51
|
Cotillon-Williams N, Huetz C, Hennevin E, Edeline JM. Tonotopic Control of Auditory Thalamus Frequency Tuning by Reticular Thalamic Neurons. J Neurophysiol 2008; 99:1137-51. [DOI: 10.1152/jn.01159.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABAergic cells of the thalamic reticular nucleus (TRN) can potentially exert strong control over transmission of information through thalamus to the cerebral cortex. Anatomical studies have shown that the reticulo-thalamic connections are spatially organized in the visual, somatosensory, and auditory systems. However, the issue of how inhibitory input from TRN controls the functional properties of thalamic relay cells and whether this control follows topographic rules remains largely unknown. Here we assessed the consequences of increasing or decreasing the activity of small ensembles of TRN neurons on the receptive field properties of medial geniculate (MG) neurons. For each MG cell, the frequency tuning curve and the rate-level function were tested before, during, and after microiontophoretic applications of GABA, or of glutamate, in the auditory sector of the TRN. For 66 MG cells tested during potent pharmacological control of TRN activity, group data did not reveal any significant effects. However, for a population of 20/66 cells (all but 1 recorded in the ventral, tonotopic, division), the breadth of tuning, the frequency selectivity and the acoustic threshold were significantly modified in the directions expected from removing, or reinforcing, a dominant inhibitory input onto MG cells. Such effects occurred only when the distance between the characteristic frequency of the recorded ventral MG cell and that of the TRN cells at the ejection site was <0.25 octaves; they never occurred for larger distances. This relationship indicates that the functional interactions between TRN cells and ventral MG cells rely on precise topographic connections.
Collapse
|
52
|
Gottesmann C, Gottesman I. The neurobiological characteristics of rapid eye movement (REM) sleep are candidate endophenotypes of depression, schizophrenia, mental retardation and dementia. Prog Neurobiol 2007; 81:237-50. [PMID: 17350744 DOI: 10.1016/j.pneurobio.2007.01.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 12/14/2006] [Accepted: 01/10/2007] [Indexed: 01/23/2023]
Abstract
Animal models are a promising method to approach the basic mechanisms of the neurobiological disturbances encountered in mental disorders. Depression is characterized by a decrease of REM sleep latency and an increase of rapid eye movement density. In schizophrenia, electrophysiological, tomographic, pharmacological and neurochemical activities are all encountered during REM sleep. Mental retardation and dementia are characterized by rather specific REM sleep disturbances. Identification of the genetic support for these abnormalities (endophenotypes) encountered during REM sleep could help to develop specific treatments.
Collapse
Affiliation(s)
- Claude Gottesmann
- Département des Sciences de la Vie, Faculté des Sciences, Université de Nice-Sophia Antipolis, 22 parc Lubonis, 06000 Nice, France.
| | | |
Collapse
|
53
|
Weinberger NM. Associative representational plasticity in the auditory cortex: a synthesis of two disciplines. Learn Mem 2007; 14:1-16. [PMID: 17202426 PMCID: PMC3601844 DOI: 10.1101/lm.421807] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Historically, sensory systems have been largely ignored as potential loci of information storage in the neurobiology of learning and memory. They continued to be relegated to the role of "sensory analyzers" despite consistent findings of associatively induced enhancement of responses in primary sensory cortices to behaviorally important signal stimuli, such as conditioned stimuli (CS), during classical conditioning. This disregard may have been promoted by the fact that the brain was interrogated using only one or two stimuli, e.g., a CS(+) sometimes with a CS(-), providing little insight into the specificity of neural plasticity. This review describes a novel approach that synthesizes the basic experimental designs of the experimental psychology of learning with that of sensory neurophysiology. By probing the brain with a large stimulus set before and after learning, this unified method has revealed that associative processes produce highly specific changes in the receptive fields of cells in the primary auditory cortex (A1). This associative representational plasticity (ARP) selectively facilitates responses to tonal CSs at the expense of other frequencies, producing tuning shifts toward and to the CS and expanded representation of CS frequencies in the tonotopic map of A1. ARPs have the major characteristics of associative memory: They are highly specific, discriminative, rapidly acquired, exhibit consolidation over hours and days, and can be retained indefinitely. Evidence to date suggests that ARPs encode the level of acquired behavioral importance of stimuli. The nucleus basalis cholinergic system is sufficient both for the induction of ARPs and the induction of specific auditory memory. Investigation of ARPs has attracted workers with diverse backgrounds, often resulting in behavioral approaches that yield data that are difficult to interpret. The advantages of studying associative representational plasticity are emphasized, as is the need for greater behavioral sophistication.
