51
|
Bennie SJ, van der Kamp MW, Pennifold RCR, Stella M, Manby FR, Mulholland AJ. A Projector-Embedding Approach for Multiscale Coupled-Cluster Calculations Applied to Citrate Synthase. J Chem Theory Comput 2016; 12:2689-97. [PMID: 27159381 DOI: 10.1021/acs.jctc.6b00285] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Projector-based embedding has recently emerged as a robust multiscale method for the calculation of various electronic molecular properties. We present the coupling of projector embedding with quantum mechanics/molecular mechanics modeling and apply it for the first time to an enzyme-catalyzed reaction. Using projector-based embedding, we combine coupled-cluster theory, density-functional theory (DFT), and molecular mechanics to compute energies for the proton abstraction from acetyl-coenzyme A by citrate synthase. By embedding correlated ab initio methods in DFT we eliminate functional sensitivity and obtain high-accuracy profiles in a procedure that is straightforward to apply.
Collapse
Affiliation(s)
- Simon J Bennie
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| | - Marc W van der Kamp
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol , Bristol BS8 1TD, U.K
| | - Robert C R Pennifold
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| | - Martina Stella
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| | - Frederick R Manby
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| | - Adrian J Mulholland
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| |
Collapse
|
52
|
Wang YM, Hättig C, Reine S, Valeev E, Kjærgaard T, Kristensen K. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. J Chem Phys 2016; 144:204112. [DOI: 10.1063/1.4951696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yang Min Wang
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Simen Reine
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033, N-1315 Blindern, Norway
| | - Edward Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Thomas Kjærgaard
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kasper Kristensen
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
53
|
Alves TV, Simón-Carballido L, Ornellas FR, Fernández-Ramos A. Hindered rotor tunneling splittings: an application of the two-dimensional non-separable method to benzyl alcohol and two of its fluorine derivatives. Phys Chem Chem Phys 2016; 18:8945-53. [PMID: 26960818 DOI: 10.1039/c5cp05307b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we present a novel application of the two-dimensional non-separable (2D-NS) method to the calculation of torsional tunneling splittings in systems with two hindered internal rotors. This method could be considered an extension of one-dimensional methods for the case of compounds with two tops. The 2D-NS method includes coupling between torsions in the kinetic and potential energy. Specifically, it has been applied to benzyl alcohol (BA) and two of its fluorine derivatives: 3-fluorobenzyl alcohol (3FBA) and 4-fluorobenzyl alcohol (4FBA). These molecules present two torsions, i.e., about the -CH2OH (ϕ1) and -OH (ϕ2) groups. The electronic structure calculations to build the two-dimensional torsional potential energy surface were performed at the DF-LMP2-F12//DF-LMP2/cc-pVQZ level of theory. For BA and 4FBA the calculated ground-state vibrational level splittings are 429 and 453 MHz, respectively, in good agreement with the experimental values of 337.10 and 492.82 MHz, respectively. In these two cases there are four equivalent wells and the tunneling splitting is the result of transitions between the two closer minima along ϕ1. The analysis of the wavefunctions, as well as the previous experimental work on the system, supports this conclusion. For 3FBA the observed ground-state splitting is 0.82 MHz, whereas in this case the calculated value amounts only to 0.02 MHz. The 2D-NS method, through the analysis of the wavefunctions, shows that this tiny tunneling splitting occurs between the two most stable minima of the potential energy surface. Additionally, we predict that the first vibrationally excited tunneling splitting will also be small and exclusively due to the interconversion between the second lowest minima.
