51
|
Hoshina H, Shimada Y, Higuchi T, Kobayashi H, Ida H, Ohashi T. Chaperone effect of sulfated disaccharide from heparin on mutant iduronate-2-sulfatase in mucopolysaccharidosis type II. Mol Genet Metab 2018; 123:118-122. [PMID: 29289480 DOI: 10.1016/j.ymgme.2017.12.428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/01/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022]
Abstract
Small molecules called pharmacological chaperones have been shown to improve the stability, intracellular localization, and function of mutated enzymes in several lysosomal storage diseases, and proposed as promising therapeutic agents for them. However, a chaperone compound for mucopolysaccharidosis type II (MPS II), which is an X-linked lysosomal storage disorder characterized by a deficiency of iduronate-2-sulfatase (IDS) and the accumulation of glycosaminoglycans (GAGs), has still not been developed. Here we focused on the Δ-unsaturated 2-sulfouronic acid-N-sulfoglucosamine (D2S0), which is a sulfated disaccharide derived from heparin, as a candidate compound for a pharmacological chaperone for MPS II, and analyzed the chaperone effect of the saccharide on IDS by using recombinant protein and cells expressing mutated enzyme. When D2S0 was incubated with recombinant human IDS (rhIDS) in vitro, the disaccharide attenuated the thermal degeneration of the enzyme. This effect of D2S0 on the thermal degeneration of rhIDS was enhanced in a dose-dependent manner. D2S0 also increased the residual activity of mutant IDS in patient fibroblasts. Furthermore, D2S0 improved the enzyme activity of IDS mutants derived from six out of seven different mutations in HEK293T cells transiently expressing them. These results indicate that D2S0 is a potential pharmacological chaperone for MPS II.
Collapse
Affiliation(s)
- Hiroo Hoshina
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Takashi Higuchi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hiroyuki Ida
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
52
|
Affiliation(s)
- George M. Burslem
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
53
|
Moradi MT, Karimi A, Lorigooini Z. Alkaloids as the natural anti-influenza virus agents: a systematic review. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1323338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mohammad-Taghi Moradi
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran and
| | - Ali Karimi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
54
|
|
55
|
Samaei-Daryan S, Goliaei B, Ebrahim-Habibi A. Characterization of surface binding sites in glycoside hydrolases: A computational study. J Mol Recognit 2017; 30. [PMID: 28295743 DOI: 10.1002/jmr.2624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/09/2017] [Accepted: 02/18/2017] [Indexed: 11/05/2022]
Abstract
Structural properties of carbohydrate surface binding sites (SBSs) were investigated with computational methods. Eighty-five SBSs of 44 enzymes in 119 Protein Data Bank (PDB) files were collected as a dataset. On the basis of SBSs shape, they were divided into 3 categories: flat surfaces, clefts, and cavities (types A, B, and C, respectively). Ligand varieties showed the correlation between shape of SBSs and ligands size. To reduce cut-off differences in each SBSs with different ligand size, molecular docking were performed. Molecular docking results were used to refine SBSs classification and binding sites cut-off. Docking results predicted putative ligands positions and displayed dependence of the ligands binding mode to the structural type of SBSs. Physicochemical properties of SBSs were calculated for all docking results with YASARA Structure. The results showed that all SBSs are hydrophilic, while their charges could vary and depended to ligand size and defined cut-off. Surface binding sites type B had highest average values of solvent accessible surface area. Analysis of interactions showed that hydrophobic interactions occur more than hydrogen bonds, which is related to the presence of aromatic residues and carbohydrates interactions.
Collapse
Affiliation(s)
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
56
|
Ligand-promoted protein folding by biased kinetic partitioning. Nat Chem Biol 2017; 13:369-371. [PMID: 28218913 PMCID: PMC5362304 DOI: 10.1038/nchembio.2303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023]
Abstract
Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.
Collapse
|
57
|
Sarazin H, Prudent S, Defoin A, Tarnus C. Evaluation of 6-Deoxy-amino-sugars as Potent Glycosidase Inhibitors. Importance of the CH 2
OH(6) Group for Enzyme-Substrate Interaction. ChemistrySelect 2017. [DOI: 10.1002/slct.201601961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hervé Sarazin
- Université de Haute-Alsace; Institut de Chimie J.-B. Donnet; 3bis rue Alfred Werner. F- 68093 Mulhouse Cedex France
- Getima MSA
| | - Sandrine Prudent
- Université de Haute-Alsace; Institut de Chimie J.-B. Donnet; 3bis rue Alfred Werner. F- 68093 Mulhouse Cedex France
- Novartis; Centre de Biotechnologie; 10 rue de l'Industrie, F- 68330 Huningue
| | - Albert Defoin
- Université de Haute-Alsace; Institut de Chimie J.-B. Donnet; 3bis rue Alfred Werner. F- 68093 Mulhouse Cedex France
| | - Céline Tarnus
- Université de Haute-Alsace; Institut de Chimie J.-B. Donnet; 3bis rue Alfred Werner. F- 68093 Mulhouse Cedex France
| |
Collapse
|
58
|
Rapid preparation of (3R,4S,5R) polyhydroxylated pyrrolidine-based libraries to discover a pharmacological chaperone for treatment of Fabry disease. Eur J Med Chem 2017; 126:1-6. [DOI: 10.1016/j.ejmech.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/30/2022]
|
59
|
Citro V, Cammisa M, Liguori L, Cimmaruta C, Lukas J, Cubellis MV, Andreotti G. The Large Phenotypic Spectrum of Fabry Disease Requires Graduated Diagnosis and Personalized Therapy: A Meta-Analysis Can Help to Differentiate Missense Mutations. Int J Mol Sci 2016; 17:ijms17122010. [PMID: 27916943 PMCID: PMC5187810 DOI: 10.3390/ijms17122010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/28/2022] Open
Abstract
Fabry disease is caused by mutations in the GLA gene and is characterized by a large genotypic and phenotypic spectrum. Missense mutations pose a special problem for graduating diagnosis and choosing a cost-effective therapy. Some mutants retain enzymatic activity, but are less stable than the wild type protein. These mutants can be stabilized by small molecules which are defined as pharmacological chaperones. The first chaperone to reach clinical trial is 1-deoxygalactonojirimycin, but others have been tested in vitro. Residual activity of GLA mutants has been measured in the presence or absence of pharmacological chaperones by several authors. Data obtained from transfected cells correlate with those obtained in cells derived from patients, regardless of whether 1-deoxygalactonojirimycin was present or not. The extent to which missense mutations respond to 1-deoxygalactonojirimycin is variable and a reference table of the results obtained by independent groups that is provided with this paper can facilitate the choice of eligible patients. A review of other pharmacological chaperones is provided as well. Frequent mutations can have residual activity as low as one-fourth of normal enzyme in vitro. The reference table with residual activity of the mutants facilitates the identification of non-pathological variants.
Collapse
Affiliation(s)
- Valentina Citro
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy.
| | - Marco Cammisa
- Istituto di Genetica e Biofisica 'A. Buzzati-Traverso', CNR, 80131 Napoli, Italy.
| | | | - Chiara Cimmaruta
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy.
- Istituto di Chimica Biomolecolare, CNR, 80078 Pozzuoli, Italy.