Collapse
Affiliation(s)
- Norman M Weinberger
- Center for the Neurobiology of Learning and Memory, and Department of Neurobiology and Behavior, University of California, Irvine, California 92697-3800, USA.
| |
Collapse
|
54
|
Miasnikov AA, Chen JC, Weinberger NM. Rapid induction of specific associative behavioral memory by stimulation of the nucleus basalis in the rat. Neurobiol Learn Mem 2006; 86:47-65. [PMID: 16466937 PMCID: PMC3597412 DOI: 10.1016/j.nlm.2005.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/15/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
Hypothesized circuitry enabling behavioral memory formation can be tested by its direct activation in the absence of normal experience. Neuromodulation via the cortical release of acetylcholine by the nucleus basalis (NB) is hypothesized to be sufficient to induce specific, associative behavioral memory. Previously, we found that tone paired with stimulation of the nucleus basalis (NBs) for 3000 trials over 15 days induced such memory, supporting the hypothesis. However, as standard associative memory can be established much more rapidly, we asked whether NB-induced memory develops rapidly. Adult male Sprague-Dawley rats, trained and tested in the same calm, waking state, were divided into Paired (n=5) and control (n=4) groups, each of which received a single session of 200 trials of an 8.0 kHz conditioned stimulus (CS) either paired with NBs or with unpaired presentation of NBs. Respiration, cardiac activity, and evoked potentials in the primary auditory cortex (ACx) were recorded. Memory and its degree of specificity were assessed 24 h later by presenting tones of various frequencies (1-15 kHz) in the absence of NBs to yield behavioral frequency generalization gradients. Behavioral responses to test tones consisted of interruption of ongoing respiration and changes in heart rate. Post-training behavioral generalization gradients exhibited response peaks centered on the CS frequency for the Paired group alone. Tone evoked potentials from the ACx also developed CS-specific plasticity. The findings indicate that NB induction of specific behavioral associative memory, like normal memory, can develop rapidly and is accompanied by specific cortical plasticity, supporting the view that NB engagement during normal learning produces memory.
Collapse
Affiliation(s)
- Alexandre A. Miasnikov
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | - Jemmy C. Chen
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | - Norman M. Weinberger
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| |
Collapse
|
55
|
Abstract
Normal waking mentation is the outcome of the combined action of both electrophysiological and neurochemical antagonistic and complementary activating and inhibitory influences occurring mainly in the cerebral cortex. The chemical ones are supported principally by acetylcholine, and noradrenaline and serotonin, respectively. During rapid eye movement (REM) sleep, the monoaminergic silence - except dopaminergic ongoing activity - disrupts this equilibrium and seems to be responsible for disturbances of mental activity characteristic of dreaming. This imbalance could cause disconnectivity of cortical areas, failure of latent inhibition and possibly the concomitant prefrontal dorsolateral deactivation. Moreover, the decrease of prefrontal dopaminergic functioning could explain the loss of reflectiveness in this sleep stage. All these phenomena are also encountered in schizophrenia. The psychotic-like mentation of dreaming (hallucinations, delusions, bizarre thought processes) could result from the disinhibition of dopamine influence in the nucleus accumbens by the noradrenergic and serotonergic local silence and/or the lifting of glutamate influence from the prefrontal cortex and hippocampus. We hypothesize that, during REM sleep, the increase of dopamine and the decrease of glutamate release observed in nucleus accumbens reach the threshold values at which psychotic disturbances arise during wakefulness. Whatever the precise mechanism, it seems that the functional state of the prefrontal cortex and nucleus accumbens is the same during dreaming sleep stage and in schizophrenia. The convergent psychological, electrophysiological, tomographic, pharmacological and neurochemical criteria of REM sleep and schizophrenia suggest that this sleep stage could become a good neurobiological model of this psychiatric disease.
Collapse
Affiliation(s)
- Claude Gottesmann
- Département des Sciences de la Vie, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France.
| |
Collapse
|
56
|
Gottesmann C. The dreaming sleep stage: A new neurobiological model of schizophrenia? Neuroscience 2006; 140:1105-15. [PMID: 16650940 DOI: 10.1016/j.neuroscience.2006.02.082] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/25/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
The rapid eye movement dreaming sleep stage and schizophrenia are both characterized by common intracerebral disconnections, disturbed responsiveness and sensory deafferentation processes. Moreover, in both states, there is dorsolateral prefrontal deactivation as shown by the decrease of blood flow. Finally, identical pharmacological and neurochemical variations are observed for acetylcholine, dopamine, noradrenaline, serotonin and glutamate concentrations. Consequently, rapid eye movement sleep could become a useful new neurobiological model of this mental disease since more functional than current rat models using stimulation, lesion or drugs.
