51
|
Designing the next generation of cryoprotectants - From proteins to small molecules. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
52
|
Sumii Y, Hibino H, Saidalimu I, Kawahara H, Shibata N. Design and synthesis of galactose-conjugated fluorinated and non-fluorinated proline oligomers: towards antifreeze molecules. Chem Commun (Camb) 2018; 54:9749-9752. [PMID: 30102305 DOI: 10.1039/c8cc05588b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Galactose-conjugated fluorinated and non-fluorinated proline oligomers that exhibit an α-helical structure with hydrophilic and lipophilic parts were designed as potential antifreeze molecules. These galactose-proline oligomers were synthesized and their physical properties were evaluated. Interestingly, the non-fluorinated galactose-proline oligomers showed in contrast to the fluorinated analogues weak antifreeze activity. The difference in antifreeze activity should be attributed to the fluorine gauche effect, which should induce a conformation in fluorinated prolines that is different from that of natural proline. The results obtained in this study thus suggest that the 3D conformation of the galactose-conjugated fluorinated and non-fluorinated proline oligomers is very important for their anti-freezing properties.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Life Science and Applied Chemistry, Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan.
| | | | | | | | | |
Collapse
|
53
|
Adam MK, Jarrett‐Wilkins C, Beards M, Staykov E, MacFarlane LR, Bell TDM, Matthews JM, Manners I, Faul CFJ, Moens PDJ, Ben RN, Wilkinson BL. 1D Self‐Assembly and Ice Recrystallization Inhibition Activity of Antifreeze Glycopeptide‐Functionalized Perylene Bisimides. Chemistry 2018; 24:7834-7839. [DOI: 10.1002/chem.201800857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Madeleine K. Adam
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | | | - Michael Beards
- School of Chemistry Monash University Melbourne 3800 Australia
| | - Emiliyan Staykov
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | | | - Toby D. M. Bell
- School of Chemistry Monash University Melbourne 3800 Australia
| | - Jacqueline M. Matthews
- School of Life and Environmental Sciences The University of Sydney Sydney 2006 Australia
| | - Ian Manners
- School of Chemistry University of Bristol Bristol BS8 1TS UK
| | | | - Pierre D. J. Moens
- School of Science and Technology University of New England Armidale 2351 Australia
| | - Robert N. Ben
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Brendan L. Wilkinson
- School of Science and Technology University of New England Armidale 2351 Australia
| |
Collapse
|
54
|
Graham B, Fayter AER, Houston JE, Evans RC, Gibson MI. Facially Amphipathic Glycopolymers Inhibit Ice Recrystallization. J Am Chem Soc 2018; 140:5682-5685. [PMID: 29660982 PMCID: PMC5940321 DOI: 10.1021/jacs.8b02066] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 12/28/2022]
Abstract
Antifreeze glycoproteins (AFGPs) from polar fish are the most potent ice recrystallization (growth) inhibitors known, and synthetic mimics are required for low-temperature applications such as cell cryopreservation. Here we introduce facially amphipathic glycopolymers that mimic the three-dimensional structure of AFGPs. Glycopolymers featuring segregated hydrophilic and hydrophobic faces were prepared by ring-opening metathesis polymerization, and their rigid conformation was confirmed by small-angle neutron scattering. Ice recrystallization inhibition (IRI) activity was reduced when a hydrophilic oxo-ether was installed on the glycan-opposing face, but significant activity was restored by incorporating a hydrophobic dimethylfulvene residue. This biomimetic strategy demonstrates that segregated domains of distinct hydrophilicity/hydrophobicity are a crucial motif to introduce IRI activity, which increases our understanding of the complex ice crystal inhibition processes.
Collapse
Affiliation(s)
- Ben Graham
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Judith E. Houston
- Jülich
Centre for Neutron Science, Forschungszentrum
Jülich GmbH, Garching 85747, Germany
| | - Rachel C. Evans
- Department
of Materials Science & Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
55
|
Zhang L, Jin Q, Luo J, Wu J, Wang S, Wang Z, Gong S, Zhang W, Lan X. Intracellular Expression of Antifreeze Peptides in Food Grade Lactococcus lactis and Evaluation of Their Cryoprotective Activity. J Food Sci 2018; 83:1311-1320. [PMID: 29660758 DOI: 10.1111/1750-3841.14117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
Abstract
Antifreeze peptides can protect living organisms from low temperatures by preventing damage or killing due to ice crystal formation between cells. Therefore, antifreeze peptides can be used as a low temperature protectant for cryopreservation of cells and tissues, and also in food production. In this study, a recombinant SF-P gene was constructed and inserted into pNZ8149 to construct a food grade expression vector, which was then electroporated into Lactococcus lactis NZ3900. The expression of the target protein was induced using Nisin, and the optimal expression condition was determined to be a pH of 6.0, Nisin concentration of 25 ng/mL, temperature of 37 °C, and incubation time of 6 hr. Compared to the strain NZ3900 and the recombinant strain SF-P1 without addition of Nisin, the recombinant strain SF-P2 showed the highest cell survival and thermal hysteresis activity, and had a reduction in the changes of activities of extracellular and intracellular lactate dehydrogenase and β-galactosidase after freezing. Moreover, analysis by SEM showed that SF-P2 cells were more completely and regularly shaped than other strains, displayed no obvious leakage of cell contents, and had an intact boundary between cells after freezing. These results indicate that the recombinant strain SF-P2 has a protective effect against freezing. This paper presents a food grade expression system for an antifreeze peptide SF-P using L. lactis as a host, and shows that the intracellular expression of antifreeze peptide could protect the cellular integrity and physiological functions of L. lactis. PRACTICAL APPLICATION The recombinant Lactococcus lactis with intracellular expression of antifreeze peptides SF-P could reduce the damage of bacteria cells induced by freezing or freeze drying, so, it could be applied in the process of freezing food without separation, such as the manufacture of yoghurt ice cream, frozen dough, and so on.
Collapse
Affiliation(s)
- Li Zhang
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Quan Jin
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jing Luo
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jinhong Wu
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou Univ., Fuzhou, 350108, China
| | - Zhengwu Wang
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Shengxiang Gong
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Wei Zhang
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Xiaohong Lan
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| |
Collapse
|
56
|
Ammar AY, El Nahas AF, Mahmoud S, Barakat ME, Hassan AM. Characterization of type IV antifreeze gene in Nile tilapia (Oreochromis niloticus) and influence of cold and hot weather on its expression and some immune-related genes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:515-525. [PMID: 29234908 DOI: 10.1007/s10695-017-0450-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work is to study the effect of the thermal stress of ambient temperature during winter and summer on the expression of type IV antifreeze gene (ANF IV) in different tissues of Nile tilapia (Oreochromis niloticus) as well as some immune-related genes. At first, genomic ANF IV gene was characterized from one fish; 124 amino acids were identified with 92.7% similarity with that on the gene bank. Expression of ANF IV and immune-related genes were done twice, once at the end of December (winter sample, temperature 14 °C) and the other at August (summer sample, temperature 36 °C). Assessment of ANF IV gene expression in different organs of fish was done; splenic mRNA was used for assessment of immune-related gene transcripts (CXCl2 chemokine, cc-chemokine, INF-3A, and MHC IIβ). Winter expression analysis of AFP IV in O. niloticus revealed significant upregulation of mRNA transcript levels in the intestine, gills, skin, spleen, liver, and brain with 324.03-, 170.06-, 107.63-, 97.61-, 94.35-, and 27.85-folds, respectively. Furthermore, upregulation in the gene was observed in some organs during summer: in the liver, gills, skin, intestine, and brain with lower levels compared with winter. The level of expression of immune-related genes in winter is significantly higher than summer in all assessed genes. Cc-chemokine gene expression was the most affected in both winter and summer. Variable expression profile of ANF IV in different organs and in different seasons together with its amino acid similarity of N-terminal and C-terminal with apolipoprotein (lipid binder) and form of high-density lipoprotein (HDL) suggests a different role for this protein which may be related to lipid metabolism.
