51
|
Raynaud C, Norbert-Agaisse E, James BR, Eisenstein O. 31P Chemical Shifts in Ru(II) Phosphine Complexes. A Computational Study of the Influence of the Coordination Sphere. Inorg Chem 2020; 59:17038-17048. [PMID: 33156986 DOI: 10.1021/acs.inorgchem.0c02256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The NMR chemical shift has been the most versatile marker of chemical structures, by reflecting global and local electronic structures, and is very sensitive to any change within the chemical species. In this work, Ru(II) complexes with the same five ligands and a variable sixth ligand L (none, H2O, H2S, CH3SH, H2, N2, N2O, NO+, C═CHPh, and CO) are studied by using as the NMR reporter the phosphorus PA of a coordinated bidentate PA-N ligand (PA-N = o-diphenylphosphino-N,N'-dimethylaniline). The chemical shift of PA in RuCl2(PA-N)(PR3)(L) (R = phenyl, p-tolyl, or p-FC6H4) was shown to increase as the Ru-PA bond distance decreases, an observation that was not rationalized. This work, using density functional theory (DFT) calculations, reproduces reasonably well the observed 31P chemical shifts for these complexes and the correlation between the shifts and the Ru-PA bond distance as L varies. An interpretation of this correlation is proposed by using a natural chemical shift (NCS) analysis based on the natural bonding orbital (NBO) method. This analysis of the principal components of the chemical shift tensors shows how the σ-donating properties of L have a particularly high influence on the phosphine chemical shifts.
Collapse
Affiliation(s)
| | | | - Brian R James
- Department of Chemistry, University of Vancouver, Vancouver, BC V6T 1Z1, Canada
| | - Odile Eisenstein
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France.,Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo 0315, Norway
| |
Collapse
|
52
|
Abstract
Magnetic shielding depends on molecular structure and noncovalent interactions. This study shows that it is also measurably dependent on the electric field generated by surrounding molecules. This effect has been observed explicitly for 31P nucleus using the adduct under field approach. The results obtained indicate that the field strength experienced by molecules in crystals consisting of molecules with large dipole moments is similar to that in polar solvents. Therefore, magnetic shielding should explicitly depend on solvent polarity. It is important to note that this effect cannot be reproduced correctly within the polarizable continuum model approach.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
53
|
Rusakova IL, Rusakov YY. Correlated ab initio calculations of one-bond 31 P 77 Se and 31 P 125 Te spin-spin coupling constants in a series of PSe and PTe systems accounting for relativistic effects (part 2). MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:929-940. [PMID: 32453871 DOI: 10.1002/mrc.5058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Synthetic chalcogen-phosphorus chemistry permanently makes new challenges to computational Nuclear Magnetic Resonance (NMR) spectroscopy, which has proven to be a powerful tool of structural analysis of chalcogen-phosphorus compounds. This paper reports on the calculations of one-bond 31 P77 Se and 31 P125 Te NMR spin-spin coupling constants (SSCCs) in the series of phosphine selenides and tellurides. The applicability of the combined computational approach to the one-bond 31 P77 Se and 31 P125 Te SSCCs, incorporating the composite nonrelativistic scheme, built of high-accuracy correlated SOPPA (CC2) and Coupled Cluster Single and Double (CCSD) methods and the Density Functional Theory (DFT) relativistic corrections (four-component level), was examined against the experiment and another scheme based on the four-component relativistic DFT method. A special J-oriented basis set (acv3z-J) for selenium and tellurium atoms, developed previously by the authors, was used throughout the NMR calculations in this work at the first time. The proposed computational methodologies (combined and 'pure') provided a reasonable accuracy for 31 P77 Se and 31 P125 Te SSCCs against experimental data, characterizing by the mean absolute percentage errors of about 4% and 1%, and 12% and 8% for selenium and tellurium species, respectively. The present study reports typical relativistic corrections to 77 Se31 P and 125 Te31 P SSCCs, calculated within the four-component DFT formalism for a broad series of tertiary phosphine selenides and tellurides with different substituents at phosphorus.