Collapse
Affiliation(s)
- C Gottesmann
- Département des Sciences de la Vie, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice cedex 2, France.
| |
Collapse
|
57
|
|
58
|
Hurley LM, Pollak GD. Serotonin modulates responses to species-specific vocalizations in the inferior colliculus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:535-46. [PMID: 15830241 DOI: 10.1007/s00359-005-0623-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 12/21/2022]
Abstract
Neuromodulators such as serotonin are capable of altering the neural processing of stimuli across many sensory modalities. In the inferior colliculus, a major midbrain auditory gateway, serotonin alters the way that individual neurons respond to simple tone bursts and linear frequency modulated sweeps. The effects of serotonin are complex, and vary among neurons. How serotonin transforms the responses to spectrotemporally complex sounds of the type normally heard in natural settings has been poorly examined. To explore this issue further, the effects of iontophoretically applied serotonin on the responses of individual inferior colliculus neurons to a variety of recorded species-specific vocalizations were examined. These experiments were performed in the Mexican free-tailed bat, a species that uses a rich repertoire of vocalizations for the purposes of communication as well as echolocation. Serotonin frequently changed the number of recorded calls that were capable of evoking a response from individual neurons, sometimes increasing (15% of serotonin-responsive neurons), but usually decreasing (62% of serotonin-responsive neurons), this number. A functional consequence of these serotonin-evoked changes would be to change the population response to species-specific vocalizations.
Collapse
Affiliation(s)
- Laura M Hurley
- Jordan Hall/ Biology Department, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| | | |
Collapse
|
59
|
Manunta Y, Edeline JM. Noradrenergic Induction of Selective Plasticity in the Frequency Tuning of Auditory Cortex Neurons. J Neurophysiol 2004; 92:1445-63. [PMID: 15084638 DOI: 10.1152/jn.00079.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuromodulators have long been viewed as permissive factors in experience-induced cortical plasticity, both during development and in adulthood. Experiments performed over the last two decades have reported the potency of acetylcholine to promote changes in functional properties of cortical cells in the auditory, visual, and somatosensory modality. In contrast, very few attempts were made with the monoaminergic systems. The present study evaluates how repeated presentation of brief pulses of noradrenaline (NA) concomitant with presentation of a particular tone frequency changes the frequency tuning curves of auditory cortex neurons determined at 20 dB above threshold. After 100 trials of NA-tone pairing, 28% of the cells (19/67) exhibited selective tuning modifications for the frequency paired with NA. All the selective effects were obtained when the paired frequency was within 1/4 of an octave from the initial best frequency. For these cells, selective decreases were prominent (15/19 cases), and these effects lasted ≥15 min after pairing. No selective effects were observed under various control conditions: tone alone ( n = 10 cells), NA alone ( n = 11 cells), pairing with ascorbic acid ( n = 6 cells), or with GABA ( n = 20 cells). Selective effects were observed when the NA-tone pairing was performed in the presence of propranolol (4/10 cells) but not when it was performed in the presence phentolamine (0/13 cells), suggesting that the effects were mediated by alpha receptors. These results indicate that brief increases in noradrenaline concentration can trigger selective modifications in the tuning curves of cortical neurons that, in most of the cases, go in opposite direction compared with those usually reported with acetylcholine.
Collapse
Affiliation(s)
- Yves Manunta
- NAMC, UMR CNRS 8620, Bat. 446, Université Paris-Sud, 91405 Orsay Cedex, France.
| | | |
Collapse
|
60
|
Gottesmann C. Brain inhibitory mechanisms involved in basic and higher integrated sleep processes. ACTA ACUST UNITED AC 2004; 45:230-49. [PMID: 15210306 DOI: 10.1016/j.brainresrev.2004.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2004] [Indexed: 11/21/2022]
Abstract
Brain function is supported by central activating processes that are significant during waking, decrease during slow wave sleep following waking and increase again during paradoxical sleep during which brain activation is as high as, or higher than, during waking in nearly all structures. However, inhibitory mechanisms are crucial for sleep onset. They were first identified by behavioral, neuroanatomical and electrophysiological criteria, then by pharmacological and neurochemical ones. During slow wave sleep, they are supported by GABAergic mechanisms located at midbrain, mesopontine and pontine levels but are induced and sustained by forebrain and hindbrain influences. GABAergic processes are also responsible for paradoxical sleep occurrence, particularly by suppression of noradrenaline and serotonin (5-HT) inhibition of paradoxical sleep-generating structures. Hindbrain and forebrain modulate these structures situated at the mesopontine level. For sleep mentation, the noradrenergic and serotonergic silence is thought, today, to be directly, or indirectly, responsible for dopamine predominance and glutamate decrease in the nucleus accumbens, which could be the background of the well-known psychotic-like mental activity of dreaming.
