accumulate large amounts of H(2).
Collapse
Affiliation(s)
- A Hemschemeier
- Ruhr-Universität-Bochum, Fakultät für Biologie, Biochemie der Pflanzen, AG Photobiotechnologie, 44780 Bochum, Germany
| | | |
Collapse
|
70
|
Boxma B, de Graaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldón T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP. An anaerobic mitochondrion that produces hydrogen. Nature 2005; 434:74-9. [PMID: 15744302 DOI: 10.1038/nature03343] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 01/07/2005] [Indexed: 11/09/2022]
Abstract
Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabolically quite different, just like mitochondria where large differences also exist. These differences have led to a continuing debate about the evolutionary origin of hydrogenosomes. Here we show that the hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis, which thrives in the hindgut of cockroaches, have retained a rudimentary genome encoding components of a mitochondrial electron transport chain. Phylogenetic analyses reveal that those proteins cluster with their homologues from aerobic ciliates. In addition, several nucleus-encoded components of the mitochondrial proteome, such as pyruvate dehydrogenase and complex II, were identified. The N. ovalis hydrogenosome is sensitive to inhibitors of mitochondrial complex I and produces succinate as a major metabolic end product--biochemical traits typical of anaerobic mitochondria. The production of hydrogen, together with the presence of a genome encoding respiratory chain components, and biochemical features characteristic of anaerobic mitochondria, identify the N. ovalis organelle as a missing link between mitochondria and hydrogenosomes.
Collapse
Affiliation(s)
- Brigitte Boxma
- Department of Evolutionary Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Hackstein JHP, Yarlett N. Hydrogenosomes and symbiosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 41:117-42. [PMID: 16623392 DOI: 10.1007/3-540-28221-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Johannes H P Hackstein
- Department of Evolutionary Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, NL 6525 ED Nijmegen, The Netherlands.
| | | |
Collapse
|
72
|
|
73
|
Chen M, Li E, Stanley SL. Structural analysis of the acetaldehyde dehydrogenase activity of Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a member of the ADHE enzyme family. Mol Biochem Parasitol 2004; 137:201-5. [PMID: 15383290 DOI: 10.1016/j.molbiopara.2004.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/26/2004] [Accepted: 06/01/2004] [Indexed: 11/19/2022]
Abstract
The ADHE family of enzymes are bifunctional acetaldehyde dehydrogenase (ALDH)/alcohol dehydrogenase (ADH) enzymes that probably arose from the fusion of genes encoding separate ALDH and ADH enzymes. Here we have used the Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) enzyme as a prototype to analyze the structure and function of the ALDH domain of ADHE enzymes. We find that the N-terminal domain of EhADH2, encompassing amino acids 1-446, is sufficient for ALDH activity, consistent with the concept that EhADH2, and other members of the ADHE family comprise fusion peptides. In addition, we show, using site directed mutagenesis, that the catalytic mechanism for the ALDH activity appears to be similar to that described for other members of the ALDH extended family.
Collapse
Affiliation(s)
- Minghe Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
74
|
Hoffmeister M, van der Klei A, Rotte C, van Grinsven KWA, van Hellemond JJ, Henze K, Tielens AGM, Martin W. Euglena gracilis Rhodoquinone:Ubiquinone Ratio and Mitochondrial Proteome Differ under Aerobic and Anaerobic Conditions. J Biol Chem 2004; 279:22422-9. [PMID: 15014069 DOI: 10.1074/jbc.m400913200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Euglena gracilis cells grown under aerobic and anaerobic conditions were compared for their whole cell rhodoquinone and ubiquinone content and for major protein spots contained in isolated mitochondria as assayed by two-dimensional gel electrophoresis and mass spectrometry sequencing. Anaerobically grown cells had higher rhodoquinone levels than aerobically grown cells in agreement with earlier findings indicating the need for fumarate reductase activity in anaerobic wax ester fermentation in Euglena. Microsequencing revealed components of complex III and complex IV of the respiratory chain and the E1beta subunit of pyruvate dehydrogenase to be present in mitochondria of aerobically grown cells but lacking in mitochondria from anaerobically grown cells. No proteins were identified as specific to mitochondria from anaerobically grown cells. cDNAs for the E1alpha, E2, and E3 subunits of mitochondrial pyruvate dehydrogenase were cloned and shown to be differentially expressed under aerobic and anaerobic conditions. Their expression patterns differed from that of mitochondrial pyruvate:NADP(+) oxidoreductase, the N-terminal domain of which is pyruvate:ferredoxin oxidoreductase, an enzyme otherwise typical of hydrogenosomes, hydrogen-producing forms of mitochondria found among anaerobic protists. The Euglena mitochondrion is thus a long sought intermediate that unites biochemical properties of aerobic and anaerobic mitochondria and hydrogenosomes because it contains both pyruvate:ferredoxin oxidoreductase and rhodoquinone typical of hydrogenosomes and anaerobic mitochondria as well as pyruvate dehydrogenase and ubiquinone typical of aerobic mitochondria. Our data show that under aerobic conditions Euglena mitochondria are prepared for anaerobic function and furthermore suggest that the ancestor of mitochondria was a facultative anaerobe, segments of whose physiology have been preserved in the Euglena lineage.
Collapse
Affiliation(s)
- Meike Hoffmeister
- Institute of Botany III, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|