Collapse
Affiliation(s)
- Asmma Y Ammar
- Biotechnology department, Animal Health Research Institute, Kafr El Sheikh, Egypt
| | - Abeer F El Nahas
- Animal Husbandry and Animal Wealth Department, Faculty of Veterinary Medicine, Alexandria University, Edfina, Behera, 22758, Egypt.
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafer El Sheikh University, Kafr El Sheikh, Egypt
| | - Mohamed E Barakat
- Biotechnology Department, Animal Health Research Institute, Kafer El Sheik, Egypt
| | - Asmaa M Hassan
- Biotechnology department, Animal Health Research Institute, Kafr El Sheikh, Egypt
| |
Collapse
|
57
|
Baalsrud HT, Tørresen OK, Solbakken MH, Salzburger W, Hanel R, Jakobsen KS, Jentoft S. De Novo Gene Evolution of Antifreeze Glycoproteins in Codfishes Revealed by Whole Genome Sequence Data. Mol Biol Evol 2018; 35:593-606. [PMID: 29216381 PMCID: PMC5850335 DOI: 10.1093/molbev/msx311] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
New genes can arise through duplication of a pre-existing gene or de novo from non-coding DNA, providing raw material for evolution of new functions in response to a changing environment. A prime example is the independent evolution of antifreeze glycoprotein genes (afgps) in the Arctic codfishes and Antarctic notothenioids to prevent freezing. However, the highly repetitive nature of these genes complicates studies of their organization. In notothenioids, afgps evolved from an extant gene, yet the evolutionary origin of afgps in codfishes is unknown. Here, we demonstrate that afgps in codfishes have evolved de novo from non-coding DNA 13-18 Ma, coinciding with the cooling of the Northern Hemisphere. Using whole-genome sequence data from several codfishes and notothenioids, we find higher copy number of afgp in species exposed to more severe freezing suggesting a gene dosage effect. Notably, antifreeze function is lost in one lineage of codfishes analogous to the afgp losses in non-Antarctic notothenioids. This indicates that selection can eliminate the antifreeze function when freezing is no longer imminent. In addition, we show that evolution of afgp-assisting antifreeze potentiating protein genes (afpps) in notothenioids coincides with origin and lineage-specific losses of afgp. The origin of afgps in codfishes is one of the first examples of an essential gene born from non-coding DNA in a non-model species. Our study underlines the power of comparative genomics to uncover past molecular signatures of genome evolution, and further highlights the impact of de novo gene origin in response to a changing selection regime.
Collapse
Affiliation(s)
- Helle Tessand Baalsrud
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Ole Kristian Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Walter Salzburger
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Reinhold Hanel
- Institute of Fisheries Ecology, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Hamburg, Germany
| | - Kjetill S Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| |
Collapse
|
58
|
Mochizuki K, Molinero V. Antifreeze Glycoproteins Bind Reversibly to Ice via Hydrophobic Groups. J Am Chem Soc 2018; 140:4803-4811. [PMID: 29392937 DOI: 10.1021/jacs.7b13630] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antifreeze molecules allow organisms to survive in subzero environments. Antifreeze glycoproteins (AFGPs), produced by polar fish, are the most potent inhibitors of ice recrystallization. To date, the molecular mechanism by which AFGPs bind to ice has not yet been elucidated. Mutation experiments cannot resolve whether the binding occurs through the peptide, the saccharides, or both. Here, we use molecular simulations to determine the mechanism and driving forces for binding of AFGP8 to ice, its selectivity for the primary prismatic plane, and the molecular origin of its exceptional ice recrystallization activity. Consistent with experiments, AFGP8 in simulations preferentially adopts the PPII helix secondary structure in solution. We show that the segregation of hydrophilic and hydrophobic groups in the PPII helix is vital for ice binding. Binding occurs through adsorption of methyl groups of the peptide and disaccharides to ice, driven by the entropy of dehydration of the hydrophobic groups as they nest in the cavities at the ice surface. The selectivity to the primary prismatic plane originates in the deeper cavities it has compared to the basal plane. We estimate the free energy of binding of AFGP8 and the longer AFGPs4-6, and find them to be consistent with the reversible binding demonstrated in experiments. The simulations reveal that AFGP8 binds to ice through a myriad of conformations that it uses to diffuse through the ice surface and find ice steps, to which it strongly adsorbs. We interpret that the existence of multiple, weak binding sites is the key for the exceptional ice recrystallization inhibition activity of AFGPs.
Collapse
Affiliation(s)
- Kenji Mochizuki
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States.,Institute for Fiber Engineering , Shinshu University , Ueda , Nagano 386-8567 , Japan
| | - Valeria Molinero
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
| |
Collapse
|
59
|
Mahatabuddin S, Tsuda S. Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:321-337. [PMID: 30288717 DOI: 10.1007/978-981-13-1244-1_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous embryonic ice crystals are generated in water at the moment of freezing. These crystals grow and merge together to form an ice block that can be generally observed. Antifreeze protein (AFP) is capable of binding to the embryonic ice crystals, inhibiting such an ice block formation. Fish-derived AFP additionally binds to membrane lipid bilayers to prolong the lifetime of cells. These unique abilities of AFP have been studied extensively for the development of advanced techniques, such as ice recrystallization inhibitors, freeze-tolerant gels, cell preservation fluids, and high-porosity ceramics, for which mass-preparation method of the quality product of AFP utilizing fish muscle homogenates made a significant contribution. In this chapter, we present both fundamental and advanced information of fish AFPs that have been especially discovered from mid-latitude sea area, which will provide a hint to develop more advanced techniques applicable in both medical and industrial fields.