Collapse
Affiliation(s)
- Claude Gottesmann
- Laboratoire de Neurobiologie Comportementale, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice cedex 2, France.
| |
Collapse
|
61
|
Lecas JC. Locus coeruleus activation shortens synaptic drive while decreasing spike latency and jitter in sensorimotor cortex. Implications for neuronal integration. Eur J Neurosci 2004; 19:2519-30. [PMID: 15128405 DOI: 10.1111/j.0953-816x.2004.03341.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic recording of locus coeruleus (LC) neurons in rat and monkey have pointed out that brief, phasic LC discharges, but not sustained activity, are specifically related to salient stimuli and attention. However, the sensory consequences of phasic activation of the noradrenergic system by a brief conditioning stimulation of the LC have not been fully investigated. This study examined the effect of LC activation on synaptic and neuronal responses to a tactile stimulus in the sensorimotor cortex of the anaesthetized rat, by analysing the fine temporal structure of sensory discharges and current source-density profiles recorded from the same electrodes. LC stimulation, with minimal EEG effects, consistently reduced the synaptic input in layers IV and V-VI, by decreasing the amplitude and duration of short-latency current sinks, but not the slope of their early rising phase. Simultaneously, most multiple and single unit excitatory responses were shortened by the suppression of their late component after 25-30 ms, whereas robust temporal facilitation of the early discharge was found for spike latency mean and variance, spike timing and synchronization to the stimulus, but leaving the number of spikes unaffected. These two apparently opposite effects on the synaptic drive and neuronal response are reminiscent of the noradrenergic depression of afferent synaptic potentials observed with an increased neuronal excitability in vitro. They are interpreted as a noradrenergic sharpening of thalamocortical processing consistent with a presumed role of synchronous discharges in perception that would depend on activated states, particularly when LC activity is correlated with vigilance or attention.
Collapse
Affiliation(s)
- Jean-Claude Lecas
- Laboratoire de Neurobiologie des Processus Adaptatifs (neuromodulation et processus mnésiques), CNRS UMR 7102, Université Pierre et Marie Curie, 9, quai St Bernard, Bât B, 5étage, 75005 Paris, France.
| |
Collapse
|
62
|
Affiliation(s)
- Norman M Weinberger
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92797-3800, USA.
| |
Collapse
|
63
|
Affiliation(s)
- C Gottesmann
- Laboratoire de Neurobiologie Comportementale, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France.
| |
Collapse
|
64
|
Edeline JM. The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Exp Brain Res 2003; 153:554-72. [PMID: 14517594 DOI: 10.1007/s00221-003-1608-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Accepted: 06/14/2003] [Indexed: 11/26/2022]
Abstract
The goal of this review is twofold. First, it aims to describe the dynamic regulation that constantly shapes the receptive fields (RFs) and maps in the thalamo-cortical sensory systems of undrugged animals. Second, it aims to discuss several important issues that remain unresolved at the intersection between behavioral neurosciences and sensory physiology. A first section presents the RF modulations observed when an undrugged animal spontaneously shifts from waking to slow-wave sleep or to paradoxical sleep (also called REM sleep). A second section shows that, in contrast with the general changes described in the first section, behavioral training can induce selective effects which favor the stimulus that has acquired significance during learning. A third section reviews the effects triggered by two major neuromodulators of the thalamo-cortical system--acetylcholine and noradrenaline--which are traditionally involved both in the switch of vigilance states and in learning experiences. The conclusion argues that because the receptive fields and maps of an awake animal are continuously modulated from minute to minute, learning-induced sensory plasticity can be viewed as a "crystallization" of the receptive fields and maps in one of the multiple possible states. Studying the interplays between neuromodulators can help understanding the neurobiological foundations of this dynamic regulation.
Collapse
Affiliation(s)
- Jean-Marc Edeline
- Laboratoire de Neurobiologie de l'Apprentissage de la Mémoire et de la Communication, Université Paris-Sud, UMR 8620, Bat 446, 91405 Orsay, France.
| |
Collapse
|
65
|
Jacomme AV, Nodal FR, Bajo VM, Manunta Y, Edeline JM, Babalian A, Rouiller EM. The projection from auditory cortex to cochlear nucleus in guinea pigs: an in vivo anatomical and in vitro electrophysiological study. Exp Brain Res 2003; 153:467-76. [PMID: 14504855 DOI: 10.1007/s00221-003-1606-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2002] [Accepted: 04/11/2003] [Indexed: 10/26/2022]
Abstract
Previous anatomical experiments have demonstrated the existence of a direct, bilateral projection from the auditory cortex (AC) to the cochlear nucleus (CN). However, the precise relationship between the origin of the projection in the AC and the distribution of axon terminals in the CN is not known. Moreover, the influence of this projection on CN principal cells has not been studied before. The aim of the present study was two-fold. First, to extend the anatomical data by tracing anterogradely the distribution of cortical axons in the CN by means of restricted injections of biotinylated dextran amine (BDA) in physiologically characterized sites in the AC. Second, in an in vitro isolated whole brain preparation (IWB), to assess the effect of electrical stimulation of the AC on CN principal cells from which intracellular recordings were derived. BDA injections in the tonotopically organized primary auditory cortex and dorsocaudal auditory field at high and low best frequency (BF) sites resulted in a consistent axonal labeling in the ipsilateral CN of all injected animals. In addition, fewer labeled terminals were observed in the contralateral CN, but only in the animals subjected to injections in low BF region. The axon terminal fields consisting of boutons en passant or terminaux were found in the superficial granule cell layer and, to a smaller extent, in the three CN subdivisions. No axonal labeling was seen in the CN as result of BDA injection in the secondary auditory area (dorsocaudal belt). In the IWB, the effects of ipsilateral AC stimulation were tested in a population of 52 intracellulary recorded and stained CN principal neurons, distributed in the three CN subdivisions. Stimulation of the AC evoked slow late excitatory postsynaptic potentials (EPSPs) in only two cells located in the dorsal CN. The EPSPs were induced in a giant and a pyramidal cell at latencies of 20 ms and 33 ms, respectively, suggesting involvement of polysynaptic circuits. These findings are consistent with anatomical data showing sparse projections from the AC to the CN and indicate a limited modulatory action of the AC on CN principal cells.