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neuroregeneration, University Rostock Medical Center, 18147 Rostock, Germany.
| | | | | |
Collapse
|
60
|
Kuech EM, Brogden G, Naim HY. Alterations in membrane trafficking and pathophysiological implications in lysosomal storage disorders. Biochimie 2016; 130:152-162. [DOI: 10.1016/j.biochi.2016.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
|
61
|
Stütz AE, Wrodnigg TM. Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as Correcting Pharmacological Chaperones. Adv Carbohydr Chem Biochem 2016; 73:225-302. [PMID: 27816107 DOI: 10.1016/bs.accb.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lysosomal storage diseases are hereditary disorders caused by mutations on genes encoding for one of the more than fifty lysosomal enzymes involved in the highly ordered degradation cascades of glycans, glycoconjugates, and other complex biomolecules in the lysosome. Several of these metabolic disorders are associated with the absence or the lack of activity of carbohydrate-processing enzymes in this cell compartment. In a recently introduced therapy concept, for susceptible mutants, small substrate-related molecules (so-called pharmacological chaperones), such as reversible inhibitors of these enzymes, may serve as templates for the correct folding and transport of the respective protein mutant, thus improving its concentration and, consequently, its enzymatic activity in the lysosome. Carbohydrate-processing enzymes in the lysosome, related lysosomal diseases, and the scope and limitations of reported reversible inhibitors as pharmacological chaperones are discussed with a view to possibly extending and improving research efforts in this area of orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
62
|
Cheng WC, Wang JH, Li HY, Lu SJ, Hu JM, Yun WY, Chiu CH, Yang WB, Chien YH, Hwu WL. Bioevaluation of sixteen ADMDP stereoisomers toward alpha-galactosidase A: Development of a new pharmacological chaperone for the treatment of Fabry disease and potential enhancement of enzyme replacement therapy efficiency. Eur J Med Chem 2016; 123:14-20. [PMID: 27474919 DOI: 10.1016/j.ejmech.2016.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022]
Abstract
A unique molecular library consisting of all sixteen synthetic ADMDP (1-aminodeoxy-DMDP) stereoisomers has been prepared and evaluated for inhibitory activity against α-Gal A, and ability to impart thermal stabilization of this enzyme. The results of this testing led us to develop a novel pharmacological chaperone for the treatment of Fabry disease. 3-Epimer ADMDP was found to be an effective pharmacological chaperone, able to rescue α-Gal A activity in the lymphoblast of the N215S Fabry patient-derived cell line, without impairment of cellular β-galactosidase activity. When 3-epimer ADMDP was administered with rh-α-Gal A (enzyme replacement therapy) for the treatment of Fabry patient-derived cell lines, improvements in the efficacy of rh-α-Gal A was observed, which suggests this small molecule can also provide clinical benefit of enzyme replacement therapy in Fabry disease.
Collapse
Affiliation(s)
- Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, National Cheng-Kung University, 1, University Road, Tainan 701, Taiwan.
| | - Jen-Hon Wang
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, National Cheng-Kung University, 1, University Road, Tainan 701, Taiwan
| | - Huang-Yi Li
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Sheng-Jhih Lu
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Jia-Ming Hu
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Wen-Yi Yun
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Cheng-Hsin Chiu
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Wen-Bin Yang
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
63
|
|
64
|
Oral Migalastat HCl Leads to Greater Systemic Exposure and Tissue Levels of Active α-Galactosidase A in Fabry Patients when Co-Administered with Infused Agalsidase. PLoS One 2015; 10:e0134341. [PMID: 26252393 PMCID: PMC4529213 DOI: 10.1371/journal.pone.0134341] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Migalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified. TRIAL REGISTRATION ClinicalTrials.gov NCT01196871.
Collapse
|
65
|
Hill CH, Viuff AH, Spratley SJ, Salamone S, Christensen SH, Read RJ, Moriarty NW, Jensen HH, Deane JE. Azasugar inhibitors as pharmacological chaperones for Krabbe disease. Chem Sci 2015; 6:3075-3086. [PMID: 26029356 PMCID: PMC4445328 DOI: 10.1039/c5sc00754b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/20/2015] [Indexed: 12/21/2022] Open
Abstract
Krabbe disease is a devastating neurodegenerative disorder characterized by rapid demyelination of nerve fibers. This disease is caused by defects in the lysosomal enzyme β-galactocerebrosidase (GALC), which hydrolyzes the terminal galactose from glycosphingolipids. These lipids are essential components of eukaryotic cell membranes: substrates of GALC include galactocerebroside, the primary lipid component of myelin, and psychosine, a cytotoxic metabolite. Mutations of GALC that cause misfolding of the protein may be responsive to pharmacological chaperone therapy (PCT), whereby small molecules are used to stabilize these mutant proteins, thus correcting trafficking defects and increasing residual catabolic activity in cells. Here we describe a new approach for the synthesis of galacto-configured azasugars and the characterization of their interaction with GALC using biophysical, biochemical and crystallographic methods. We identify that the global stabilization of GALC conferred by azasugar derivatives, measured by fluorescence-based thermal shift assays, is directly related to their binding affinity, measured by enzyme inhibition. X-ray crystal structures of these molecules bound in the GALC active site reveal which residues participate in stabilizing interactions, show how potency is achieved and illustrate the penalties of aza/iminosugar ring distortion. The structure-activity relationships described here identify the key physical properties required of pharmacological chaperones for Krabbe disease and highlight the potential of azasugars as stabilizing agents for future enzyme replacement therapies. This work lays the foundation for new drug-based treatments of Krabbe disease.
Collapse
Affiliation(s)
- Chris H Hill
- Department of Haematology , Cambridge Institute for Medical Research , University of Cambridge , Cambridge CB2 0XY , UK .
| | - Agnete H Viuff
- Department of Chemistry , Aarhus University , Langelandsgade 140, 8000 Aarhus C. , Denmark .
| | - Samantha J Spratley
- Department of Haematology , Cambridge Institute for Medical Research , University of Cambridge , Cambridge CB2 0XY , UK .
| | - Stéphane Salamone
- Department of Chemistry , Aarhus University , Langelandsgade 140, 8000 Aarhus C. , Denmark .
| | - Stig H Christensen
- Department of Chemistry , Aarhus University , Langelandsgade 140, 8000 Aarhus C. , Denmark .
| | - Randy J Read
- Department of Haematology , Cambridge Institute for Medical Research , University of Cambridge , Cambridge CB2 0XY , UK .
| | - Nigel W Moriarty
- Physical Biosciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Henrik H Jensen
- Department of Chemistry , Aarhus University , Langelandsgade 140, 8000 Aarhus C. , Denmark .
| | - Janet E Deane
- Department of Haematology , Cambridge Institute for Medical Research , University of Cambridge , Cambridge CB2 0XY , UK .
| |
Collapse
|
66
|
Parenti G, Andria G, Valenzano KJ. Pharmacological Chaperone Therapy: Preclinical Development, Clinical Translation, and Prospects for the Treatment of Lysosomal Storage Disorders. Mol Ther 2015; 23:1138-1148. [PMID: 25881001 DOI: 10.1038/mt.2015.62] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Lysosomal storage disorders (LSDs) are a group of inborn metabolic diseases caused by mutations in genes that encode proteins involved in different lysosomal functions, in most instances acidic hydrolases. Different therapeutic approaches have been developed to treat these disorders. Pharmacological chaperone therapy (PCT) is an emerging approach based on small-molecule ligands that selectively bind and stabilize mutant enzymes, increase their cellular levels, and improve lysosomal trafficking and activity. Compared to other approaches, PCT shows advantages, particularly in terms of oral administration, broad biodistribution, and positive impact on patients' quality of life. After preclinical in vitro and in vivo studies, PCT is now being translated in the first clinical trials, either as monotherapy or in combination with enzyme replacement therapy, for some of the most prevalent LSDs. For some LSDs, the results of the first clinical trials are encouraging and warrant further development. Future research in the field of PCT will be directed toward the identification of novel chaperones, including new allosteric drugs, and the exploitation of synergies between chaperone treatment and other therapeutic approaches.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| | - Generoso Andria
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | | |
Collapse
|
67
|
Hollak CEM, Weinreb NJ. The attenuated/late onset lysosomal storage disorders: Therapeutic goals and indications for enzyme replacement treatment in Gaucher and Fabry disease. Best Pract Res Clin Endocrinol Metab 2015; 29:205-18. [PMID: 25987174 DOI: 10.1016/j.beem.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enzyme replacement therapies have been developed and authorized for commercial use for six different lysosomal storage disorders. For Gaucher disease, Fabry disease and mucopolysaccharidosis type 1, disease-specific treatments have been available for more than a decade. Although long term follow-up data are still sparse, therapeutic goals for patients with Gaucher disease and Fabry disease have been formulated and published for both adults and children. Without adaptation or modification, these goals are often applied in clinical research and in routine patient care across the entire phenotypic spectrum of disease, although in practice, patients commonly manifest high variability in clinical presentation and course of the illness. In this context, establishing goals for the follow-up and treatment of late onset/attenuated phenotypes is particularly challenging. In this chapter, we review current therapeutic goals for Gaucher disease and Fabry disease and discuss approaches for those with attenuated disease manifestations.