Collapse
Affiliation(s)
- Irina L Rusakova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| | - Yuriy Yu Rusakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| |
Collapse
|
54
|
Jaszuński M, Sauer SPA, Faber R, Wilson DJD. NMR parameters of FNNF as a test for coupled-cluster methods: CCSDT shielding and CC3 spin-spin coupling. Phys Chem Chem Phys 2020; 22:21350-21359. [PMID: 32936148 DOI: 10.1039/d0cp02730h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR shielding and spin-spin coupling constants of cis and trans isomers of FNNF have been determined to near-quantitative accuracy from ab initio calculations. The FNNF system, containing multiple N-F bonds and fluorine atoms, provides a severe test of computational methods. Coupled-cluster methods were used with large basis sets and complete basis set (CBS) extrapolations of the equilibrium geometry results, with vibrational and relativistic corrections. Shielding constants were calculated with basis sets as large as aug-cc-pCV7Z, together with coupled-cluster expansions up to CCSDT, at the all-electron CCSD(T)/aug-cc-pCVQZ optimized geometries. Spin-spin coupling constants have been determined with specialized versions of the correlation consistent basis sets ccJ-pVXZ, further augmented with diffuse functions. All-electron coupled-cluster methods up to CC3 were applied in these calculations. The results of this work highlight the application of state-of-the-art theoretical techniques, and provide the most accurate NMR properties of FNNF to date, which can serve to guide and supplement NMR experimentation.
Collapse
Affiliation(s)
- Michał Jaszuński
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | | | | | | |
Collapse
|
55
|
Mack F, Schattenberg CJ, Kaupp M, Weigend F. Nuclear Spin–Spin Couplings: Efficient Evaluation of Exact Exchange and Extension to Local Hybrid Functionals. J Phys Chem A 2020; 124:8529-8539. [DOI: 10.1021/acs.jpca.0c06897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Caspar J. Schattenberg
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
56
|
Dietschreit JCB, Wagner A, Le TA, Klein P, Schindelin H, Opatz T, Engels B, Hellmich UA, Ochsenfeld C. Predicting
19
F NMR Chemical Shifts: A Combined Computational and Experimental Study of a Trypanosomal Oxidoreductase–Inhibitor Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Johannes C. B. Dietschreit
- Theoretical Chemistry Department of Chemistry University of Munich (LMU) Butenandtstr. 7 81377 Munich Germany
| | - Annika Wagner
- Dept. Chemistry Section Biochemistry Johannes Gutenberg-Universität Mainz 55128 Mainz Germany
- Centre for Biomolecular Magnetic Resonance (BMRZ) Goethe-University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - T. Anh Le
- Institute for Physical and Theoretical Chemistry University of Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Philipp Klein
- Dept. Chemistry Section Organic Chemistry Johannes Gutenberg-Universität Mainz 55128 Mainz Germany
| | - Hermann Schindelin
- Institute of Structural Biology Rudolf Virchow Center for Experimental Biomedicine University of Würzburg 97080 Würzburg Germany
| | - Till Opatz
- Dept. Chemistry Section Organic Chemistry Johannes Gutenberg-Universität Mainz 55128 Mainz Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry University of Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Ute A. Hellmich
- Dept. Chemistry Section Biochemistry Johannes Gutenberg-Universität Mainz 55128 Mainz Germany
- Centre for Biomolecular Magnetic Resonance (BMRZ) Goethe-University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Christian Ochsenfeld
- Theoretical Chemistry Department of Chemistry University of Munich (LMU) Butenandtstr. 7 81377 Munich Germany
- Max Planck Institute for Solid State Research 70569 Stuttgart Germany
| |
Collapse
|
57
|
Dietschreit JCB, Wagner A, Le TA, Klein P, Schindelin H, Opatz T, Engels B, Hellmich UA, Ochsenfeld C. Predicting 19 F NMR Chemical Shifts: A Combined Computational and Experimental Study of a Trypanosomal Oxidoreductase-Inhibitor Complex. Angew Chem Int Ed Engl 2020; 59:12669-12673. [PMID: 32239740 PMCID: PMC7496126 DOI: 10.1002/anie.202000539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/22/2020] [Indexed: 02/02/2023]
Abstract
The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor-protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable 19 F chemical-shift predictions to deduce ligand-binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the 19 F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleeping sickness. We include many protein-inhibitor conformations as well as monomeric and dimeric inhibitor-protein complexes, thus rendering it the largest computational study on chemical shifts of 19 F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area.