Collapse
Affiliation(s)
- A-V Jacomme
- Division of Physiology, Department of Medicine, University of Fribourg, Rue du Musée 5, 1700 Fribourg, Switzerland
| | | | | | | | | | | | | |
Collapse
|
66
|
Cotillon-Williams N, Edeline JM. Evoked oscillations in the thalamo-cortical auditory system are present in anesthetized but not in unanesthetized rats. J Neurophysiol 2003; 89:1968-84. [PMID: 12686575 DOI: 10.1152/jn.00728.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decade, a large number of studies have characterized stimulus-evoked oscillations in the visual cortex of anesthetized and unanesthetized animals. Comparatively, only a few studies have been performed in auditory cortex. This study compared the tone-evoked oscillations detected from the same recording sites in the thalamo-cortical auditory system of unanesthetized and anesthetized rats. Simultaneous multiunit recordings were collected in auditory cortex, auditory thalamus, and the auditory sector of the reticular nucleus of restrained rats, which spontaneously shifted from waking (W) to slow-wave sleep (SWS) and paradoxical sleep (PS). Subsequently, the same recording sites were tested under pentobarbital anesthesia, then under high doses of diazepam, and finally under urethan anesthesia. Under these drugs, oscillations were detected in 54% of the recordings: one-half of them were stimulus-locked oscillations and were directly observed on peri-stimulus time histograms (PSTHs); one-half of them were non-stimulus-locked oscillations and were detected on autocorrelograms. Spontaneous oscillations were present for 17% of the recordings. During SWS, only non-stimulus-locked oscillations were observed for a small percentage of recordings (12%). This percentage did not differ significantly from the one of spontaneous oscillations obtained during SWS (8%). No oscillations were found in W and PS. Both under anesthesia and in SWS, the frequency range of the oscillations was 5-15 Hz, and there was no frequency difference between evoked and spontaneous oscillations. Although surprising, the absence of oscillations in awake animals may allow each neuron to process acoustic information independently of its neighbors and may in fact benefit auditory perception.
Collapse
Affiliation(s)
- Nathalie Cotillon-Williams
- Laboratoire de Neurobiologie de l'Apprentissage de la Mémoire et de la Communication (NAMC), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8620, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
67
|
Bouret S, Sara SJ. Locus coeruleus activation modulates firing rate and temporal organization of odour-induced single-cell responses in rat piriform cortex. Eur J Neurosci 2002; 16:2371-82. [PMID: 12492432 DOI: 10.1046/j.1460-9568.2002.02413.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Piriform cortex (PCx) is the primary cortical projection region for olfactory information and has bidirectional monosynaptic connections with olfactory bulb and association cortices. PCx neurons display a complex receptive field, responding to odours rather than their molecular components, suggesting that these neurons are involved in higher order olfactory processing. Neuromodulators, especially noradrenaline (NA), have important influences on sensory processing in other cortical regions and might be responsible for the plasticity observed in PCx during learning. The present study is the first attempt to examine in vivo the actions of NA on sensory responses in the PCx. Stimulation of the noradrenergic nucleus locus coeruleus (LC) was used to induce release of NA in the forebrain in urethane-anaesthetized rats. Extracellular recording of single units was made simultaneously in anterior and posterior PCx. The responses to an odour stimulus were measured over 25 trials. Twenty-five subsequent odour presentations were preceded by stimulation of the ipsilateral LC through a bipolar electrode, previously placed in the LC under electrophysiological control. This priming stimulation modified the activity of 77 of the 135 recorded neurons. For most cells, LC stimulation enhanced cortical responses to odour in terms of both spike count and temporal organization, with some differential effects in anterior and posterior regions. These results are the first to show enhancement of sensory responses in the olfactory cortex by LC activation. Spontaneous activation of LC neurons such as occurs during learning could serve to enhance olfactory perception and promote learning.