Collapse
Affiliation(s)
- Carla E M Hollak
- Department of Internal Medicine/Endocrinology and Metabolism, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Dr John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL, USA.
| | - Neal J Weinreb
- University Research Foundation for Lysosomal Storage Diseases, Coral Springs, FL, USA
| |
Collapse
|
68
|
Johnson FK, Mudd PN, Janmohamed SG. Relative bioavailability and the effect of meal type and timing on the pharmacokinetics of migalastat in healthy volunteers. Clin Pharmacol Drug Dev 2014; 4:193-202. [DOI: 10.1002/cpdd.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/10/2014] [Indexed: 11/12/2022]
|
69
|
Enzyme enhancers for the treatment of Fabry and Pompe disease. Mol Ther 2014; 23:456-64. [PMID: 25409744 DOI: 10.1038/mt.2014.224] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022] Open
Abstract
Lysosomal storage disorders (LSD) are a group of heterogeneous diseases caused by compromised enzyme function leading to multiple organ failure. Therapeutic approaches involve enzyme replacement (ERT), which is effective for a substantial fraction of patients. However, there are still concerns about a number of issues including tissue penetrance, generation of host antibodies against the therapeutic enzyme, and financial aspects, which render this therapy suboptimal for many cases. Treatment with pharmacological chaperones (PC) was recognized as a possible alternative to ERT, because a great number of mutations do not completely abolish enzyme function, but rather trigger degradation in the endoplasmic reticulum. The theory behind PC is that they can stabilize enzymes with remaining function, avoid degradation and thereby ameliorate disease symptoms. We tested several compounds in order to identify novel small molecules that prevent premature degradation of the mutant lysosomal enzymes α-galactosidase A (for Fabry disease (FD)) and acid α-glucosidase (GAA) (for Pompe disease (PD)). We discovered that the expectorant Ambroxol when used in conjunction with known PC resulted in a significant enhancement of mutant α-galactosidase A and GAA activities. Rosiglitazone was effective on α-galactosidase A either as a monotherapy or when administered in combination with the PC 1-deoxygalactonojirimycin. We therefore propose both drugs as potential enhancers of pharmacological chaperones in FD and PD to improve current treatment strategies.
Collapse
|
70
|
Soler A, Garrabou X, Hernández K, Gutiérrez ML, Busto E, Bujons J, Parella T, Joglar J, Clapés P. Sequential Biocatalytic Aldol Reactions in Multistep Asymmetric Synthesis: Pipecolic Acid, Piperidine and Pyrrolidine (Homo)Iminocyclitol Derivatives from Achiral Building Blocks. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
71
|
|
72
|
Yu Y, Mena-Barragán T, Higaki K, Johnson JL, Drury JE, Lieberman RL, Nakasone N, Ninomiya H, Tsukimura T, Sakuraba H, Suzuki Y, Nanba E, Mellet CO, García Fernández JM, Ohno K. Molecular basis of 1-deoxygalactonojirimycin arylthiourea binding to human α-galactosidase a: pharmacological chaperoning efficacy on Fabry disease mutants. ACS Chem Biol 2014; 9:1460-9. [PMID: 24783948 DOI: 10.1021/cb500143h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the GLA gene often leading to missense α-galactosidase A (α-Gal A) variants that undergo premature endoplasmic reticulum-associated degradation due to folding defects. We have synthesized and characterized a new family of neutral amphiphilic pharmacological chaperones, namely 1-deoxygalactonojirimycin-arylthioureas (DGJ-ArTs), capable of stabilizing α-Gal A and restoring trafficking. Binding to the enzyme is reinforced by a strong hydrogen bond involving the aryl-N'H thiourea proton and the catalytic aspartic acid acid D231 of α-Gal A, as confirmed by a 2.55 Å resolution cocrystal structure. Selected candidates enhanced α-Gal A activity and ameliorate globotriaosylceramide (Gb3) accumulation and autophagy impairments in FD cell cultures. Moreover, they acted synergistically with the proteostasis regulator 4-phenylbutyric acid, appearing to be promising leads as pharmacological chaperones for FD.
Collapse
Affiliation(s)
- Yi Yu
- Division
of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
- Division
of Child Neurology, Institute of Neurological Sciences, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Teresa Mena-Barragán
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | - Katsumi Higaki
- Division
of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | - Jennifer L. Johnson
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, Georgia United States
| | - Jason E. Drury
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, Georgia United States
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, Georgia United States
| | - Naoe Nakasone
- Department
of Biomedical Regulation, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Haruaki Ninomiya
- Department
of Biomedical Regulation, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Takahiro Tsukimura
- Department
of Functional Bioanalysis, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Hitoshi Sakuraba
- Department
of Clinical Genetics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Yoshiyuki Suzuki
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-0057, Japan
| | - Eiji Nanba
- Division
of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | - Carmen Ortiz Mellet
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | | | - Kousaku Ohno
- Division
of Child Neurology, Institute of Neurological Sciences, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| |
Collapse
|
73
|
Glawar AFG, Jenkinson SF, Newberry SJ, Thompson AL, Nakagawa S, Yoshihara A, Akimitsu K, Izumori K, Butters TD, Kato A, Fleet GWJ. An approach to 8 stereoisomers of homonojirimycin from (D)-glucose via kinetic & thermodynamic azido-γ-lactones. Org Biomol Chem 2014; 11:6886-99. [PMID: 23963282 DOI: 10.1039/c3ob41334a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structures were obtained for the two C2 epimeric azido-γ-lactones 2-azido-2-deoxy-3,5:6,7-di-O-isopropylidene-d-glycero-d-ido-heptono-1,4-lactone and 2-azido-2-deoxy-3,5:6,7-di-O-isopropylidene-d-glycero-d-gulo-heptono-1,4-lactone prepared from kinetic and thermodynamic azide displacements of a triflate derived from d-glucoheptonolactone. Azido-γ-lactones are very useful intermediates in the synthesis of iminosugars and polyhydroxylated amino acids. In this study two epimeric azido-heptitols allow biotechnological transformations via Izumoring techniques to 8 of the 16 possible homonojirimycin analogues, 5 of which were isolated pure because of the lack of stereoselectivity of the final reductive amination. A side-by-side glycosidase inhibition profile of 11 of the possible 16 HNJ stereoisomers derived from d-glucose and d-mannose is presented.