Collapse
Affiliation(s)
- Sheikh Mahatabuddin
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.
| |
Collapse
|
60
|
Soyano K, Mushirobira Y. The Mechanism of Low-Temperature Tolerance in Fish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:149-164. [DOI: 10.1007/978-981-13-1244-1_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Hedir G, Stubbs C, Aston P, Dove AP, Gibson MI. Synthesis of Degradable Poly(vinyl alcohol) by Radical Ring-Opening Copolymerization and Ice Recrystallization Inhibition Activity. ACS Macro Lett 2017; 6:1404-1408. [PMID: 29399386 PMCID: PMC5792090 DOI: 10.1021/acsmacrolett.7b00905] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/30/2022]
Abstract
Poly(vinyl alcohol) (PVA) is the most active synthetic mimic of antifreeze proteins and has extremely high ice recrystallization inhibition (IRI) activity. Addition of PVA to cellular cryopreservation solutions increases the number of recovered viable cells due to its potent IRI, but it is intrinsically nondegradable in vivo. Here we report the synthesis, characterization, and IRI activity of PVA containing degradable ester linkages. Vinyl chloroacetate (VClAc) was copolymerized with 2-methylene-1,3-dioxepane (MDO) which undergoes radical ring-opening polymerization to install main-chain ester units. The use of the chloroacetate monomer enabled selective deacetylation with retention of esters within the polymer backbone. Quantitative IRI assays revealed that the MDO content had to be finely tuned to retain IRI activity, with higher loadings (24 mol %) resulting in complete loss of IRI activity. These degradable materials will help translate PVA, which is nontoxic and biocompatible, into a range of biomedical applications.
Collapse
Affiliation(s)
- Guillaume Hedir
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Institute
of Advanced Study, University of Warwick
Science Park, Coventry CV4 8UW, U.K.
| | | | - Phillip Aston
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Andrew P. Dove
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
62
|
Biggs CI, Bailey TL, Ben Graham, Stubbs C, Fayter A, Gibson MI. Polymer mimics of biomacromolecular antifreezes. Nat Commun 2017; 8:1546. [PMID: 29142216 PMCID: PMC5688100 DOI: 10.1038/s41467-017-01421-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/15/2017] [Indexed: 11/08/2022] Open
Abstract
Antifreeze proteins from polar fish species are remarkable biomacromolecules which prevent the growth of ice crystals. Ice crystal growth is a major problem in cell/tissue cryopreservation for transplantation, transfusion and basic biomedical research, as well as technological applications such as icing of aircraft wings. This review will introduce the rapidly emerging field of synthetic macromolecular (polymer) mimics of antifreeze proteins. Particular focus is placed on designing polymers which have no structural similarities to antifreeze proteins but reproduce the same macroscopic properties, potentially by different molecular-level mechanisms. The application of these polymers to the cryopreservation of donor cells is also introduced.
Collapse
Affiliation(s)
- Caroline I Biggs
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Trisha L Bailey
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Ben Graham
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Alice Fayter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
63
|
Vail NS, Stubbs C, Biggs CI, Gibson MI. Ultra-Low Dispersity Poly(vinyl alcohol) Reveals Significant Dispersity Effects on Ice Recrystallization Inhibition Activity. ACS Macro Lett 2017; 6:1001-1004. [PMID: 29226026 PMCID: PMC5718289 DOI: 10.1021/acsmacrolett.7b00595] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer mimics of antifreeze proteins are emerging as an exciting class of macromolecular cryoprotectants for the storage of donor cells and tissue. Poly(vinyl alcohol), PVA, is the most potent polymeric ice growth inhibitor known, but its mode of action and the impact of valency (DP) are not fully understood. Herein, tandem RAFT polymerization and column chromatography are used to isolate oligomers with dispersities <1.01 to enable the effect of molecular weight distribution, as well as length, to be probed. It is found that polymers with equal number average molecular weight, but lower dispersity, have significantly less activity, which can lead to false positives when identifying structure-property relationships. The minimum chain length for PVA's unique activity, compared to other non-active poly-ols was identified. These results will guide the design of more active inhibitors, better cryopreservatives and a deeper understanding of synthetic and biological antifreeze macromolecules.
Collapse
Affiliation(s)
- Nicholas S. Vail
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Christopher Stubbs
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Caroline I. Biggs
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV47AL, UK
| |
Collapse
|
64
|
Voets IK. From ice-binding proteins to bio-inspired antifreeze materials. SOFT MATTER 2017; 13:4808-4823. [PMID: 28657626 PMCID: PMC5708349 DOI: 10.1039/c6sm02867e] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/16/2017] [Indexed: 05/07/2023]
Abstract
Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented.
Collapse
Affiliation(s)
- I K Voets
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600 MD Eindhoven, The Netherlands. and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600 MD Eindhoven, The Netherlands and Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600 MD Eindhoven, The Netherlands
| |
Collapse
|
65
|
MacDonald MJ, Cornejo NR, Gellman SH. Inhibition of Ice Recrystallization by Nylon-3 Polymers. ACS Macro Lett 2017; 6:695-699. [PMID: 35650872 DOI: 10.1021/acsmacrolett.7b00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nontoxic cryoprotectants are needed for storage of tissues and food preservation. Frozen tissue is particularly susceptible to damage caused by formation of large ice crystals during the thawing process. The current practice of using 5 wt % DMSO for cryopreservation does not produce 100% cell viability post-thaw, at least in part because of DMSO toxicity that is manifested during the freezing and thawing stages of the process. Recently, poly(vinyl alcohol) (PVA) has shown promise in inhibiting ice recrystallization, an activity that is critical for cryoprotection. Inspired by this discovery, we have evaluated nylon-3 polymers for ice recrystallization inhibition activity and for toxicity toward mammalian cells. A survey of homo- and heteropolymers, with side chains bearing variable functionality, has identified new nylon-3 materials that display excellent ice recrystallization inhibition activity and low toxicity.
Collapse
Affiliation(s)
- Melissa J. MacDonald
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Natasha R. Cornejo
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
66
|
Orii R, Sakamoto N, Fukami D, Tsuda S, Izumi M, Kajihara Y, Okamoto R. Total Synthesis of O
-GalNAcylated Antifreeze Glycoprotein using the Switchable Reactivity of Peptidyl-N
-pivaloylguanidine. Chemistry 2017; 23:9253-9257. [DOI: 10.1002/chem.201702243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Ryo Orii
- Department of Chemistry; Graduate School of Science, Osaka University; 1-1, Toyonaka Osaka 5600043 Japan
| | - Noriko Sakamoto
- Department of Chemistry; Graduate School of Science, Osaka University; 1-1, Toyonaka Osaka 5600043 Japan
| | - Daichi Fukami
- Transdisciplinary Life Science Course; Graduate School of Life Science; Hokkaido University and Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo Hokkaido 0628517 Japan
| | - Sakae Tsuda
- Transdisciplinary Life Science Course; Graduate School of Life Science; Hokkaido University and Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo Hokkaido 0628517 Japan
| | - Masayuki Izumi
- Department of Chemistry; Graduate School of Science, Osaka University; 1-1, Toyonaka Osaka 5600043 Japan
| | - Yasuhiro Kajihara
- Department of Chemistry; Graduate School of Science, Osaka University; 1-1, Toyonaka Osaka 5600043 Japan
| | - Ryo Okamoto
- Department of Chemistry; Graduate School of Science, Osaka University; 1-1, Toyonaka Osaka 5600043 Japan
| |
Collapse
|
67
|
Di Lorenzo F, Billod JM, Martín-Santamaría S, Silipo A, Molinaro A. Gram-Negative Extremophile Lipopolysaccharides: Promising Source of Inspiration for a New Generation of Endotoxin Antagonists. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| | - Jean-Marc Billod
- Department of Chemical and Physical Biology; CIB Centro de Investigaciones Biológicas; Ramiro de Maeztu 9 28040 Madrid Spain
| | - Sonsoles Martín-Santamaría
- Department of Chemical and Physical Biology; CIB Centro de Investigaciones Biológicas; Ramiro de Maeztu 9 28040 Madrid Spain
| | - Alba Silipo
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| |
Collapse
|
68
|
Kim HJ, Lee JH, Hur YB, Lee CW, Park SH, Koo BW. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant. Mar Drugs 2017; 15:md15020027. [PMID: 28134801 PMCID: PMC5334608 DOI: 10.3390/md15020027] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/20/2017] [Indexed: 11/16/2022] Open
Abstract
Antifreeze proteins (AFPs) are biological antifreezes with unique properties, including thermal hysteresis(TH),ice recrystallization inhibition(IRI),and interaction with membranes and/or membrane proteins. These properties have been utilized in the preservation of biological samples at low temperatures. Here, we review the structure and function of marine-derived AFPs, including moderately active fish AFPs and hyperactive polar AFPs. We also survey previous and current reports of cryopreservation using AFPs. Cryopreserved biological samples are relatively diverse ranging from diatoms and reproductive cells to embryos and organs. Cryopreserved biological samples mainly originate from mammals. Most cryopreservation trials using marine-derived AFPs have demonstrated that addition of AFPs can improve post-thaw viability regardless of freezing method (slow-freezing or vitrification), storage temperature, and types of biological sample type.