Collapse
Affiliation(s)
- Tiago Vinicius Alves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | | | | | | |
Collapse
|
54
|
Chattopadhyay S, Chaudhuri RK, Mahapatra US, Ghosh A, Ray SS. State-specific multireference perturbation theory: development and present status. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sudip Chattopadhyay
- Department of Chemistry; Indian Institute of Engineering Science and Technology; Shibpur, Howrah India
| | | | | | - Anirban Ghosh
- Department of Chemistry; Indian Institute of Engineering Science and Technology; Shibpur, Howrah India
| | - Suvonil Sinha Ray
- Department of Chemistry; Indian Institute of Engineering Science and Technology; Shibpur, Howrah India
| |
Collapse
|
55
|
Boussouf K, Khairat T, Prakash M, Komiha N, Chambaud G, Hochlaf M. Structure, Spectroscopy, and Bonding within the Zn(q+)-Imidazole(n) (q = 0, 1, 2; n = 1-4) Clusters and Implications for Zeolitic Imidazolate Frameworks and Zn-Enzymes. J Phys Chem A 2015; 119:11928-40. [PMID: 26565743 DOI: 10.1021/acs.jpca.5b09500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using density functional theory (DFT) with dispersion correction and ab initio post Hartree-Fock methods, we treat the bonding, the structure, the stability, and the spectroscopy of the complexes between Zn(q+) and imidazole (Im), Zn(q+)Imn (where q = 0, 1 and 2; n = 1-4). These entities are subunits of zeolitic imidazolate frameworks (ZIFs) and Zn-enzymes, which possess relevant roles in industrial and biological domains, respectively. We also investigate the Imn (n = 2-4) clusters for comparison. For each species, we determine several new structures that were not found previously. Our calculations show a competition between atomic metal solvation, by either σ-type interactions or π-stacking type interaction, and proton transfer through hydrogen bonding (H-bonding) in charged species. This results in several geometrical environments around the metal. These are connected with structural properties and the functional role of Zn cation within ZIFs and Zn-enzymes. Moreover, we show that the Zn(2+)Imn subunits do not absorb in the visible domain, which may be related to the photostability of ZIFs. Our findings are important for the development of new applications of ZIFs and metalloenzymes.
Collapse
Affiliation(s)
- K Boussouf
- LS3ME-Equipe de Chimie Théorique et Modélisation, Faculté des Sciences Rabat, Université Mohamed V , Rabat, Morocco.,Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est , 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - T Khairat
- LS3ME-Equipe de Chimie Théorique et Modélisation, Faculté des Sciences Rabat, Université Mohamed V , Rabat, Morocco
| | - M Prakash
- Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est , 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - N Komiha
- LS3ME-Equipe de Chimie Théorique et Modélisation, Faculté des Sciences Rabat, Université Mohamed V , Rabat, Morocco
| | - G Chambaud
- Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est , 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - M Hochlaf
- Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est , 5 bd Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
56
|
Bellili A, Linguerri R, Hochlaf M, Puzzarini C. Accurate structural and spectroscopic characterization of prebiotic molecules: The neutral and cationic acetyl cyanide and their related species. J Chem Phys 2015; 143:184314. [DOI: 10.1063/1.4935493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. Bellili
- Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, 77454 Marne-la-Vallée, France
| | - R. Linguerri
- Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, 77454 Marne-la-Vallée, France
| | - M. Hochlaf
- Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, 77454 Marne-la-Vallée, France
| | - C. Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician,” Università di Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| |
Collapse
|
57
|
Ma Q, Werner HJ. Scalable Electron Correlation Methods. 2. Parallel PNO-LMP2-F12 with Near Linear Scaling in the Molecular Size. J Chem Theory Comput 2015; 11:5291-304. [DOI: 10.1021/acs.jctc.5b00843] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qianli Ma
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Baden-Württemberg, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Baden-Württemberg, Germany
| |
Collapse
|
58
|
Sansone G, Civalleri B, Usvyat D, Toulouse J, Sharkas K, Maschio L. Range-separated double-hybrid density-functional theory applied to periodic systems. J Chem Phys 2015; 143:102811. [PMID: 26374004 DOI: 10.1063/1.4922996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantum chemistry methods exploiting density-functional approximations for short-range electron-electron interactions and second-order Møller-Plesset (MP2) perturbation theory for long-range electron-electron interactions have been implemented for periodic systems using Gaussian-type basis functions and the local correlation framework. The performance of these range-separated double hybrids has been benchmarked on a significant set of systems including rare-gas, molecular, ionic, and covalent crystals. The use of spin-component-scaled MP2 for the long-range part has been tested as well. The results show that the value of μ = 0.5 bohr(-1) for the range-separation parameter usually used for molecular systems is also a reasonable choice for solids. Overall, these range-separated double hybrids provide a good accuracy for binding energies using basis sets of moderate sizes such as cc-pVDZ and aug-cc-pVDZ.