Collapse
Affiliation(s)
- Andreas F G Glawar
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
High-Yield Production of Alpha-Galactosidase Excreted fromPenicillium ChrysogenumandAspergillus Niger. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.2478/v10133-010-0015-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
75
|
Docking and SAR studies of calystegines: binding orientation and influence on pharmacological chaperone effects for Gaucher's disease. Bioorg Med Chem 2014; 22:2435-41. [PMID: 24657053 DOI: 10.1016/j.bmc.2014.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/21/2022]
Abstract
We report on the identification of the required configuration and binding orientation of nor-tropane alkaloid calystegines against β-glucocerebrosidase. Calystegine B2 is a potent competitive inhibitor of human lysosomal β-glucocerebrosidase with Ki value of 3.3 μM. A molecular docking study revealed that calystegine B2 had a favorable van der Waals interactions (Phe128, Trp179, and Phe246) and the hydrogen bonding (Glu235, Glu340, Asp127, Trp179, Asn234, Trp381 and Asn396) was similar to that of isofagomine. All calystegine isomers bound into the same active site as calystegine B2 and the essential hydrogen bonds formed to Asp127, Glu235 and Glu340 were maintained. However, their binding orientations were obviously different. Calystegine A3 bound to β-glucocerebrosidase with the same orientations as calystegine B2 (Type 1), while calystegine B3 and B4 had different binding orientations (Type 2). It is noteworthy that Type 1 orientated calystegines B2 and A3 effectively stabilized β-glucocerebrosidase, and consequently increased intracellular β-glucocerebrosidase activities in N370S fibroblasts, while Type 2 orientated calystegines B3 and B4 could not keep the enzyme activity. These results clearly indicate that the binding orientations of calystegines are changed by the configuration of the hydroxyl groups on the nor-tropane ring and the suitable binding orientation is a requirement for achieving a strong affinity to β-glucocerebrosidase.
Collapse
|
76
|
Hill CH, Graham SC, Read RJ, Deane JE. Structural snapshots illustrate the catalytic cycle of β-galactocerebrosidase, the defective enzyme in Krabbe disease. Proc Natl Acad Sci U S A 2013; 110:20479-84. [PMID: 24297913 PMCID: PMC3870757 DOI: 10.1073/pnas.1311990110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycosphingolipids are ubiquitous components of mammalian cell membranes, and defects in their catabolism by lysosomal enzymes cause a diverse array of diseases. Deficiencies in the enzyme β-galactocerebrosidase (GALC) cause Krabbe disease, a devastating genetic disorder characterized by widespread demyelination and rapid, fatal neurodegeneration. Here, we present a series of high-resolution crystal structures that illustrate key steps in the catalytic cycle of GALC. We have captured a snapshot of the short-lived enzyme-substrate complex illustrating how wild-type GALC binds a bona fide substrate. We have extensively characterized the enzyme kinetics of GALC with this substrate and shown that the enzyme is active in crystallo by determining the structure of the enzyme-product complex following extended soaking of the crystals with this same substrate. We have also determined the structure of a covalent intermediate that, together with the enzyme-substrate and enzyme-product complexes, reveals conformational changes accompanying the catalytic steps and provides key mechanistic insights, laying the foundation for future design of pharmacological chaperones.
Collapse
Affiliation(s)
- Chris H. Hill
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom; and
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom; and
| | - Janet E. Deane
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom; and
| |
Collapse
|
77
|
Petäjä-Repo UE, Lackman JJ. Targeting opioid receptors with pharmacological chaperones. Pharmacol Res 2013; 83:52-62. [PMID: 24355364 DOI: 10.1016/j.phrs.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
Abstract
G protein-coupled receptors (GPCRs) are polytopic membrane proteins that have a pivotal role in cellular signaling. Like other membrane proteins, they fold in the endoplasmic reticulum (ER) before they are transported to the plasma membrane. The ER quality control monitors the folding process and misfolded proteins and slowly folding intermediates are targeted to degradation in the cytosol via the ubiquitin-proteasome pathway. The high efficiency of the quality control machinery may lead to the disposal of potentially functional receptors. This is the major underlying course for loss-of-function conformational diseases, such as retinitis pigmentosa, nephrogenic diabetes insipidus and early onset obesity, which involve mutant GPCRs. During the past decade, it has become increasingly evident that small-molecular lipophilic and pharmacologically selective receptor ligands, called pharmacological chaperones (PCs), can rescue these mutant receptors from degradation by stabilizing newly synthesized receptors in the ER and enhancing their transport to the cell surface. This has raised the interesting prospect that PCs might have therapeutic value for the treatment of conformational diseases. At the same time, accumulating evidence has indicated that wild-type receptors might also be targeted by PCs, widening their therapeutic potential. This review focuses on one GPCR subfamily, opioid receptors that have been useful models to unravel the mechanism of action of PCs. In contrast to most other GPCRs, compounds that act as PCs for opioid receptors, including widely used opioid drugs, target wild-type receptors and their common natural variants.
Collapse
Affiliation(s)
- Ulla E Petäjä-Repo
- Department of Anatomy and Cell Biology and Medical Research Center Oulu, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland.
| | - Jarkko J Lackman
- Department of Anatomy and Cell Biology and Medical Research Center Oulu, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
78
|
Sharif M, Pews-Davtyan A, Lukas J, Schranck J, Langer P, Rolfs A, Beller M. Palladium-Catalyzed Carbonylative Transformations of Bromhexine into Bioactive Compounds as Glucocerebrosidase Inhibitors. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301180] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
79
|
Calamini B, Morimoto RI. Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem 2013; 12:2623-40. [PMID: 23339312 DOI: 10.2174/1568026611212220014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation are widely implicated in an increasing number of human diseases providing for new therapeutic opportunities targeting protein homeostasis (proteostasis). The cellular response to proteotoxicity is highly regulated by stress signaling pathways, molecular chaperones, transport and clearance machineries that function as a proteostasis network (PN) to protect the stability and functional properties of the proteome. Consequently, the PN is essential at the cellular and organismal level for development and lifespan. However, when challenged during aging, stress, and disease, the folding and clearance machineries can become compromised leading to both gain-of-function and loss-of-function proteinopathies. Here, we assess the role of small molecules that activate the heat shock response, the unfolded protein response, and clearance mechanisms to increase PN capacity and protect cellular proteostasis against proteotoxicity. We propose that this strategy to enhance cell stress pathways and chaperone activity establishes a cytoprotective state against misfolding and/or aggregation and represents a promising therapeutic avenue to prevent the cellular damage associated with the variety of protein conformational diseases.
Collapse
Affiliation(s)
- Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University, Durham, NC, USA
| | | |
Collapse
|
80
|
Cheng WC, Weng CY, Yun WY, Chang SY, Lin YC, Tsai FJ, Huang FY, Chen YR. Rapid modifications of N-substitution in iminosugars: Development of new β-glucocerebrosidase inhibitors and pharmacological chaperones for Gaucher disease. Bioorg Med Chem 2013; 21:5021-8. [DOI: 10.1016/j.bmc.2013.06.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 12/21/2022]
|
81
|
Kumar KSA, Rathee JS, Subramanian M, Chattopadhyay S. Divergent Synthesis of 4-epi-Fagomine, 3,4-Dihydroxypipecolic Acid, and a Dihydroxyindolizidine and Their β-Galactosidase Inhibitory and Immunomodulatory Activities. J Org Chem 2013; 78:7406-13. [DOI: 10.1021/jo400448p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- K. S. Ajish Kumar
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - J. S. Rathee
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - M. Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S. Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
82
|
Boyd RE, Lee G, Rybczynski P, Benjamin ER, Khanna R, Wustman BA, Valenzano KJ. Pharmacological chaperones as therapeutics for lysosomal storage diseases. J Med Chem 2013; 56:2705-25. [PMID: 23363020 DOI: 10.1021/jm301557k] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lysosomal enzymes are responsible for the degradation of a wide variety of glycolipids, oligosaccharides, proteins, and glycoproteins. Inherited mutations in the genes that encode these proteins can lead to reduced stability of newly synthesized lysosomal enzymes. While often catalytically competent, the mutated enzymes are unable to efficiently pass the quality control mechanisms of the endoplasmic reticulum, resulting in reduced lysosomal trafficking, substrate accumulation, and cellular dysfunction. Pharmacological chaperones (PCs) are small molecules that bind and stabilize mutant lysosomal enzymes, thereby allowing proper cellular translocation. Such compounds have been shown to increase enzyme activity and reduce substrate burden in a number of preclinical models and clinical studies. In this Perspective, we review several of the lysosomal diseases for which PCs have been studied and the SAR of the various classes of molecules.