Collapse
Affiliation(s)
- Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Young Baek Hur
- Tidal Flat Research Institute, National Fisheries Research and Development Institute, Gunsan, Jeonbuk 54014, Korea.
| | - Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Bon-Won Koo
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
69
|
Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 2017; 98:748-776. [PMID: 28111295 DOI: 10.1016/j.ijbiomac.2017.01.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Arooj Kanwal
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
70
|
Stubbs C, Lipecki J, Gibson MI. Regioregular Alternating Polyampholytes Have Enhanced Biomimetic Ice Recrystallization Activity Compared to Random Copolymers and the Role of Side Chain versus Main Chain Hydrophobicity. Biomacromolecules 2017; 18:295-302. [PMID: 27936601 PMCID: PMC5271573 DOI: 10.1021/acs.biomac.6b01691] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/06/2016] [Indexed: 12/14/2022]
Abstract
Antifreeze proteins from polar fish species are potent ice recrystallization inhibitors (IRIs) effectively stopping all ice growth. Additives that have IRI activity have been shown to enhance cellular cryopreservation with potential to improve the distribution of donor cells and tissue. Polyampholytes, polymers with both anionic and cationic side chains, are a rapidly emerging class of polymer cryoprotectants, but their mode of action and the structural features essential for activity are not clear. Here regioregular polyampholytes are synthesized from maleic anhydride copolymers to enable stoichiometric installation of the charged groups, ensuring regioregularity, which is not possible using conventional random copolymerization. A modular synthetic strategy is employed to enable the backbone and side chain hydrophobicity to be varied, with side chain hydrophobicity found to have a profound effect on the IRI activity. The activity of the regioregular polymers was found to be superior to those derived from a standard random copolymerization with statistical incorporation of monomers, demonstrating that sequence composition is crucial to the activity of IRI active polyampholytes.
Collapse
Affiliation(s)
- Christopher Stubbs
- Department of Chemistry and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Julia Lipecki
- Department of Chemistry and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department of Chemistry and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
71
|
Urbańczyk M, Góra J, Latajka R, Sewald N. Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis. Amino Acids 2016; 49:209-222. [PMID: 27913993 PMCID: PMC5274654 DOI: 10.1007/s00726-016-2368-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Abstract
Antifreeze glycopeptides (AFGPs) are a class of biological antifreeze agents found predominantly in Arctic and Antarctic species of fish. They possess the ability to regulate ice nucleation and ice crystal growth, thus creating viable life conditions at temperatures below the freezing point of body fluids. AFGPs usually consist of 4–55 repetitions of the tripeptide unit Ala–Ala–Thr that is O-glycosylated at the threonine side chains with β-d-galactosyl-(1 → 3)-α-N-acetyl-d-galactosamine. Due to their interesting properties and high antifreeze activity, they have many potential applications, e.g., in food industry and medicine. Current research is focused towards understanding the relationship between the structural preferences and the activity of the AFGPs, as well as developing time and cost efficient ways of synthesis of this class of molecules. Recent computational studies in conjunction with experimental results from NMR and THz spectroscopies were a possible breakthrough in understanding the mechanism of action of AFGPs. At the moment, as a result of these findings, the focus of research is shifted towards the analysis of behaviour of the hydration shell around AFGPs and the impact of water-dynamics retardation caused by AFGPs on ice crystal growth. In the field of organic synthesis of AFGP analogues, most of the novel protocols are centered around solid-phase peptide synthesis and multiple efforts are made to optimize this approach. In this review, we present the current state of knowledge regarding the structure and activity of AFGPs, as well as approaches to organic synthesis of these molecules with focus on the most recent developments.
Collapse
Affiliation(s)
- Małgorzata Urbańczyk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże St. Wyspiańskiego 29, 50-370, Wrocław, Poland
| | - Jerzy Góra
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże St. Wyspiańskiego 29, 50-370, Wrocław, Poland
| | - Rafał Latajka
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże St. Wyspiańskiego 29, 50-370, Wrocław, Poland.
| | - Norbert Sewald
- Organic Chemistry III, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany.
| |
Collapse
|
72
|
Halder S, Mukhopadhyay C. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation. J Biomol Struct Dyn 2016; 35:3591-3604. [PMID: 27882844 DOI: 10.1080/07391102.2016.1264888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Antifreeze proteins (AFPs), found in certain vertebrates, plants, fungi and bacteria have the ability to permit their survival in subzero environments by thermal hysteresis mechanism. However, the exact mechanism of ice growth inhibition is still not clearly understood. Here, four long explicit molecular dynamics (MD) simulations have been carried out at two different temperatures (277 and 298 K) with and without glycan to study the conformational rigidity of the Ocean pout type III antifreeze protein in aqueous medium and the structural arrangements of water molecules hydrating its ice-binding surface. It is found that irrespective of the temperature the ice-binding surface (IBS) of the protein is relatively more rigid than its non ice-binding surface (NonIBS) in its native and glycosylated form. Hydrophilic residues N14, T18 and Q44 are essential to antifreeze activity. Radial distribution, density distribution function and nearest neighbor orientation plots with respect to individual two surfaces confirm that density of water molecule near these binding surface in native and glycosylated form are relatively more than the nonbinding surface. The glycosylated form shows a strong peak than the native one. From rotational auto correlation function of water molecules around ice-binding sites, it is prominent that with increase in temperature, strong interaction between the water oxygen and the hydrogen bond acceptor group on the protein-binding surface decreases. This provides a possible molecular reason behind the ice-binding activity of ocean pout at the prism plane of ice.