Collapse
Affiliation(s)
- Sebastien Bouret
- Laboratoire neuromodulation et processus mnésiques, Neurobiologie des processus adaptatifs, CNRS UMR 7102, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
68
|
Thanky NR, Son JH, Herbison AE. Sex differences in the regulation of tyrosine hydroxylase gene transcription by estrogen in the locus coeruleus of TH9-LacZ transgenic mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 104:220-6. [PMID: 12225877 DOI: 10.1016/s0169-328x(02)00383-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although estrogen is recognized increasingly as having an important role in modulating extrahypothalamic brain function, the mechanisms through which this occur are not well established. The norepinephrine (NE) neurons of the locus coeruleus provide an important neuromodulatory influence upon multiple neural networks throughout the brain and estrogen has been implicated in their regulation. Using a tyrosine hydroxylase (TH) promoter-LacZ transgenic mouse model, which enables rates of TH gene transcription to be examined in vivo, we have examined here whether estrogen regulates expression of the TH gene in the locus coeruleus of males and females. Optical area measurements of Xgal reaction product in the locus coeruleus revealed that gonadectomy exerted opposite effects on TH gene transcription in males and females; transgene expression was increased in males (P<0.01) but reduced in females (P<0.05). Estrogen reversed these effects in both sexes by suppressing gene expression in males (P<0.05) but elevating it in the female (P<0.05). These studies reveal a marked and unexpected sex difference in the regulation of TH gene activity in the mouse. While estrogen in the male, synthesized from circulating testosterone, suppresses TH gene transcription, estrogen in the female enhances TH promoter activity. The present results indicate that estrogen may exert very different sex-dependent effects upon the biosynthesis of NE within the locus coeruleus.
Collapse
Affiliation(s)
- Niren R Thanky
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
69
|
Gottesmann C. The neurochemistry of waking and sleeping mental activity: the disinhibition-dopamine hypothesis. Psychiatry Clin Neurosci 2002; 56:345-54. [PMID: 12109951 DOI: 10.1046/j.1440-1819.2002.01022.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper describes a hypothesis related to the neurochemical background of sleep-waking mental activity which, although associated with subcortical structures, is principally generated in the cerebral cortex. Acetylcholine, which mainly activates cortical neurons, is released at the maximal rate during waking and rapid eye movement (REM) sleep dreaming stage. Its importance in mental functioning is well-known. However, brainstem-generated monoamines, which mainly inhibit cortical neurons, are released during waking. Both kinds of influences contribute to the organized mentation of waking. During slow wave sleep, these two types of influence decrease in intensity but maintain a sufficiently high level to allow mental activity involving fairly abstract pseudo-thoughts, a mode of activity modelled on the diurnal pattern of which it is a poor reply. During REM sleep, the monoaminergic neurons become silent except for the dopaminergic ones. This results in a large disinhibition and the maintained dopamine influence may be involved in the familiar psychotic-like mental activity of dreaming. Indeed, in this original activation-disinhibition state, the increase of dopamine influence at the prefrontal cortex level could explain the almost total absence of negative symptoms of schizophrenia during dreaming, while an increase in the nucleus accumbens is possibly responsible for hallucinations and delusions, which are regular features of mentation during this sleep stage.
Collapse
Affiliation(s)
- Claude Gottesmann
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, France.
| |
Collapse
|
70
|
Syka J. Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev 2002; 82:601-36. [PMID: 12087130 DOI: 10.1152/physrev.00002.2002] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traditionally the auditory system was considered a hard-wired sensory system; this view has been challenged in recent years in light of the plasticity of other sensory systems, particularly the visual and somatosensory systems. Practical experience in clinical audiology together with the use of prosthetic devices, such as cochlear implants, contributed significantly to the present view on the plasticity of the central auditory system, which was originally based on data obtained in animal experiments. The loss of auditory receptors, the hair cells, results in profound changes in the structure and function of the central auditory system, typically demonstrated by a reorganization of the projection maps in the auditory cortex. These plastic changes occur not only as a consequence of mechanical lesions of the cochlea or biochemical lesions of the hair cells by ototoxic drugs, but also as a consequence of the loss of hair cells in connection with aging or noise exposure. In light of the aging world population and the increasing amount of noise in the modern world, understanding the plasticity of the central auditory system has its practical consequences and urgency. In most of these situations, a common denominator of central plastic changes is a deterioration of inhibition in the subcortical auditory nuclei and the auditory cortex. In addition to the processes that are elicited by decreased or lost receptor function, the function of nerve cells in the adult central auditory system may dynamically change in the process of learning. A better understanding of the plastic changes in the central auditory system after sensory deafferentation, sensory stimulation, and learning may contribute significantly to improvement in the rehabilitation of damaged or lost auditory function and consequently to improved speech processing and production.