Collapse
Affiliation(s)
- Robert E Boyd
- Amicus Therapeutics, 1 Cedar Brook Drive, Cranbury, New Jersey 08512, United States.
| | | | | | | | | | | | | |
Collapse
|
83
|
Young-Gqamana B, Brignol N, Chang HH, Khanna R, Soska R, Fuller M, Sitaraman SA, Germain DP, Giugliani R, Hughes DA, Mehta A, Nicholls K, Boudes P, Lockhart DJ, Valenzano KJ, Benjamin ER. Migalastat HCl reduces globotriaosylsphingosine (lyso-Gb3) in Fabry transgenic mice and in the plasma of Fabry patients. PLoS One 2013; 8:e57631. [PMID: 23472096 PMCID: PMC3589404 DOI: 10.1371/journal.pone.0057631] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/22/2013] [Indexed: 11/18/2022] Open
Abstract
Fabry disease (FD) results from mutations in the gene (GLA) that encodes the lysosomal enzyme α-galactosidase A (α-Gal A), and involves pathological accumulation of globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb3). Migalastat hydrochloride (GR181413A) is a pharmacological chaperone that selectively binds, stabilizes, and increases cellular levels of α-Gal A. Oral administration of migalastat HCl reduces tissue GL-3 in Fabry transgenic mice, and in urine and kidneys of some FD patients. A liquid chromatography-tandem mass spectrometry method was developed to measure lyso-Gb3 in mouse tissues and human plasma. Oral administration of migalastat HCl to transgenic mice reduced elevated lyso-Gb3 levels up to 64%, 59%, and 81% in kidney, heart, and skin, respectively, generally equal to or greater than observed for GL-3. Furthermore, baseline plasma lyso-Gb3 levels were markedly elevated in six male FD patients enrolled in Phase 2 studies. Oral administration of migalastat HCl (150 mg QOD) reduced urine GL-3 and plasma lyso-Gb3 in three subjects (range: 15% to 46% within 48 weeks of treatment). In contrast, three showed no reductions in either substrate. These results suggest that measurement of tissue and/or plasma lyso-Gb3 is feasible and may be warranted in future studies of migalastat HCl or other new potential therapies for FD.
Collapse
Affiliation(s)
- Brandy Young-Gqamana
- University of Cape Town, Institute of Infectious Disease and Molecular Medicine, Division of Medical Biochemistry, Cape Town, South Africa
| | - Nastry Brignol
- Amicus Therapeutics, Cranbury, New Jersey, United States of America
| | - Hui-Hwa Chang
- Amicus Therapeutics, Cranbury, New Jersey, United States of America
| | - Richie Khanna
- Amicus Therapeutics, Cranbury, New Jersey, United States of America
| | - Rebecca Soska
- Amicus Therapeutics, Cranbury, New Jersey, United States of America
| | - Maria Fuller
- Lysosomal Diseases Research Unit, South Australia Pathology at Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | | | - Dominique P. Germain
- Division of Medical Genetics, University of Versailles – Saint Quentin en Yvelines, Hôpital Raymond Poincaré (Assistance Publique - Hôpitaux de Paris), Garches, France
| | - Roberto Giugliani
- Medical Genetics Service, Clinic Hospital of Porto Alegre Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Derralynn A. Hughes
- Lysosomal Storage Disorders Unit, Department of Academic Haematology, Royal Free Hospital and University College Medical School, London, United Kingdom
| | - Atul Mehta
- Lysosomal Storage Disorders Unit, Department of Academic Haematology, Royal Free Hospital and University College Medical School, London, United Kingdom
| | - Kathy Nicholls
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Pol Boudes
- Amicus Therapeutics, Cranbury, New Jersey, United States of America
| | | | | | - Elfrida R. Benjamin
- Amicus Therapeutics, Cranbury, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
84
|
Johnson FK, Mudd PN, Bragat A, Adera M, Boudes P. Pharmacokinetics and Safety of Migalastat HCl and Effects on Agalsidase Activity in Healthy Volunteers. Clin Pharmacol Drug Dev 2013; 2:120-32. [PMID: 27121667 DOI: 10.1002/cpdd.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/14/2012] [Indexed: 11/11/2022]
Abstract
Migalastat HCl is an investigational, oral treatment for Fabry disease, an X-linked lysosomal storage disorder. Four Phase 1 studies were conducted to determine the pharmacokinetics, pharmacodynamics, safety, and tolerability of migalastat. Healthy volunteers (N = 124), 18-55 years old, received migalastat HCl single (25 mg-2000 mg) or twice-daily doses (50 mg, 150 mg) for 7 days in a double-blind, placebo-controlled fashion. Migalastat pharmacokinetics were dose-proportional (AUC∞ range: 1129-72 838 ng h/mL, Cmax range: 200.5-13 844 ng/mL, t1/2 3-4 hours). Steady state was achieved by Day 7. Up to 67% of the dose was excreted as unchanged drug in urine. Increased α-Gal A activity was dose related. No abnormal cardiac effects, including prolonged QTc intervals, were observed. The pharmacokinetics of migalastat were well characterized in these Phase 1 studies conducted healthy volunteers. The 150 mg dose of migalastat HCl administered BID for 7 days was generally safe and well tolerated. A TQT study demonstrated lack of a positive signal at therapeutic and supra-therapeutic doses. Increases in α-Gal A enzyme activity for the 150 mg dose observed in healthy subjects suggested a successful proof of mechanism for further investigations.
Collapse
Affiliation(s)
| | - Paul N Mudd
- Clinical Pharmacology, GlaxoSmithKline, Research Triangle Park, NC, USA
| | | | - Mathews Adera
- Clinical Development, Amicus Therapeutics, Cranbury, NJ, USA
| | - Pol Boudes
- Clinical Development, Amicus Therapeutics, Cranbury, NJ, USA
| |
Collapse
|
85
|
Optimization of Culture Conditions for Some Identified Fungal Species and Stability Profile of α-Galactosidase Produced. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2013; 2013:920759. [PMID: 23424684 PMCID: PMC3568913 DOI: 10.1155/2013/920759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 11/17/2022]
Abstract
Microbial α-galactosidase preparations have implications in medicine and in the modification of various agricultural products as well. In this paper, four isolated fungal strains such as AL-3, WF-3, WP-4 and CL-4 from rhizospheric soil identified as Penicillium glabrum (AL-3), Trichoderma evansii (WF-3), Lasiodiplodia theobromae (WP-4) and Penicillium flavus (CL-4) based on their morphology and microscopic examinations, are screened for their potential towards α-galactosidases production. The culture conditions have been optimized and supplemented with specific carbon substrates (1%, w/v) by using galactose-containing polysaccharides like guar gum (GG), soya casein (SC) and wheat straw (WS). All strains significantly released galactose from GG, showing maximum production of enzyme at 7th day of incubation in rotary shaker (120 rpm) that is 190.3, 174.5, 93.9 and 28.8 U/mL, respectively, followed by SC and WS. The enzyme activity was stable up to 7days at −20°C, then after it declines. This investigation reveals that AL-3 show optimum enzyme activity in guar gum media, whereas WF-3 exhibited greater enzyme stability. Results indicated that the secretion of proteins, enzyme and the stability of enzyme activity varied not only from one strain to another but also differed in their preferences of utilization of different substrates.