Collapse
Affiliation(s)
- Giuseppe Sansone
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, via Giuria 5, I-10125 Torino, Italy
| | - Bartolomeo Civalleri
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, via Giuria 5, I-10125 Torino, Italy
| | - Denis Usvyat
- Institute for Physical and Theoretical Chemistry, Universität Regensburg, Universitätsstrasse 31, D-93040 Regensburg, Germany
| | - Julien Toulouse
- Sorbonne Universités, UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
| | - Kamal Sharkas
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, USA
| | - Lorenzo Maschio
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, via Giuria 5, I-10125 Torino, Italy
| |
Collapse
|
59
|
Usvyat D. High precision quantum-chemical treatment of adsorption: Benchmarking physisorption of molecular hydrogen on graphane. J Chem Phys 2015; 143:104704. [DOI: 10.1063/1.4930851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denis Usvyat
- Institute for Physical and Theoretical Chemistry, Universität Regensburg, Universitätsstrasse 31, D-93040 Regensburg, Germany
| |
Collapse
|
60
|
Usvyat D, Maschio L, Schütz M. Periodic local MP2 method employing orbital specific virtuals. J Chem Phys 2015; 143:102805. [DOI: 10.1063/1.4921301] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denis Usvyat
- Institute for Physical and Theoretical Chemistry, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Lorenzo Maschio
- Dipartimento di Chimica, and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, I-10125 Torino, Italy
| | - Martin Schütz
- Institute for Physical and Theoretical Chemistry, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
61
|
Burns LA, Marshall MS, Sherrill CD. Appointing silver and bronze standards for noncovalent interactions: a comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches. J Chem Phys 2015; 141:234111. [PMID: 25527923 DOI: 10.1063/1.4903765] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A systematic examination of noncovalent interactions as modeled by wavefunction theory is presented in comparison to gold-standard quality benchmarks available for 345 interaction energies of 49 bimolecular complexes. Quantum chemical techniques examined include spin-component-scaling (SCS) variations on second-order perturbation theory (MP2) [SCS, SCS(N), SCS(MI)] and coupled cluster singles and doubles (CCSD) [SCS, SCS(MI)]; also, method combinations designed to improve dispersion contacts [DW-MP2, MP2C, MP2.5, DW-CCSD(T)-F12]; where available, explicitly correlated (F12) counterparts are also considered. Dunning basis sets augmented by diffuse functions are employed for all accessible ζ-levels; truncations of the diffuse space are also considered. After examination of both accuracy and performance for 394 model chemistries, SCS(MI)-MP2/cc-pVQZ can be recommended for general use, having good accuracy at low cost and no ill-effects such as imbalance between hydrogen-bonding and dispersion-dominated systems or non-parallelity across dissociation curves. Moreover, when benchmarking accuracy is desirable but gold-standard computations are unaffordable, this work recommends silver-standard [DW-CCSD(T**)-F12/aug-cc-pVDZ] and bronze-standard [MP2C-F12/aug-cc-pVDZ] model chemistries, which support accuracies of 0.05 and 0.16 kcal/mol and efficiencies of 97.3 and 5.5 h for adenine·thymine, respectively. Choice comparisons of wavefunction results with the best symmetry-adapted perturbation theory [T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014)] and density functional theory [L. A. Burns, Á. Vázquez-Mayagoitia, B. G. Sumpter, and C. D. Sherrill, J. Chem. Phys. 134, 084107 (2011)] methods previously studied for these databases are provided for readers' guidance.