Collapse
Affiliation(s)
- Swagata Halder
- a Department of Chemistry , University of Calcutta , 92, A. P. C. Road, Kolkata 700009 , India
| | - Chaitali Mukhopadhyay
- a Department of Chemistry , University of Calcutta , 92, A. P. C. Road, Kolkata 700009 , India
| |
Collapse
|
73
|
Capicciotti C, Mancini RS, Turner TR, Koyama T, Alteen MG, Doshi M, Inada T, Acker JP, Ben RN. O-Aryl-Glycoside Ice Recrystallization Inhibitors as Novel Cryoprotectants: A Structure-Function Study. ACS OMEGA 2016; 1:656-662. [PMID: 30023486 PMCID: PMC6044640 DOI: 10.1021/acsomega.6b00163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/14/2016] [Indexed: 05/19/2023]
Abstract
Low-molecular-weight ice recrystallization inhibitors (IRIs) are ideal cryoprotectants that control the growth of ice and mitigate cell damage during freezing. Herein, we describe a detailed study correlating the ice recrystallization inhibition activity and the cryopreservation ability with the structure of O-aryl-glycosides. Many effective IRIs are efficient cryoadditives for the freezing of red blood cells (RBCs). One effective cryoadditive did not inhibit ice recrystallization but instead inhibited ice nucleation, demonstrating the significance of inhibiting both processes and illustrating the importance of this emerging class of cryoprotectants.
Collapse
Affiliation(s)
- Chantelle
J. Capicciotti
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Ross S. Mancini
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Tracey R. Turner
- Canadian
Blood Services, Centre for Innovation, 8249-114 Street NW, Edmonton, Alberta T6G 2R8, Canada
| | - Toshie Koyama
- National
Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Matthew G. Alteen
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Malay Doshi
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Takaaki Inada
- National
Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Jason P. Acker
- Canadian
Blood Services, Centre for Innovation, 8249-114 Street NW, Edmonton, Alberta T6G 2R8, Canada
| | - Robert N. Ben
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
- E-mail: .
Phone: 1-613-562-5800
| |
Collapse
|
74
|
Drori R, Li C, Hu C, Raiteri P, Rohl AL, Ward MD, Kahr B. A Supramolecular Ice Growth Inhibitor. J Am Chem Soc 2016; 138:13396-13401. [DOI: 10.1021/jacs.6b08267] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ran Drori
- Department
of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Chao Li
- Department
of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Chunhua Hu
- Department
of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Paolo Raiteri
- Curtin
Institute for Computation and Department of Chemistry, Curtin University, Perth, Western Australia 6845, Australia
| | - Andrew L. Rohl
- Curtin
Institute for Computation and Department of Chemistry, Curtin University, Perth, Western Australia 6845, Australia
| | - Michael D. Ward
- Department
of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Bart Kahr
- Department
of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
- Department
of Advanced Science and Engineering (TWIns), Waseda University, Tokyo, Japan
| |
Collapse
|
75
|
Congdon T, Notman R, Gibson MI. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol). Biomacromolecules 2016; 17:3033-9. [PMID: 27476873 PMCID: PMC5022065 DOI: 10.1021/acs.biomac.6b00915] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/29/2016] [Indexed: 11/28/2022]
Abstract
Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications-from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action.
Collapse
Affiliation(s)
- Thomas
R. Congdon
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Rebecca Notman
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry, CV4 7AL, U.K.
| |
Collapse
|
76
|
Deller RC, Pessin JE, Vatish M, Mitchell DA, Gibson MI. Enhanced non-vitreous cryopreservation of immortalized and primary cells by ice-growth inhibiting polymers. Biomater Sci 2016; 4:1079-84. [PMID: 27152370 PMCID: PMC4918798 DOI: 10.1039/c6bm00129g] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/01/2016] [Indexed: 12/25/2022]
Abstract
Cell cryopreservation is an essential tool in modern biotechnology and medicine. The ability to freeze, store and distribute materials underpins basic cell biology and enables storage of donor cells needed for transplantation and regenerative medicine. However, many cell types do not survive freezing and the current state-of-the-art involves the addition of significant amounts of organic solvents as cryoprotectants, which themselves can be cytotoxic, or simply interfere with assays. A key cause of cell death in cryopreservation is ice recrystallization (growth), which primarily occurs during thawing. Here it is demonstrated that the addition of ice recrystalization inhibiting polymers to solutions containing low (non vitrifying) concentrations of DMSO enhance cell recovery rates by up to 75%. Cell functionality is also demonstrated using a placental cell line, and enhanced cryopreservation of primary rat hepatocytes is additionally shown. The crucial role of the polymers architecture (chain length) is shown, with shorter polymers being more effective than longer ones.
Collapse
|
77
|
St-Pierre G, Hanessian S. Solution and Solid-Phase Stereocontrolled Synthesis of 1,2-cis-Glycopyranosides with Minimally Protected Glycopyranosyl Donors Catalyzed by BF3-N,N-Dimethylformamide Complex. Org Lett 2016; 18:3106-9. [PMID: 27301355 DOI: 10.1021/acs.orglett.6b01263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Methods are described for the stereoselective synthesis of 1,2-cis glycopyranosides in the d-galacto, d-gluco, and 2-azido-2-deoxy-d-glucopyranoside series utilizing minimally protected (3-bromo-2-pyridyloxy) β-d-glycopyranosyl donors in the presence of BF3-N,N-dimethylformamide (DMF) as a catalyst and a variety of alcohol acceptors relying on the "remote activation concept". Precursors to antifreeze glycopeptide components are synthesized in excellent yields and high α/β ratios. The method is adaptable to one-pot sequential glycosidation as well as to solid-supported synthesis giving access to diverse sets of minimally protected α-d-glycopyranosides as major products.
Collapse
Affiliation(s)
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal , P.O. Box 6128, Succ., Centre-ville, Montréal, Québec, Canada , H3C 3J7
| |
Collapse
|
78
|
Fukushima M, Yoshizawa YI. Fabrication of highly porous honeycomb-shaped mullite–zirconia insulators by gelation freezing. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
79
|
Abstract
Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms.
Collapse
|
80
|
Phillips DJ, Congdon TR, Gibson MI. Activation of Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol) using a Supramolecular Trigger. Polym Chem 2016; 7:1701-1704. [PMID: 28003855 PMCID: PMC5166974 DOI: 10.1039/c5py01948f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antifreeze (glyco)proteins (AF(G)Ps) have potent ice recrystallisation inhibition (IRI) activity - a desirable phenomenon in applications such as cryopreservation, frozen food and more. In Nature AF(G)P activity is regulated by protein expression levels in response to an environmental stimulus; temperature. However, this level of regulation is not possible in synthetic systems. Here, a synthetic macromolecular mimic is introduced, using supramolecular assembly to regulate activity. Catechol-terminated poly(vinyl alcohol) was synthesised by RAFT polymerization. Upon addition of Fe3+, larger supramolecular star polymers form by assembly with two or three catechols. This increase in molecular weight effectively 'switches on' the IRI activity and is the first example of external control over the function of AFP mimetics. This provides a simple but elegant solution to the challenge of external control of AFP-mimetic function.