Collapse
|
86
|
Guo LD, Liang P, Zheng JF, Huang PQ. A Concise and Divergent Approach to Hydroxylated Piperidine Alkaloids and Azasugar Lactams. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
87
|
Sampson HM, Lam H, Chen PC, Zhang D, Mottillo C, Mirza M, Qasim K, Shrier A, Shyng SL, Hanrahan JW, Thomas DY. Compounds that correct F508del-CFTR trafficking can also correct other protein trafficking diseases: an in vitro study using cell lines. Orphanet J Rare Dis 2013; 8:11. [PMID: 23316740 PMCID: PMC3558398 DOI: 10.1186/1750-1172-8-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/01/2013] [Indexed: 11/12/2022] Open
Abstract
Background Many genetic diseases are due to defects in protein trafficking where the mutant protein is recognized by the quality control systems, retained in the endoplasmic reticulum (ER), and degraded by the proteasome. In many cases, the mutant protein retains function if it can be trafficked to its proper cellular location. We have identified structurally diverse correctors that restore the trafficking and function of the most common mutation causing cystic fibrosis, F508del-CFTR. Most of these correctors do not act directly as ligands of CFTR, but indirectly on other pathways to promote folding and correction. We hypothesize that these proteostasis regulators may also correct other protein trafficking diseases. Methods To test our hypothesis, we used stable cell lines or transient transfection to express 2 well-studied trafficking disease mutations in each of 3 different proteins: the arginine-vasopressin receptor 2 (AVPR2, also known as V2R), the human ether-a-go-go-related gene (KCNH2, also known as hERG), and finally the sulfonylurea receptor 1 (ABCC8, also known as SUR1). We treated cells expressing these mutant proteins with 9 structurally diverse F508del-CFTR correctors that function through different cellular mechanisms and assessed whether correction occurred via immunoblotting and functional assays. Results were deemed significantly different from controls by a one-way ANOVA (p < 0.05). Results Here we show that F508del-CFTR correctors RDR1, KM60 and KM57 also correct some mutant alleles of other protein trafficking diseases. We also show that one corrector, the cardiac glycoside ouabain, was found to alter the glycosylation of all mutant alleles tested. Conclusions Correctors of F508del-CFTR trafficking might have broader applications to other protein trafficking diseases.
Collapse
Affiliation(s)
- Heidi M Sampson
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, McIntyre Medical Building, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Pan XL, Liu W, Liu JY. Mechanism of the Glycosylation Step Catalyzed by Human α-Galactosidase: A QM/MM Metadynamics Study. J Phys Chem B 2013; 117:484-9. [DOI: 10.1021/jp308747c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiao-Liang Pan
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of
Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Wei Liu
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of
Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Jing-Yao Liu
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of
Theoretical Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
89
|
Rigat BA, Tropak MB, Buttner J, Crushell E, Benedict D, Callahan JW, Martin DR, Mahuran DJ. Evaluation of N-nonyl-deoxygalactonojirimycin as a pharmacological chaperone for human GM1 gangliosidosis leads to identification of a feline model suitable for testing enzyme enhancement therapy. Mol Genet Metab 2012; 107:203-12. [PMID: 22784478 PMCID: PMC4010500 DOI: 10.1016/j.ymgme.2012.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/12/2012] [Accepted: 06/12/2012] [Indexed: 12/26/2022]
Abstract
Deficiencies of lysosomal β-D-galactosidase can result in GM1 gangliosidosis, a severe neurodegenerative disease characterized by massive neuronal storage of GM1 ganglioside in the brain. Currently there are no available therapies that can even slow the progression of this disease. Enzyme enhancement therapy utilizes small molecules that can often cross the blood brain barrier, but are also often competitive inhibitors of their target enzyme. It is a promising new approach for treating diseases, often caused by missense mutations, associated with dramatically reduced levels of functionally folded enzyme. Despite a number of positive reports based on assays performed with patient cells, skepticism persists that an inhibitor-based treatment can increase mutant enzyme activity in vivo. To date no appropriate animal model, i.e., one that recapitulates a responsive human genotype and clinical phenotype, has been reported that could be used to validate enzyme enhancement therapy. In this report, we identify a novel enzyme enhancement-agent, N-nonyl-deoxygalactonojirimycin, that enhances the mutant β-galactosidase activity in the lysosomes of a number of patient cell lines containing a variety of missense mutations. We then demonstrate that treatment of cells from a previously described, naturally occurring feline model (that biochemically, clinically and molecularly closely mimics GM1 gangliosidosis in humans) with this molecule, results in a robust enhancement of their mutant lysosomal β-galactosidase activity. These data indicate that the feline model could be used to validate this therapeutic approach and determine the relationship between the disease stage at which this therapy is initiated and the maximum clinical benefits obtainable.
Collapse
Affiliation(s)
- Brigitte A. Rigat
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Michael B. Tropak
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Justin Buttner
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Ellen Crushell
- Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Daphne Benedict
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - John W. Callahan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
- Department of Biochemistry, University of Toronto, Toronto, Canada M5S 1A8
| | - Douglas R. Martin
- Scott-Ritchey Research Center and Dept. Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Don J. Mahuran
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada M5S 1A8
- Corresponding author at: Genetics & Genome Biology Department, The Hospital for Sick Children, Room 9146 A, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8. Fax: +1 416 813 8700. (D.J. Mahuran)
| |
Collapse
|
90
|
Siekierska A, De Baets G, Reumers J, Gallardo R, Rudyak S, Broersen K, Couceiro J, Van Durme J, Schymkowitz J, Rousseau F. α-Galactosidase aggregation is a determinant of pharmacological chaperone efficacy on Fabry disease mutants. J Biol Chem 2012; 287:28386-97. [PMID: 22773828 DOI: 10.1074/jbc.m112.351056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fabry disease is a lysosomal storage disorder caused by loss of α-galactosidase function. More than 500 Fabry disease mutants have been identified, the majority of which are structurally destabilized. A therapeutic strategy under development for lysosomal storage diseases consists of using pharmacological chaperones to stabilize the structure of the mutant protein, thereby promoting lysosomal delivery over retrograde degradation. The substrate analog 1-deoxygalactonojirimycin (DGJ) has been shown to restore activity of mutant α-galactosidase and is currently in clinical trial for treatment of Fabry disease. However, only ∼65% of tested mutants respond to treatment in cultured patient fibroblasts, and the structural underpinnings of DGJ response remain poorly explained. Using computational modeling and cell culture experiments, we show that the DGJ response is negatively affected by protein aggregation of α-galactosidase mutants, revealing a qualitative difference between misfolding-associated and aggregation-associated loss of function. A scoring function combining predicted thermodynamic stability and intrinsic aggregation propensity of mutants captures well their aggregation behavior under overexpression in HeLa cells. Interestingly, the same classifier performs well on DGJ response data of patient-derived cultured lymphoblasts, showing that protein aggregation is an important determinant of chemical chaperone efficiency under endogenous expression levels as well. Our observations reinforce the idea that treatment of aggregation-associated loss of function observed for the more severe α-galactosidase mutants could be enhanced by combining pharmacological chaperone treatment with the suppression of mutant aggregation, e.g. via proteostatic regulator compounds that increase cellular chaperone expression.