Collapse
Affiliation(s)
- Lori A Burns
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Michael S Marshall
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
62
|
Kalemos A. Fe2: As simple as a Herculean labour. Neutral (Fe2), cationic (Fe2+), and anionic (Fe2−) species. J Chem Phys 2015; 142:244304. [DOI: 10.1063/1.4922793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
63
|
Kállay M. Linear-scaling implementation of the direct random-phase approximation. J Chem Phys 2015; 142:204105. [DOI: 10.1063/1.4921542] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
64
|
Dalbouha S, Prakash M, Timón V, Komiha N, Hochlaf M, Senent ML. Explicitly correlated interaction potential energy profile of imidazole + CO2 complex. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1657-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
65
|
Hollman DS, Schaefer HF, Valeev EF. A tight distance-dependent estimator for screening three-center Coulomb integrals over Gaussian basis functions. J Chem Phys 2015; 142:154106. [DOI: 10.1063/1.4917519] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David S. Hollman
- Center for Computational Quantum Chemistry, University of Georgia, 1004 Cedar St., Athens, Georgia 30602, USA
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, 1004 Cedar St., Athens, Georgia 30602, USA
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
66
|
Hochlaf M, Puzzarini C, Senent M. Towards the computations of accurate spectroscopic parameters and vibrational spectra for organic compounds. Mol Phys 2015. [DOI: 10.1080/00268976.2014.1003986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- M. Hochlaf
- Laboratoire NSMEUMR 8208 CNRS, Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, Marne-la-Vallée, France
| | - C. Puzzarini
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Bologna, Italy
| | - M.L. Senent
- Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-CSIC Madrid, Spain
| |
Collapse
|
67
|
Werner HJ, Knizia G, Krause C, Schwilk M, Dornbach M. Scalable Electron Correlation Methods I.: PNO-LMP2 with Linear Scaling in the Molecular Size and Near-Inverse-Linear Scaling in the Number of Processors. J Chem Theory Comput 2015; 11:484-507. [DOI: 10.1021/ct500725e] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Gerald Knizia
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Christine Krause
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Max Schwilk
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mark Dornbach
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
68
|
Boussouf K, Boulmene R, Prakash M, Komiha N, Taleb M, Mogren Al-Mogren M, Hochlaf M. Characterization of Znq+–imidazole (q = 0, 1, 2) organometallic complexes: DFT methods vs. standard and explicitly correlated post-Hartree–Fock methods. Phys Chem Chem Phys 2015; 17:14417-26. [DOI: 10.1039/c4cp06108j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Benchmarking DFts for the characterization of the Znq+–imidazole (q= 0, 1, 2) complexes.
Collapse
Affiliation(s)
- K. Boussouf
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| | - R. Boulmene
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| | - M. Prakash
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| | - N. Komiha
- LS3ME-Equipe de Chimie Théorique et Modélisation
- Université Mohamed
- Faculté des Sciences
- Rabat
- Maroc
| | - M. Taleb
- Laboratoire LIMME
- Université Sidi Med Ben Abdellah
- Fac des Sciences Dhar El Mehrez
- Fès
- Maroc
| | - M. Mogren Al-Mogren
- Chemistry Department
- Faculty of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - M. Hochlaf
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| |
Collapse
|
69
|
Class CA, Aguilera-Iparraguirre J, Green WH. A kinetic and thermochemical database for organic sulfur and oxygen compounds. Phys Chem Chem Phys 2015; 17:13625-39. [DOI: 10.1039/c4cp05631k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potential energy surfaces and reaction kinetics were calculated for reactions involving sulfur and oxygen, which are potentially relevant in combustion and desulfurization chemistry.