Collapse
Affiliation(s)
| | | | - Matthew I. Gibson
- Department of Chemistry and Warwick Medical School, University of
Warwick, Coventry, UK, CV4 7AL
| |
Collapse
|
81
|
Kubyshkin V, Durkin P, Budisa N. Energetic contribution to both acidity and conformational stability in peptide models. NEW J CHEM 2016. [DOI: 10.1039/c5nj03611a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The acidity difference of the amide rotamers has been revised for a large set ofN-acetyl amino acids.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Biocatalysis Group
- Institute of Chemistry
- Technical University of Berlin
- Berlin
- Germany
| | - Patrick Durkin
- Biocatalysis Group
- Institute of Chemistry
- Technical University of Berlin
- Berlin
- Germany
| | - Nediljko Budisa
- Biocatalysis Group
- Institute of Chemistry
- Technical University of Berlin
- Berlin
- Germany
| |
Collapse
|
82
|
Adam MK, Poisson JS, Hu Y, Prasannakumar G, Pottage MJ, Ben RN, Wilkinson BL. Carbohydrate-based surfactants as photocontrollable inhibitors of ice recrystallization. RSC Adv 2016. [DOI: 10.1039/c6ra07030b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report the synthesis and photocontrollable ice recrystallization inhibition (IRI) activity of a panel of carbohydrate-based surfactants.
Collapse
Affiliation(s)
| | | | - Yingxue Hu
- School of Chemistry
- Monash University
- Australia
| | | | | | - Robert N. Ben
- Department of Chemistry
- University of Ottawa
- Canada KN1 6N5
| | - Brendan L. Wilkinson
- School of Chemistry
- Monash University
- Australia
- School of Science and Technology
- University of New England
| |
Collapse
|
83
|
Mitchell DE, Cameron NR, Gibson MI. Rational, yet simple, design and synthesis of an antifreeze-protein inspired polymer for cellular cryopreservation. Chem Commun (Camb) 2015; 51:12977-80. [PMID: 26176027 PMCID: PMC4672748 DOI: 10.1039/c5cc04647e] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022]
Abstract
Antifreeze (glyco) proteins AF(G)Ps are potent ice recrystallization inhibitors, which is a desirable property to enhance cryopreservation of donor tissue/cells. Here we present the rational synthesis of a new, biomimetic, ice-recrystallization inhibiting polymer derived from a cheap commodity polymer, based on an ampholyte structure. The polymer is used to enhance the cryopreservation of red blood cells, demonstrating a macromolecular solution to tissue storage.
Collapse
Affiliation(s)
- Daniel E. Mitchell
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
- MOAC Doctoral Training Centre , University of Warwick , Coventry , CV4 7AL , UK
| | - Neil R. Cameron
- Department of Materials Science and Engineering , Monash University , Australia
- School of Engineering , University of Warwick , UK
| | - Matthew I. Gibson
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
| |
Collapse
|
84
|
Deller RC, Vatish M, Mitchell DA, Gibson MI. Glycerol-Free Cryopreservation of Red Blood Cells Enabled by Ice-Recrystallization-Inhibiting Polymers. ACS Biomater Sci Eng 2015; 1:789-794. [DOI: 10.1021/acsbiomaterials.5b00162] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Manu Vatish
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
85
|
Distinct patterns of Arctic cod (Boreogadus saida) presence and absence in a shallow high Arctic embayment, revealed across open-water and ice-covered periods through acoustic telemetry. Polar Biol 2015. [DOI: 10.1007/s00300-015-1723-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
86
|
Wu J, Rong Y, Wang Z, Zhou Y, Wang S, Zhao B. Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction. Food Chem 2015; 174:621-9. [DOI: 10.1016/j.foodchem.2014.11.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/21/2014] [Accepted: 11/17/2014] [Indexed: 02/03/2023]
|
87
|
Qadeer S, Khan MA, Ansari MS, Rakha BA, Ejaz R, Iqbal R, Younis M, Ullah N, DeVries AL, Akhter S. Efficiency of antifreeze glycoproteins for cryopreservation of Nili-Ravi (Bubalus bubalis) buffalo bull sperm. Anim Reprod Sci 2015; 157:56-62. [PMID: 25863987 DOI: 10.1016/j.anireprosci.2015.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Experiments were conducted to evaluate the effect of Antarctic fish antifreeze glycoproteins, (AFGP) size 1-5 (34-10.5 kDa) and 7-8 (3.2 and 2.4 kDa) in extender on buffalo bull sperm at cooling (4 °C) and at post thawing. Semen was collected from three Nili-Ravi buffalo bulls with artificial vagina for 3 weeks. Qualifying ejaculates from each buffalo bull were diluted (at 37 °C having 50×10(6) sperm/mL) in tris-citric acid extender containing AFGP at 0 (control), 0.1, 1 and 10 μg/mL. An aliquot of diluted semen was evaluated for sperm progressive motility and plasma membrane integrity, while the remaining fraction was cooled to 4 °C in 2 h. Further, an aliquot of cooled semen was evaluated for the previously described variables and the remaining fraction was cryopreserved (-196 °C). After 24 h of storage, straws were thawed at 37 °C for 30 s to assess post-thaw sperm quality. Inclusion of AFGP in the extender did not affect (P>0.05) sperm progressive motility and plasma membrane integrity of buffalo bull sperm at cooling stage (4 °C). However, at post thawing, improvement (P<0.05) in sperm progressive motility and plasma membrane integrity was recorded in extender containing AFGP 1-5 and AFGP 7-8 at 1 μg/mL compared to the control. Percentage of live sperm with an intact acrosome remained similar (P>0.05) in extenders containing different amounts of AFGP and control. In conclusion, supplementation of 1 μg/ml of AFGP in extender improved the motility and plasma membrane integrity of Nili-Ravi buffalo sperm after thawing.
Collapse
Affiliation(s)
- S Qadeer
- Animal Physiology Laboratory, Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan
| | - M A Khan
- Animal Physiology Laboratory, Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan
| | - M S Ansari
- Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - B A Rakha
- Animal Physiology Laboratory, Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan
| | - R Ejaz
- Animal Physiology Laboratory, Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan
| | - R Iqbal
- Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - M Younis
- Semen Production Unit Qadirabad, Sahiwal, Pakistan
| | - N Ullah
- Animal Physiology Laboratory, Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan
| | - Arthur L DeVries
- Department of Physiology and Biophysics, University of Illinois, Urbana, IL 61801, USA
| | - S Akhter
- Animal Physiology Laboratory, Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan.
| |
Collapse
|
88
|
Ustun NS, Turhan S. Antifreeze Proteins: Characteristics, Function, Mechanism of Action, Sources and Application to Foods. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12476] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nebahat Sule Ustun
- Department of Food Engineering; Engineering Faculty; Ondokuz Mayis University; Samsun Turkey
| | - Sadettin Turhan
- Department of Food Engineering; Engineering Faculty; Ondokuz Mayis University; Samsun Turkey
| |
Collapse
|
89
|
Capicciotti CJ, Poisson JS, Boddy CN, Ben RN. Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation. Cryobiology 2015; 70:79-89. [PMID: 25595636 DOI: 10.1016/j.cryobiol.2015.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 01/11/2023]
Abstract
Most antifreeze proteins (AFPs) exhibit two types of "antifreeze activity" - thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity. The mechanism of TH activity has been studied in depth and is the result of an adsorption of AFPs to the surface of ice with an ice-binding face (IBF). In contrast, the mechanism of ice recrystallization and its inhibition is considerably less understood. In this paper, we examine several different antifreeze proteins, glycoproteins and mutants of the Lolium perenne AFP (LpAFP) to understand how IRI activity is modulated independently of TH activity. This study also examines the ability of the various AF(G)Ps to protect HepG2 cells from cryoinjury. Post-thaw cell viabilities are correlated to TH, IRI activity as well as dynamic ice shaping ability and single ice crystal growth progressions. While these results demonstrate that AF(G)Ps are ineffective as cryoprotectants, they emphasize how ice crystal habit and most importantly, ice growth progression affect HepG2 cell survival during cryopreservation.