Collapse
Affiliation(s)
- Josef Syka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
71
|
Erchova IA, Lebedev MA, Diamond ME. Somatosensory cortical neuronal population activity across states of anaesthesia. Eur J Neurosci 2002; 15:744-52. [PMID: 11886439 DOI: 10.1046/j.0953-816x.2002.01898.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experiments were carried out to learn about changes in sensory cortical processing associated with different levels of anaesthesia. Traditionally this question has been addressed by studying single neurons. Because state changes are likely to influence the relationships between neurons, the present experiments were undertaken to investigate the spatial and temporal firing patterns distributed across cortex. Using 5 x 5 or 10 x 10 microelectrode arrays, spontaneous and stimulus-evoked activity of multineuron clusters was recorded from rat somatosensory 'barrel' cortex (the whisker representation) during a light surgical stage of urethane anaesthesia, and after two supplemental doses of urethane which led to intermediate and deep levels of anaesthesia. At all depths of anaesthesia, spontaneously occurring action potentials at a single electrode tended to be clustered into 'bursts.' With increasing anaesthetic depth, bursts became more prominent and rhythmic, and increasingly synchronized between cortical barrel-columns. Burst frequency decreased and fewer spikes occurred outside bursts, leading to a decrease in the overall spontaneous firing rate. The cortical territory engaged by individual whiskers contracted with increasing depth of anaesthesia, leading to the spatial segregation of whisker representations. At all stages of anaesthesia, whisker stimulation produced the maximal cortical response when delivered close to burst onset. These observations show that ongoing spontaneous activity modulates sensory response properties and makes peripheral tactile information accessible to a cortical territory whose size is determined by the phase of burst cycle. The possible significance of the cyclic cortical responsiveness encountered during urethane anaesthesia to cortical processing in awake rats is considered.
Collapse
Affiliation(s)
- Irina A Erchova
- Cognitive Neuroscience Sector, International School for Advanced Studies, Via Beirut, 9, 34014 Trieste, Italy
| | | | | |
Collapse
|
72
|
Edeline JM, Dutrieux G, Manunta Y, Hennevin E. Diversity of receptive field changes in auditory cortex during natural sleep. Eur J Neurosci 2001; 14:1865-80. [PMID: 11860482 DOI: 10.1046/j.0953-816x.2001.01821.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Twenty years ago, the study by Livingstone and Hubel [(1981) Nature, 291, 554] was viewed as a first step toward understanding how changes in state of vigilance affect sensory processing. Since then, however, very few attempts have been made to progress in this direction. In the present study, 56 cells were recorded in the auditory cortex of adult, undrugged guinea pigs, and the frequency tuning curves were tested during continuous and stable periods of wakefulness and of slow-wave sleep (SWS). Twelve cells were also tested during paradoxical sleep. Over the whole cell population, the response latency, the frequency selectivity and the size of the suprathreshold receptive field were not significantly modified during SWS compared with waking. However, this lack of global effects resulted from the heterogeneity of response changes displayed by cortical cells. During SWS, the receptive field size varied as a function of the changes in evoked responses: it was unchanged for the cells whose evoked responses were not modified (38% of the cells), reduced for the cells whose responses were decreased (48%) and enlarged for the cells whose responses were increased (14%). This profile of changes differs from the prevalent receptive field shrinkage that was observed in the auditory thalamus during SWS [Edeline et al. (2000), J. Neurophysiol., 84, 934]. It also contrasts with the receptive field enlargement that was described under anaesthesia when the EEG spontaneously shifted from a desynchronized to a synchronized pattern [Wörgötter et al. (1998), Nature, 396, 165]. Reasons for these differences are discussed.
Collapse
Affiliation(s)
- J M Edeline
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, UMR CNRS 8620, Université Paris-Sud, Bât. 446, 91405 Orsay cedex, France.
| | | | | | | |
Collapse
|
73
|
Del Negro C, Edeline JM. Differences in auditory and physiological properties of HVc neurons between reproductively active male and female canaries (Serinus canaria). Eur J Neurosci 2001; 14:1377-89. [PMID: 11703466 DOI: 10.1046/j.0953-816x.2001.01758.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Based on neuronal recordings in the HVc, this study investigated differences between reproductively active male and sexually receptive female canaries. It is the first study to describe auditory responses and cell characteristics of HVc neurons in female songbirds and to compare them with the responses and characteristics obtained in males. Extracellular single unit recordings showed that in males HVc cells exhibited two types of auditory responses to conspecific and heterospecific song playbacks: tonic and phasic responses. The major finding of the present study is the absence of tonic responses in females. Neurons in the HVc of females only responded phasically to song playbacks. In both sexes, neurons exhibiting auditory responses had thinner action potentials than the others. As all the tonic cells recorded in males were thin spike cells (action potential < or = 0.6 ms) [corrected] and had high firing rates (6 Hz in average), they are potentially interneurons. In both sexes, two categories of nonresponsive cells were found: neurons that did not fire at song onset and had the lowest spontaneous firing rate; and neurons that did not exhibit changes in activity in response to song playbacks. Analyses of physiological characteristics of HVc neurons revealed that the rate of spontaneous activity was higher in males than in females. This study is a first step towards identifying [corrected] the cellular bases of the sexual dimorphism in HVc function and highlights the pivotal role of interneurons in HVc auditory processing.