Collapse
Affiliation(s)
- Caleb A. Class
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | | | - William H. Green
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
70
|
Burns M, Essafi S, Bame JR, Bull SP, Webster MP, Balieu S, Dale JW, Butts CP, Harvey JN, Aggarwal VK. Assembly-line synthesis of organic molecules with tailored shapes. Nature 2014; 513:183-8. [PMID: 25209797 PMCID: PMC4167605 DOI: 10.1038/nature13711] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/23/2014] [Indexed: 12/24/2022]
Abstract
Molecular assembly lines, where molecules undergo iterative processes involving chain elongation and functional group manipulation are hallmarks of many processes found in Nature. We have sought to emulate Nature in the development of our own molecular assembly line through iterative homologations of boronic esters. Here we report a reagent (α-lithioethyl triispopropylbenzoate) which inserts into carbon-boron bonds with exceptionally high fidelity and stereocontrol. Through repeated iteration we have converted a simple boronic ester into a complex molecule (a carbon chain with ten contiguous methyl groups) with remarkably high precision over its length, its stereochemistry and therefore its shape. Different stereoisomers were targeted and it was found that they adopted different shapes (helical/linear) according to their stereochemistry. This work should now enable scientists to rationally design and create molecules with predictable shape, which could have an impact in all areas of molecular sciences where bespoke molecules are required.
Collapse
Affiliation(s)
- Matthew Burns
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Stéphanie Essafi
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Jessica R Bame
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Stephanie P Bull
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Matthew P Webster
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Sébastien Balieu
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - James W Dale
- Novartis Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH13 5AB, UK
| | - Craig P Butts
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Jeremy N Harvey
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
71
|
Sharma S, Chan GKL. Communication: A flexible multi-reference perturbation theory by minimizing the Hylleraas functional with matrix product states. J Chem Phys 2014; 141:111101. [DOI: 10.1063/1.4895977] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sandeep Sharma
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | - Garnet Kin-Lic Chan
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
72
|
Loibl S, Schütz M. Magnetizability and rotational g tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals. J Chem Phys 2014; 141:024108. [DOI: 10.1063/1.4884959] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stefan Loibl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Martin Schütz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
73
|
Goldey MB, Head-Gordon M. Convergence of attenuated second order Møller–Plesset perturbation theory towards the complete basis set limit. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.05.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
74
|
Rolik Z, Szegedy L, Ladjánszki I, Ladóczki B, Kállay M. An efficient linear-scaling CCSD(T) method based on local natural orbitals. J Chem Phys 2014; 139:094105. [PMID: 24028100 DOI: 10.1063/1.4819401] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An improved version of our general-order local coupled-cluster (CC) approach [Z. Rolik and M. Kállay, J. Chem. Phys. 135, 104111 (2011)] and its efficient implementation at the CC singles and doubles with perturbative triples [CCSD(T)] level is presented. The method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys. 131, 114109 (2009)] with frozen natural orbital (NO) techniques. To break down the unfavorable fifth-power scaling of our original approach a two-level domain construction algorithm has been developed. First, an extended domain of localized molecular orbitals (LMOs) is assembled based on the spatial distance of the orbitals. The necessary integrals are evaluated and transformed in these domains invoking the density fitting approximation. In the second step, for each occupied LMO of the extended domain a local subspace of occupied and virtual orbitals is constructed including approximate second-order Mo̸ller-Plesset NOs. The CC equations are solved and the perturbative corrections are calculated in the local subspace for each occupied LMO using a highly-efficient CCSD(T) code, which was optimized for the typical sizes of the local subspaces. The total correlation energy is evaluated as the sum of the individual contributions. The computation time of our approach scales linearly with the system size, while its memory and disk space requirements are independent thereof. Test calculations demonstrate that currently our method is one of the most efficient local CCSD(T) approaches and can be routinely applied to molecules of up to 100 atoms with reasonable basis sets.