Collapse
Affiliation(s)
| | - Jessica S Poisson
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Robert N Ben
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
90
|
Carillo S, Casillo A, Pieretti G, Parrilli E, Sannino F, Bayer-Giraldi M, Cosconati S, Novellino E, Ewert M, Deming JW, Lanzetta R, Marino G, Parrilli M, Randazzo A, Tutino ML, Corsaro MM. A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco)proteins. J Am Chem Soc 2015; 137:179-89. [PMID: 25525681 DOI: 10.1021/ja5075954] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The low temperatures of polar regions and high-altitude environments, especially icy habitats, present challenges for many microorganisms. Their ability to live under subfreezing conditions implies the production of compounds conferring cryotolerance. Colwellia psychrerythraea 34H, a γ-proteobacterium isolated from subzero Arctic marine sediments, provides a model for the study of life in cold environments. We report here the identification and detailed molecular primary and secondary structures of capsular polysaccharide from C. psychrerythraea 34H cells. The polymer was isolated in the water layer when cells were extracted by phenol/water and characterized by one- and two-dimensional NMR spectroscopy together with chemical analysis. Molecular mechanics and dynamics calculations were also performed. The polysaccharide consists of a tetrasaccharidic repeating unit containing two amino sugars and two uronic acids bearing threonine as substituent. The structural features of this unique polysaccharide resemble those present in antifreeze proteins and glycoproteins. These results suggest a possible correlation between the capsule structure and the ability of C. psychrerythraea to colonize subfreezing marine environments.
Collapse
Affiliation(s)
- Sara Carillo
- Department of Chemical Sciences, University of Naples Federico II , Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Deshmukh MM, Gadre SR, Cocinero EJ. Stability of conformationally locked free fructose: theoretical and computational insights. NEW J CHEM 2015. [DOI: 10.1039/c5nj02106e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Total stabilization is governed by three predominant factors viz. the sum of energy of all H-bonds, ring strain and anomeric stabilization.
Collapse
Affiliation(s)
- Milind M. Deshmukh
- Department of Chemistry
- Dr. Harisingh Gour Central University
- Sagar, 470003
- India
| | - Shridhar R. Gadre
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208 016
- India
| | - Emilio J. Cocinero
- Departamento de Química Física
- Facultad de Ciencia y Tecnología
- Universidad del País Vasco (UPV-EHU)
- 48080 Bilbao
- Spain
| |
Collapse
|
92
|
Mitchell DE, Lilliman M, Spain SG, Gibson MI. Quantitative study on the antifreeze protein mimetic ice growth inhibition properties of poly(ampholytes) derived from vinyl-based polymers. Biomater Sci 2014; 2:1787-1795. [PMID: 32481956 DOI: 10.1039/c4bm00153b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antifreeze (glyco) proteins (AF(G)Ps) from the blood of polar fish species are extremely potent ice recrystallization inhibitors (IRI), but are difficult to synthesise or extract from natural sources. Despite this challenge, materials which display IRI are appealing due to their ability to enhance cellular cryopreservation, for applications including regenerative and transplantation medicine. Here, poly(ampholytes), which contain a mixture of cationic and anionic side chains are quantitatively evaluated for their IRI activity. Poly(aminoethyl methacrylate), obtained by RAFT polymerization, is functionalised with succinic anhydride to generate the poly(ampholytes). The charge balance of the side chains is shown to be crucial, with only 50 : 50 mixtures having strong IRI activity, which also scales with molecular weight. This is the first example of a non-hydroxylated synthetic polymer with quantifiable IRI activity and raises questions about the mechanism of IRI, as the polymers have no obvious ice-binding motif. The ampholytic structure is shown to be transferable to carbohydrate-centred polymers with activity retained, but poly(betaines) are shown to be inactive.
Collapse
Affiliation(s)
- Daniel E Mitchell
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | | | | |
Collapse
|
93
|
Mallajosyula SS, Vanommeslaeghe K, MacKerell AD. Perturbation of long-range water dynamics as the mechanism for the antifreeze activity of antifreeze glycoprotein. J Phys Chem B 2014; 118:11696-706. [PMID: 25137353 PMCID: PMC4191590 DOI: 10.1021/jp508128d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Very little is known about the mechanism of antifreeze action of antifreeze glycoproteins (AFGPs) present in Antarctic teleost fish. Recent NMR and CD studies assisted with total synthesis of synthetic AFGP variants have provided insight into the structure of short AFGP glycopeptides, though the observations did not yield information on the antifreeze mechanism of action. In this study, we use Hamiltonian replica exchange (HREX) molecular dynamics simulations to probe the structure and surrounding aqueous environments of both the natural (AFGP8) and synthetic (s-AFGP4) AFGPs. AFGPs can adopt both amphiphilic and pseudoamphiphilic conformations, the preference of which is related to the proline content of the peptide. The arrangement of carbohydrates allows the hydroxyl groups on terminal galactose units to form stable water bridges which in turn influence the hydrogen-bond network, structure, and dynamics of the surrounding solvent. Interestingly, these local effects lead to the perturbation of the tetrahedral environment for water molecules in hydration layers far (10.0-12.0 Å) from the AFGPs. This structure-induced alteration of long-range hydration dynamics is proposed to be the major contributor to antifreeze activity, a conclusion that is in line with terahertz spectroscopy experiments. The detailed structure-mechanism correlation provided in this study could lead to the design of better synthetic AFGP variants.
Collapse
Affiliation(s)
- Sairam S Mallajosyula
- Department of Pharmaceutical Sciences, University of Maryland , 20 Penn Street HSF II, Baltimore, Maryland 21201, United States
| | | | | |
Collapse
|
94
|
Kutschan B, Morawetz K, Thoms S. Dynamical mechanism of antifreeze proteins to prevent ice growth. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022711. [PMID: 25215762 DOI: 10.1103/physreve.90.022711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Indexed: 06/03/2023]
Abstract
The fascinating ability of algae, insects, and fishes to survive at temperatures below normal freezing is realized by antifreeze proteins (AFPs). These are surface-active molecules and interact with the diffusive water-ice interface thus preventing complete solidification. We propose a dynamical mechanism on how these proteins inhibit the freezing of water. We apply a Ginzburg-Landau-type approach to describe the phase separation in the two-component system (ice, AFP). The free-energy density involves two fields: one for the ice phase with a low AFP concentration and one for liquid water with a high AFP concentration. The time evolution of the ice reveals microstructures resulting from phase separation in the presence of AFPs. We observed a faster clustering of pre-ice structure connected to a locking of grain size by the action of AFP, which is an essentially dynamical process. The adsorption of additional water molecules is inhibited and the further growth of ice grains stopped. The interfacial energy between ice and water is lowered allowing the AFPs to form smaller critical ice nuclei. Similar to a hysteresis in magnetic materials we observe a thermodynamic hysteresis leading to a nonlinear density dependence of the freezing point depression in agreement with the experiments.