Collapse
|
91
|
Guce AI, Clark NE, Rogich JJ, Garman SC. The molecular basis of pharmacological chaperoning in human α-galactosidase. ACTA ACUST UNITED AC 2012; 18:1521-6. [PMID: 22195554 DOI: 10.1016/j.chembiol.2011.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 10/14/2022]
Abstract
Fabry disease patients show a deficiency in the activity of the lysosomal enzyme α-galactosidase (α-GAL or α-Gal A). One proposed treatment for Fabry disease is pharmacological chaperone therapy, where a small molecule stabilizes the α-GAL protein, leading to increased enzymatic activity. Using enzyme kinetics, tryptophan fluorescence, circular dichroism, and proteolysis assays, we show that the pharmacological chaperones 1-deoxygalactonojirimycin (DGJ) and galactose stabilize the human α-GAL glycoprotein. Crystal structures of complexes of α-GAL and chaperones explain the molecular basis for the higher potency of DGJ over galactose. Using site-directed mutagenesis, we show the higher potency of DGJ results from an ionic interaction with D170. We propose that protonation of D170 in acidic conditions leads to weaker binding of DGJ. The results establish a biochemical basis for pharmacological chaperone therapy applicable to other protein misfolding diseases.
Collapse
Affiliation(s)
- Abigail I Guce
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
92
|
Saad RR, Fawzi EM. Purification and characterization of a thermostable α-galactosidase from Thielavia terrestris NRRL 8126 in solid state fermentation. ACTA BIOLOGICA HUNGARICA 2012; 63:138-50. [PMID: 22453806 DOI: 10.1556/abiol.63.2012.1.11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several seeds and husks of some plants belonging to leguminosae, Graminae, Compositae and Palmae were evaluated as carbon substrates to produce α-galactosidase (α-Gal) by the thermophilic fungus, Thielavia terrestris NRRL 8126 in solid substrate fermentation. The results showed that Cicer arietinum (chick pea seed) was the best substrate for α-Gal production. The crude enzyme was precipitated by ammonium sulphate (60%) and purified by gel filtration on sephadex G-100 followed by ion exchange chromatography on DEAE-Cellulose. The final purification fold of the enzyme was 30.42. The temperature and pH optima of purified α-Gal from Thielavia terrestris were 70 °C and 6.5, respectively. The enzyme showed high thermal stability at 70 °C and 75 °C and the half-life of the α-Gal at 90 °C was 45 min. Km of the purified enzyme was 1.31 mM. The purified enzyme was inhibited by Ag2+, Hg2+, Zn2+, Ba2+, Mg2+, Mn2+ and Fe2+ at 5 mM and 10 mM. Also, EDTA, sodium arsenate, L-cysteine and iodoacetate inhibited the enzyme activity. On the other hand, Ca2+, Cu2+, K+ and Na+ slightly enhanced the enzyme activity at 5 mM while at 10 mM they caused inhibition. The molecular weight of the α-Gal was estimated to be 82 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This enzyme displays a number of biochemical properties that make it a potentially strong candidate for biotechnological and medicinal applications.
Collapse
Affiliation(s)
- Rawia R Saad
- Biological & Geological Sciences Department, Faculty of Education Ain Shams University, Heliopolis, Roxy, Cairo Egypt
| | | |
Collapse
|
93
|
Benjamin ER, Khanna R, Schilling A, Flanagan JJ, Pellegrino LJ, Brignol N, Lun Y, Guillen D, Ranes BE, Frascella M, Soska R, Feng J, Dungan L, Young B, Lockhart DJ, Valenzano KJ. Co-administration with the pharmacological chaperone AT1001 increases recombinant human α-galactosidase A tissue uptake and improves substrate reduction in Fabry mice. Mol Ther 2012; 20:717-26. [PMID: 22215019 PMCID: PMC3321591 DOI: 10.1038/mt.2011.271] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder (LSD) caused by mutations in the gene (GLA) that encodes the lysosomal hydrolase α-galactosidase A (α-Gal A), and is characterized by pathological accumulation of the substrate, globotriaosylceramide (GL-3). Regular infusion of recombinant human α-Gal A (rhα-Gal A), termed enzyme replacement therapy (ERT), is the primary treatment for Fabry disease. However, rhα-Gal A has low physical stability, a short circulating half-life, and variable uptake into different disease-relevant tissues. We hypothesized that coadministration of the orally available, small molecule pharmacological chaperone AT1001 (GR181413A, 1-deoxygalactonojirimycin, migalastat hydrochloride) may improve the pharmacological properties of rhα-Gal A via binding and stabilization. AT1001 prevented rhα-Gal A denaturation and activity loss in vitro at neutral pH and 37 °C. Coincubation of Fabry fibroblasts with rhα-Gal A and AT1001 resulted in up to fourfold higher cellular α-Gal A and ~30% greater GL-3 reduction compared to rhα-Gal A alone. Furthermore, coadministration of AT1001 to rats increased the circulating half-life of rhα-Gal A by >2.5-fold, and in GLA knockout mice resulted in up to fivefold higher α-Gal A levels and fourfold greater GL-3 reduction than rhα-Gal A alone. Collectively, these data highlight the potentially beneficial effects of AT1001 on rhα-Gal A, thus warranting clinical investigation.
Collapse
|
94
|
Ishii S. Pharmacological chaperone therapy for Fabry disease. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:18-30. [PMID: 22241068 PMCID: PMC3278969 DOI: 10.2183/pjab.88.18] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/30/2011] [Indexed: 05/31/2023]
Abstract
Fabry disease is an inherited lysosomal storage disorder caused by deficient α-galactosidase A activity. Many missense mutations in Fabry disease often cause misfolded gene products, which leads to their retention in the endoplasmic reticulum by the quality control system; they are then removed by endoplasmic reticulum-associated degradation. We discovered that a potent α-galactosidase A inhibitor, 1-deoxygalactonojirimycin, acts as a pharmacological chaperone to facilitate the proper folding of the mutant enzyme by binding to its active site, thereby improving its stability and trafficking to the lysosomes in mammalian cells. The oral administration of 1-deoxygalactonojirimycin to transgenic mice expressing human mutant α-galactosidase A resulted in significant increases in α-galactosidase A activity in various organs, with concomitant reductions in globotriaosylceramide, which contributes to the pathology of Fabry disease. Seventy-eight missense mutations were found to be responsive to 1-deoxygalactonojirimycin. These data indicate that many patients with Fabry disease could potentially benefit from pharmacological chaperone therapy.
Collapse
Affiliation(s)
- Satoshi Ishii
- Department of Matrix Medicine, Faculty of Medicine, Oita University, Hasama-cho Idaigaoka 1-1, Yufu-shi, Oita 879-5593, Japan.
| |
Collapse
|
95
|
Dragutan I, Dragutan V, Demonceau A. Targeted drugs by olefin metathesis: piperidine-based iminosugars. RSC Adv 2012. [DOI: 10.1039/c1ra00910a] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
96
|
Lindquist SL, Kelly JW. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb Perspect Biol 2011; 3:a004507. [PMID: 21900404 PMCID: PMC3225948 DOI: 10.1101/cshperspect.a004507] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maintaining the proteome to preserve the health of an organism in the face of developmental changes, environmental insults, infectious diseases, and rigors of aging is a formidable task. The challenge is magnified by the inheritance of mutations that render individual proteins subject to misfolding and/or aggregation. Maintenance of the proteome requires the orchestration of protein synthesis, folding, degradation, and trafficking by highly conserved/deeply integrated cellular networks. In humans, no less than 2000 genes are involved. Stress sensors detect the misfolding and aggregation of proteins in specific organelles and respond by activating stress-responsive signaling pathways. These culminate in transcriptional and posttranscriptional programs that up-regulate the homeostatic mechanisms unique to that organelle. Proteostasis is also strongly influenced by the general properties of protein folding that are intrinsic to every proteome. These include the kinetics and thermodynamics of the folding, misfolding, and aggregation of individual proteins. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We then introduce chemical approaches to prevent the misfolding or aggregation of specific proteins through direct binding interactions. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organismal proteostasis.