Collapse
Affiliation(s)
- Zoltán Rolik
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, P.O. Box 91, Hungary
| | | | | | | | | |
Collapse
|
75
|
Buras ZJ, Elsamra RMI, Jalan A, Middaugh JE, Green WH. Direct Kinetic Measurements of Reactions between the Simplest Criegee Intermediate CH2OO and Alkenes. J Phys Chem A 2014; 118:1997-2006. [DOI: 10.1021/jp4118985] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zachary J. Buras
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Rehab M. I. Elsamra
- Department
of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, 21321, Alexandria, Egypt
| | - Amrit Jalan
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Joshua E. Middaugh
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - William H. Green
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
76
|
Kalescky R, Kraka E, Cremer D. Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation. J Chem Phys 2014; 140:084315. [DOI: 10.1063/1.4866696] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
77
|
Womack JC, Manby FR. Density fitting for three-electron integrals in explicitly correlated electronic structure theory. J Chem Phys 2014; 140:044118. [DOI: 10.1063/1.4863136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
78
|
Schmitz G, Hättig C, Tew DP. Explicitly correlated PNO-MP2 and PNO-CCSD and their application to the S66 set and large molecular systems. Phys Chem Chem Phys 2014; 16:22167-78. [DOI: 10.1039/c4cp03502j] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining the highly compact local PNO representation with F12 theory is an excellent route towards accurate low-scaling correlated wavefunctions for large systems and high quality reference data.
Collapse
Affiliation(s)
- Gunnar Schmitz
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- D-44801 Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- D-44801 Bochum, Germany
| | - David P. Tew
- Center for Computational Chemistry
- University of Bristol
- Bristol BS8 1TS, UK
| |
Collapse
|
79
|
Hochlaf M, Linguerri R, Francisco JS. On the role of the simplest S-nitrosothiol, HSNO, in atmospheric and biological processes. J Chem Phys 2013; 139:234304. [DOI: 10.1063/1.4840495] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
80
|
Usvyat D. Linear-scaling explicitly correlated treatment of solids: Periodic local MP2-F12 method. J Chem Phys 2013; 139:194101. [DOI: 10.1063/1.4829898] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
81
|
Müller C, Usvyat D. Incrementally Corrected Periodic Local MP2 Calculations: I. The Cohesive Energy of Molecular Crystals. J Chem Theory Comput 2013; 9:5590-8. [DOI: 10.1021/ct400797w] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carsten Müller
- Institut
für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Denis Usvyat
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
82
|
Yaghlane SB, Cotton CE, Francisco JS, Linguerri R, Hochlaf M. Ab initio structural and spectroscopic study of HPSx and HSPx (x = 0,+1,−1) in the gas phase. J Chem Phys 2013; 139:174313. [DOI: 10.1063/1.4827520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
83
|
Jalan A, Alecu IM, Meana-Pañeda R, Aguilera-Iparraguirre J, Yang KR, Merchant SS, Truhlar DG, Green WH. New pathways for formation of acids and carbonyl products in low-temperature oxidation: the Korcek decomposition of γ-ketohydroperoxides. J Am Chem Soc 2013; 135:11100-14. [PMID: 23862563 DOI: 10.1021/ja4034439] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present new reaction pathways relevant to low-temperature oxidation in gaseous and condensed phases. The new pathways originate from γ-ketohydroperoxides (KHP), which are well-known products in low-temperature oxidation and are assumed to react only via homolytic O-O dissociation in existing kinetic models. Our ab initio calculations identify new exothermic reactions of KHP forming a cyclic peroxide isomer, which decomposes via novel concerted reactions into carbonyl and carboxylic acid products. Geometries and frequencies of all stationary points are obtained using the M06-2X/MG3S DFT model chemistry, and energies are refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. Thermal rate coefficients are computed using variational transition-state theory (VTST) calculations with multidimensional tunneling contributions based on small-curvature tunneling (SCT). These are combined with multistructural partition functions (Q(MS-T)) to obtain direct dynamics multipath (MP-VTST/SCT) gas-phase rate coefficients. For comparison with liquid-phase measurements, solvent effects are included using continuum dielectric solvation models. The predicted rate coefficients are found to be in excellent agreement with experiment when due consideration is made for acid-catalyzed isomerization. This work provides theoretical confirmation of the 30-year-old hypothesis of Korcek and co-workers that KHPs are precursors to carboxylic acid formation, resolving an open problem in the kinetics of liquid-phase autoxidation. The significance of the new pathways in atmospheric chemistry, low-temperature combustion, and oxidation of biological lipids are discussed.