Collapse
Affiliation(s)
- C Del Negro
- Laboratoire d'Ethologie et de Cognition Comparèes, Université Paris X, Nanterre, Nanterre Cedex 92001, France.
| | | |
Collapse
|
74
|
Strenge H, Fritzer G, Göder R, Niederberger U, Gerber WD, Aldenhoff J. Non-linear electroencephalogram dynamics in patients with spontaneous nocturnal migraine attacks. Neurosci Lett 2001; 309:105-8. [PMID: 11502356 DOI: 10.1016/s0304-3940(01)02047-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study was conducted to examine non-linear electroencephalogram (EEG) measures during the development of a spontaneous migraine attack. We investigated the sleep EEG of five patients with migraine without aura in the pain-free interval and at the onset of a nocturnal attack. Sleep EEG recordings were analysed using the method of global dimensional complexity compared to conventional sleep scoring techniques. We found no divergence between classical sleep architecture and the estimated dimensional course nor any relevant short-term changes related to the onset of headache. There was, however, a loss of dimensional complexity in the first two non-rapid eye movement sleep states in the migraine night, with statistical significance during the second sleep cycle. For the first time, these results provide evidence of a global dimension decrease that is related to cortical network changes during a migraine attack.
Collapse
Affiliation(s)
- H Strenge
- Institute of Medical Psychology, University Kiel, Niemannsweg 147, 24105 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
75
|
Edeline JM, Manunta Y, Hennevin E. Auditory thalamus neurons during sleep: changes in frequency selectivity, threshold, and receptive field size. J Neurophysiol 2000; 84:934-52. [PMID: 10938318 DOI: 10.1152/jn.2000.84.2.934] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study describes how the frequency receptive fields (RF) of auditory thalamus neurons are modified when the state of vigilance of an unanesthetized animal naturally fluctuates among wakefulness (W), slow-wave sleep (SWS), and paradoxical sleep (PS). Systematic quantification of several RF parameters-including strength of the evoked responses, response latency, acoustic threshold, shape of rate-level function, frequency selectivity, and RF size-was performed while undrugged, restrained guinea pigs presented spontaneous alternances of W, SWS, and PS. Data are from 102 cells recorded during W and SWS and from 53 cells recorded during W, SWS, and PS. During SWS, thalamic cells behaved as an homogeneous population: as compared with W, most of them (97/102 cells) exhibited decreased evoked spike rates. The frequency selectivity was enhanced and the RF size was reduced. In contrast during PS, two populations of cells were identified: one (32/53 cells) showed the same pattern of changes as during SWS, whereas the other (21/53 cells) expressed values of evoked spike rates and RF properties that did not significantly differ from those in W. These two populations were equally distributed in the different anatomical divisions of the auditory thalamus. Last, during both SWS and PS, the responses latency was longer and the acoustic threshold was higher than in W but the proportion of monotonic versus nonmonotonic rate-level functions was unchanged. During both SWS and PS, no relationship was found between the changes in burst percentage and the changes of the RF properties. These results point out the dual aspect of sensory processing during sleep. On the one hand, they show that the auditory messages sent by thalamic cells to cortical neurons are reduced both in terms of firing rate at a given frequency and in terms of frequency range. On the other hand, the fact that the frequency selectivity and the rate-level function are preserved suggests that the messages sent to cortical cells are not deprived of informative content, and that the analysis of complex acoustic sounds should remain possible. This can explain why, although attenuated, reactivity to biologically relevant stimuli is possible during sleep.
Collapse
Affiliation(s)
- J M Edeline
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, UMR 8620, Centre National de la Recherche Scientifique et Université Paris-Sud, 91405 Orsay Cedex, France.
| | | | | |
Collapse
|
76
|
Abstract
The mode of discharge of auditory cortex cells was studied during iontophoretic application of noradrenaline (NA). Only seven of 190 cells showed changes in interspike interval distribution during NA application. A similar conclusion was drawn when the analysis focused on 68 cells classified as bursting (n = 15), regular spiking (n = 49) or thin spike (n = 4) cells. Only two bursting cells showed changes in their ISI distribution. The effects on the mode of discharge were independent of the effect on the spike rate and were not a function of cortical depth. These results suggest that the changes in firing mode previously described in vitro occur for a limited percentage of cells and/or for cell types not very often recorded in vivo.
Collapse
Affiliation(s)
- Y Manunta
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, CNRS UMR 8620, Université Paris-Sud, Orsay, France
| | | |
Collapse
|