Collapse
Affiliation(s)
- B Kutschan
- Münster University of Applied Science, Stegerwaldstrasse 39, 48565 Steinfurt, Germany
| | - K Morawetz
- Münster University of Applied Science, Stegerwaldstrasse 39, 48565 Steinfurt, Germany and International Institute of Physics (IIP), Federal University of Rio Grande do Norte, Av. Odilon Gomes de Lima 1722, 59078-400 Natal, Brazil and Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - S Thoms
- Alfred Wegener Institut, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| |
Collapse
|
95
|
Ghobadloo SM, Balcerzak AK, Gargaun A, Muharemagic D, Mironov GG, Capicciotti CJ, Briard JG, Ben RN, Berezovski MV. Carbohydrate-based ice recrystallization inhibitors increase infectivity and thermostability of viral vectors. Sci Rep 2014; 4:5903. [PMID: 25078058 PMCID: PMC4116624 DOI: 10.1038/srep05903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/16/2014] [Indexed: 12/28/2022] Open
Abstract
The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL−1 during 40 days, and HSV-1, 2.7 Log10 PFU mL−1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL−1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors.
Collapse
Affiliation(s)
| | - Anna K Balcerzak
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ana Gargaun
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Darija Muharemagic
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Gleb G Mironov
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | - Jennie G Briard
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Robert N Ben
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Maxim V Berezovski
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
96
|
Wu CL, Li BY, Wu JL, Hui CF. The activity of carp muscle-specific creatine kinase at low temperature is enhanced by decreased hydrophobicity of residue 268. Physiol Biochem Zool 2014; 87:507-16. [PMID: 24940915 DOI: 10.1086/676466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract The muscle-specific forms of creatine kinase in rabbit (RM-CK) and carp (M1-CK) exhibit different temperature-dependent functional properties. Replacing the glycine at residue 268 of RM-CK with asparagine increases the enzyme's activity at 10°C. In this study, we investigated how hydrophobicity of residue 268 affects the biochemical properties of RM-CK and M1-CK at low temperature. We generated three mutants of both RM-CK and M1-CK: Asp268, Lys268, and Leu268. The secondary structures of these mutants were similar, as revealed by their circular dichroism spectra. Similar to the Asn268 mutants, the Asp268 and Lys268 mutants of RM-CK and M1-CK exhibited higher specific activities at 10°C and pH 8.0. However, no such effect was observed for the RM-CK and M1-CK Leu268 mutants. While in the presence of cryoprotectant (sucrose or trehalose), the activities of wild-type RM-CK and M1-CK mutant enzymes with a hydrophobic residue at 268 were higher, and the effect was more profound at pH 8.0. It may be inferred that water molecules affect protein conformation around residue 268, thereby influencing protein stability at low temperature.
Collapse
Affiliation(s)
- Chih-Lu Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
97
|
Patel DS, Pendrill R, Mallajosyula SS, Widmalm G, MacKerell AD. Conformational properties of α- or β-(1→6)-linked oligosaccharides: Hamiltonian replica exchange MD simulations and NMR experiments. J Phys Chem B 2014; 118:2851-71. [PMID: 24552401 PMCID: PMC3979472 DOI: 10.1021/jp412051v] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conformational sampling for a set of 10 α- or β-(1→6)-linked oligosaccharides has been studied using explicit solvent Hamiltonian replica exchange (HREX) simulations and NMR spectroscopy techniques. Validation of the force field and simulation methodology is done by comparing calculated transglycosidic J coupling constants and proton-proton distances with the corresponding NMR data. Initial calculations showed poor agreement, for example, with >3 Hz deviation of the calculated (3)J(H5,H6R) values from the experimental data, prompting optimization of the ω torsion angle parameters associated with (1→6)-linkages. The resulting force field is in overall good agreement (i.e., within ∼0.5 Hz deviation) from experimental (3)J(H5,H6R) values, although some small limitations are evident. Detailed hydrogen bonding analysis indicates that most of the compounds lack direct intramolecular H-bonds between the two monosaccharides; however, minor sampling of the O6···HO2' hydrogen bond is present in three compounds. The results verify the role of the gauche effect between O5 and O6 atoms in gluco- and manno-configured pyranosides causing the ω torsion angle to sample an equilibrium between the gt and gg rotamers. Conversely, galacto-configured pyranosides sample a population distribution in equilibrium between gt and tg rotamers, while the gg rotamer populations are minor. Water radial distribution functions suggest decreased accessibility to the O6 atom in the (1→6)-linkage as compared to the O6' atom in the nonreducing sugar. The role of bridging water molecules between two sugar moieties on the distributions of ω torsion angles in oligosaccharides is also explored.
Collapse
Affiliation(s)
- Dhilon S Patel
- Department of Pharmaceutical Sciences, University of Maryland , 20 Penn Street HSF II, Baltimore, Maryland 21201, United States
| | | | | | | | | |
Collapse
|
98
|
Deller RC, Vatish M, Mitchell DA, Gibson MI. Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nat Commun 2014; 5:3244. [DOI: 10.1038/ncomms4244] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 01/13/2014] [Indexed: 12/23/2022] Open
|
99
|
Balcerzak AK, Capicciotti CJ, Briard JG, Ben RN. Designing ice recrystallization inhibitors: from antifreeze (glyco)proteins to small molecules. RSC Adv 2014. [DOI: 10.1039/c4ra06893a] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ice recrystallization occurs during cryopreservation and is correlated with reduced cell viability after thawing.
Collapse
Affiliation(s)
| | | | | | - Robert N. Ben
- Department of Chemistry
- University of Ottawa
- Ottawa, Canada
| |
Collapse
|
100
|
Zhang S, Gao J, Lu Y, Cai S, Qiao X, Wang Y, Yu H. Molecular cloning, sequence analysis and homology modeling of the first caudata amphibian antifreeze-like protein in axolotl (Ambystoma mexicanum). Zoolog Sci 2013; 30:658-62. [PMID: 23915159 DOI: 10.2108/zsj.30.658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antifreeze proteins (AFPs) refer to a class of polypeptides that are produced by certain vertebrates, plants, fungi, and bacteria and which permit their survival in subzero environments. In this study, we report the molecular cloning, sequence analysis and three-dimensional structure of the axolotl antifreeze-like protein (AFLP) by homology modeling of the first caudate amphibian AFLP. We constructed a full-length spleen cDNA library of axolotl (Ambystoma mexicanum). An EST having highest similarity (∼42%) with freeze-responsive liver protein Li16 from Rana sylvatica was identified, and the full-length cDNA was subsequently obtained by RACE-PCR. The axolotl antifreeze-like protein sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 93 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein were 10128.6 Da and 8.97, respectively. The molecular characterization of this gene and its deduced protein were further performed by detailed bioinformatics analysis. The three-dimensional structure of current AFLP was predicted by homology modeling, and the conserved residues required for functionality were identified. The homology model constructed could be of use for effective drug design. This is the first report of an antifreeze-like protein identified from a caudate amphibian.
Collapse
Affiliation(s)
- Songyan Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|