Collapse
Affiliation(s)
- Amrit Jalan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Riplinger C, Neese F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J Chem Phys 2013; 138:034106. [PMID: 23343267 DOI: 10.1063/1.4773581] [Citation(s) in RCA: 1190] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In previous publications, it was shown that an efficient local coupled cluster method with single- and double excitations can be based on the concept of pair natural orbitals (PNOs) [F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009)]. The resulting local pair natural orbital-coupled-cluster single double (LPNO-CCSD) method has since been proven to be highly reliable and efficient. For large molecules, the number of amplitudes to be determined is reduced by a factor of 10(5)-10(6) relative to a canonical CCSD calculation on the same system with the same basis set. In the original method, the PNOs were expanded in the set of canonical virtual orbitals and single excitations were not truncated. This led to a number of fifth order scaling steps that eventually rendered the method computationally expensive for large molecules (e.g., >100 atoms). In the present work, these limitations are overcome by a complete redesign of the LPNO-CCSD method. The new method is based on the combination of the concepts of PNOs and projected atomic orbitals (PAOs). Thus, each PNO is expanded in a set of PAOs that in turn belong to a given electron pair specific domain. In this way, it is possible to fully exploit locality while maintaining the extremely high compactness of the original LPNO-CCSD wavefunction. No terms are dropped from the CCSD equations and domains are chosen conservatively. The correlation energy loss due to the domains remains below <0.05%, which implies typically 15-20 but occasionally up to 30 atoms per domain on average. The new method has been given the acronym DLPNO-CCSD ("domain based LPNO-CCSD"). The method is nearly linear scaling with respect to system size. The original LPNO-CCSD method had three adjustable truncation thresholds that were chosen conservatively and do not need to be changed for actual applications. In the present treatment, no additional truncation parameters have been introduced. Any additional truncation is performed on the basis of the three original thresholds. There are no real-space cutoffs. Single excitations are truncated using singles-specific natural orbitals. Pairs are prescreened according to a multipole expansion of a pair correlation energy estimate based on local orbital specific virtual orbitals (LOSVs). Like its LPNO-CCSD predecessor, the method is completely of black box character and does not require any user adjustments. It is shown here that DLPNO-CCSD is as accurate as LPNO-CCSD while leading to computational savings exceeding one order of magnitude for larger systems. The largest calculations reported here featured >8800 basis functions and >450 atoms. In all larger test calculations done so far, the LPNO-CCSD step took less time than the preceding Hartree-Fock calculation, provided no approximations have been introduced in the latter. Thus, based on the present development reliable CCSD calculations on large molecules with unprecedented efficiency and accuracy are realized.
Collapse
Affiliation(s)
- Christoph Riplinger
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
85
|
Győrffy W, Shiozaki T, Knizia G, Werner HJ. Analytical energy gradients for second-order multireference perturbation theory using density fitting. J Chem Phys 2013; 138:104104. [DOI: 10.1063/1.4793737] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
86
|
|
87
|
Hollman DS, Wilke JJ, Schaefer HF. Explicitly correlated atomic orbital basis second order Møller–Plesset theory. J Chem Phys 2013; 138:064107. [DOI: 10.1063/1.4790582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
88
|
Schütz M, Yang J, Chan GKL, Manby FR, Werner HJ. The orbital-specific virtual local triples correction: OSV-L(T). J Chem Phys 2013; 138:054109. [DOI: 10.1063/1.4789415] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
89
|
Maurer SA, Lambrecht DS, Kussmann J, Ochsenfeld C. Efficient distance-including integral screening in linear-scaling Møller-Plesset perturbation theory. J Chem Phys 2013; 138:014101. [DOI: 10.1063/1.4770502] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
90
|
Loibl S, Schütz M. NMR shielding tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge including atomic orbitals. J Chem Phys 2013; 137:084107. [PMID: 22938218 DOI: 10.1063/1.4744102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An efficient method for the calculation of nuclear magnetic resonance (NMR) shielding tensors is presented, which treats electron correlation at the level of second-order Mo̸ller-Plesset perturbation theory. It uses spatially localized functions to span occupied and virtual molecular orbital spaces, respectively, which are expanded in a basis of gauge including atomic orbitals (GIAOs or London atomic orbitals). Doubly excited determinants are restricted to local subsets of the virtual space and pair energies with an interorbital distance beyond a certain threshold are omitted. Furthermore, density fitting is employed to factorize the electron repulsion integrals. Ordinary Gaussians are employed as fitting functions. It is shown that the errors in the resulting NMR shielding constant, introduced (i) by the local approximation and (ii) by density fitting, are very small or even negligible. The capabilities of the new program are demonstrated by calculations on some extended molecular systems, such as the cyclobutane pyrimidine dimer photolesion with adjacent nucleobases in the native intrahelical DNA double strand (ATTA sequence). Systems of that size were not accessible to correlated ab initio calculations of NMR spectra before. The presented method thus opens the door to new and interesting applications in this area.