Collapse
Affiliation(s)
- Susan L Lindquist
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
97
|
Wu X, Katz E, Della Valle MC, Mascioli K, Flanagan JJ, Castelli JP, Schiffmann R, Boudes P, Lockhart DJ, Valenzano KJ, Benjamin ER. A pharmacogenetic approach to identify mutant forms of α-galactosidase A that respond to a pharmacological chaperone for Fabry disease. Hum Mutat 2011; 32:965-77. [PMID: 21598360 PMCID: PMC3170878 DOI: 10.1002/humu.21530] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/27/2011] [Indexed: 12/11/2022]
Abstract
Fabry disease is caused by mutations in the gene (GLA) that encodes α-galactosidase A (α-Gal A). The iminosugar AT1001 (GR181413A, migalastat hydrochloride, 1-deoxygalactonojirimycin) is a pharmacological chaperone that selectively binds and stabilizes α-Gal A, increasing total cellular levels and activity for some mutant forms (defined as “responsive”). In this study, we developed a cell-based assay in cultured HEK-293 cells to identify mutant forms of α-Gal A that are responsive to AT1001. Concentration-dependent increases in α-Gal A activity in response to AT1001 were shown for 49 (60%) of 81 mutant forms. The responses of α-Gal A mutant forms were generally consistent with the responses observed in male Fabry patient-derived lymphoblasts. Importantly, the HEK-293 cell responses of 19 α-Gal A mutant forms to a clinically achievable concentration of AT1001 (10 µM) were generally consistent with observed increases in α-Gal A activity in peripheral blood mononuclear cells from male Fabry patients orally administered AT1001 during Phase 2 clinical studies. This indicates that the cell-based responses can identify mutant forms of α-Gal A that are likely to respond to AT1001 in vivo. Thus, the HEK-293 cell-based assay may be a useful aid in the identification of Fabry patients with AT1001-responsive mutant forms. Hum Mutat 32:1–13, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Xiaoyang Wu
- Amicus Therapeutics, Cranbury, New Jersey 08512, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Jenkinson SF, Fleet GWJ, Nash RJ, Koike Y, Adachi I, Yoshihara A, Morimoto K, Izumori K, Kato A. Looking-glass synergistic pharmacological chaperones: DGJ and L-DGJ from the enantiomers of tagatose. Org Lett 2011; 13:4064-7. [PMID: 21744786 DOI: 10.1021/ol201552q] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantiomers of tagatose are converted to L-DGJ [a noncompetitive inhibitor of human lysosome α-galactosidase A (α-Gal A), K(i) 38.5 μM] and DGJ [a competitive inhibitor of α-Gal A, K(i) 15.1 nM] in 66% yield. L-DGJ and DGJ provide the first examples of pharmacological chaperones that (a) are enantiomeric iminosugars and (b) have synergistic activity with implications for the treatment of lysosomal storage disorders and other protein deficiencies.
Collapse
Affiliation(s)
- Sarah F Jenkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Kamani M, Mylvaganam M, Tian R, Rigat B, Binnington B, Lingwood C. Adamantyl glycosphingolipids provide a new approach to the selective regulation of cellular glycosphingolipid metabolism. J Biol Chem 2011; 286:21413-26. [PMID: 21518770 PMCID: PMC3122201 DOI: 10.1074/jbc.m110.207670] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/11/2011] [Indexed: 01/09/2023] Open
Abstract
Mammalian glycosphingolipid (GSL) precursor monohexosylceramides are either glucosyl- or galactosylceramide (GlcCer or GalCer). Most GSLs derive from GlcCer. Substitution of the GSL fatty acid with adamantane generates amphipathic mimics of increased water solubility, retaining receptor function. We have synthesized adamantyl GlcCer (adaGlcCer) and adamantyl GalCer (adaGalCer). AdaGlcCer and adaGalCer partition into cells to alter GSL metabolism. At low dose, adaGlcCer increased cellular GSLs by inhibition of glucocerebrosidase (GCC). Recombinant GCC was inhibited at pH 7 but not pH 5. In contrast, adaGalCer stimulated GCC at pH 5 but not pH 7 and, like adaGlcCer, corrected N370S mutant GCC traffic from the endoplasmic reticulum to lysosomes. AdaGalCer reduced GlcCer levels in normal and lysosomal storage disease (LSD) cells. At 40 μM adaGlcCer, lactosylceramide (LacCer) synthase inhibition depleted LacCer (and more complex GSLs), such that only GlcCer remained. In Vero cell microsomes, 40 μM adaGlcCer was converted to adaLacCer, and LacCer synthesis was inhibited. AdaGlcCer is the first cell LacCer synthase inhibitor. At 40 μM adaGalCer, cell synthesis of only Gb(3) and Gb(4) was significantly reduced, and a novel product, adamantyl digalactosylceramide (adaGb(2)), was generated, indicating substrate competition for Gb(3) synthase. AdaGalCer also inhibited cell sulfatide synthesis. Microsomal Gb(3) synthesis was inhibited by adaGalCer. Metabolic labeling of Gb(3) in Fabry LSD cells was selectively reduced by adaGalCer, and adaGb(2) was produced. AdaGb(2) in cells was 10-fold more effectively shed into the medium than the more polar Gb(3), providing an easily eliminated "safety valve" alternative to Gb(3) accumulation. Adamantyl monohexosyl ceramides thus provide new tools to selectively manipulate normal cellular GSL metabolism and reduce GSL accumulation in cells from LSD patients.
Collapse
Affiliation(s)
- Mustafa Kamani
- From the Departments of Biochemistry and
- the Divisions of Molecular Structure and Function and
| | | | - Robert Tian
- the Divisions of Molecular Structure and Function and
| | - Brigitte Rigat
- Genetics and Genome Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | - Clifford Lingwood
- From the Departments of Biochemistry and
- Laboratory Medicine and Pathobiology University of Toronto, Toronto, Ontario M5S 1A8, Canada and
- the Divisions of Molecular Structure and Function and
| |
Collapse
|
100
|
Valenzano KJ, Khanna R, Powe AC, Boyd R, Lee G, Flanagan JJ, Benjamin ER. Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Dev Technol 2011; 9:213-35. [PMID: 21612550 PMCID: PMC3102255 DOI: 10.1089/adt.2011.0370] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many human diseases result from mutations in specific genes. Once translated, the resulting aberrant proteins may be functionally competent and produced at near-normal levels. However, because of the mutations, the proteins are recognized by the quality control system of the endoplasmic reticulum and are not processed or trafficked correctly, ultimately leading to cellular dysfunction and disease. Pharmacological chaperones (PCs) are small molecules designed to mitigate this problem by selectively binding and stabilizing their target protein, thus reducing premature degradation, facilitating intracellular trafficking, and increasing cellular activity. Partial or complete restoration of normal function by PCs has been shown for numerous types of mutant proteins, including secreted proteins, transcription factors, ion channels, G protein-coupled receptors, and, importantly, lysosomal enzymes. Collectively, lysosomal storage disorders (LSDs) result from genetic mutations in the genes that encode specific lysosomal enzymes, leading to a deficiency in essential enzymatic activity and cellular accumulation of the respective substrate. To date, over 50 different LSDs have been identified, several of which are treated clinically with enzyme replacement therapy or substrate reduction therapy, although insufficiently in some cases. Importantly, a wide range of in vitro assays are now available to measure mutant lysosomal enzyme interaction with and stabilization by PCs, as well as subsequent increases in cellular enzyme levels and function. The application of these assays to the identification and characterization of candidate PCs for mutant lysosomal enzymes will be discussed in this review. In addition, considerations for the successful in vivo use and development of PCs to treat LSDs will be discussed.
Collapse
|