Collapse
Affiliation(s)
- Stefan Loibl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | | |
Collapse
|
91
|
Elm J, Bilde M, Mikkelsen KV. Assessment of binding energies of atmospherically relevant clusters. Phys Chem Chem Phys 2013; 15:16442-5. [DOI: 10.1039/c3cp52616j] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
92
|
Goldey M, Dutoi A, Head-Gordon M. Attenuated second-order Møller–Plesset perturbation theory: performance within the aug-cc-pVTZ basis. Phys Chem Chem Phys 2013; 15:15869-75. [DOI: 10.1039/c3cp51826d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
93
|
Jalan A, Allen JW, Green WH. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones. Phys Chem Chem Phys 2013; 15:16841-52. [DOI: 10.1039/c3cp52598h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
94
|
Liakos DG, Neese F. Improved Correlation Energy Extrapolation Schemes Based on Local Pair Natural Orbital Methods. J Phys Chem A 2012; 116:4801-16. [DOI: 10.1021/jp302096v] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dimitrios G. Liakos
- Max-Planck Institut für Bioanorganische Chemie, Stiftstrasse 32-34, D-45470 Mülheim an
der Ruhr, Germany
| | - Frank Neese
- Max-Planck Institut für Bioanorganische Chemie, Stiftstrasse 32-34, D-45470 Mülheim an
der Ruhr, Germany
| |
Collapse
|
95
|
Riley KE, Platts JA, Řezáč J, Hobza P, Hill JG. Assessment of the Performance of MP2 and MP2 Variants for the Treatment of Noncovalent Interactions. J Phys Chem A 2012; 116:4159-69. [DOI: 10.1021/jp211997b] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kevin E. Riley
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Czech Republic
| | - James A. Platts
- School
of Chemistry, Cardiff University, Park
Place, Cardiff CF10 3AT,
United Kingdom
| | - Jan Řezáč
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Czech Republic
- Regional Center
of Advanced Technologies
and Materials, Department of Physical Chemistry, Palacky University, 771 46 Olomouc, Czech Republic
| | - J. Grant Hill
- School of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
96
|
Yang J, Chan GKL, Manby FR, Schütz M, Werner HJ. The orbital-specific-virtual local coupled cluster singles and doubles method. J Chem Phys 2012; 136:144105. [DOI: 10.1063/1.3696963] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
97
|
|
98
|
Krause C, Werner HJ. Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals. Phys Chem Chem Phys 2012; 14:7591-604. [DOI: 10.1039/c2cp40231a] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
99
|
Hättig C, Klopper W, Köhn A, Tew DP. Explicitly Correlated Electrons in Molecules. Chem Rev 2011; 112:4-74. [DOI: 10.1021/cr200168z] [Citation(s) in RCA: 401] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Wim Klopper
- Abteilung für Theoretische Chemie, Institut für Physikalische Chemie, Karlsruher Institut für Technologie, KIT-Campus Süd, Postfach 6980, D-76049 Karlsruhe, Germany
| | - Andreas Köhn
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - David P. Tew
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
100
|
Hansen A, Liakos DG, Neese F. Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals. J Chem Phys 2011; 135:214102. [DOI: 10.1063/1.3663855] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|