Collapse
Affiliation(s)
| | - Annika Wagner
- Dept. ChemistrySection BiochemistryJohannes Gutenberg-Universität Mainz55128MainzGermany
- Centre for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438FrankfurtGermany
| | - T. Anh Le
- Institute for Physical and Theoretical ChemistryUniversity of WürzburgEmil-Fischer-Straße 4297074WürzburgGermany
| | - Philipp Klein
- Dept. ChemistrySection Organic ChemistryJohannes Gutenberg-Universität Mainz55128MainzGermany
| | - Hermann Schindelin
- Institute of Structural BiologyRudolf Virchow Center for Experimental BiomedicineUniversity of Würzburg97080WürzburgGermany
| | - Till Opatz
- Dept. ChemistrySection Organic ChemistryJohannes Gutenberg-Universität Mainz55128MainzGermany
| | - Bernd Engels
- Institute for Physical and Theoretical ChemistryUniversity of WürzburgEmil-Fischer-Straße 4297074WürzburgGermany
| | - Ute A. Hellmich
- Dept. ChemistrySection BiochemistryJohannes Gutenberg-Universität Mainz55128MainzGermany
- Centre for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438FrankfurtGermany
| | - Christian Ochsenfeld
- Theoretical ChemistryDepartment of ChemistryUniversity of Munich (LMU)Butenandtstr. 781377MunichGermany
- Max Planck Institute for Solid State Research70569StuttgartGermany
| |
Collapse
|
58
|
Prokopiou G, Autschbach J, Kronik L. Assessment of the Performance of Optimally Tuned Range‐Separated Hybrid Functionals for Nuclear Magnetic Shielding Calculations. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Georgia Prokopiou
- Department of Materials and InterfacesWeizmann Institute of ScienceRehovot 76100 Israel
| | - Jochen Autschbach
- Department of ChemistryState University of New York at BuffaloBuffalo NY 14260‐3000 USA
| | - Leeor Kronik
- Department of Materials and InterfacesWeizmann Institute of ScienceRehovot 76100 Israel
| |
Collapse
|
59
|
Gao P, Zhang J, Peng Q, Zhang J, Glezakou VA. General Protocol for the Accurate Prediction of Molecular 13C/1H NMR Chemical Shifts via Machine Learning Augmented DFT. J Chem Inf Model 2020; 60:3746-3754. [DOI: 10.1021/acs.jcim.0c00388] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Gao
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Jun Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Zhang
- Centre of Chemistry and Chemical Biology, Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Science Park, Guangzhou 510530, China
| | - Vassiliki-Alexandra Glezakou
- Physical Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| |
Collapse
|
60
|
Spectroscopic and computational study of a new thiazolylazonaphthol dye 1-[(5-(3-nitrobenzyl)-1,3-thiazol-2-yl)diazenyl]naphthalen-2-ol. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
61
|
Ludwig M, Himmel D, Hillebrecht H. GIAO versus GIPAW: Comparison of Methods To Calculate 11B NMR Shifts of Icosahedral Closo-Heteroboranes toward Boron-Rich Borides. J Phys Chem A 2020; 124:2173-2185. [PMID: 31999459 DOI: 10.1021/acs.jpca.9b06582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we perform first-principle density functional theory calculations with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional to compare the results of the gauge-including atomic orbital (GIAO) method with the gauge-including projector-augmented wave (GIPAW) approach for isotropic 11B nuclear magnetic resonance shifts. GIPAW had been used successfully for the theoretical calculation of nuclear magnetic parameters of 11B species in strong ionic solid-phase compounds such as borates but had been applied very rarely to structures where boron is mainly involved in complex covalent bonding situations, for example, in icosahedra of boron-rich borides. Thus, we investigate the accuracy of both well-known methods and reliability of the effective treatment of core electrons on a test set containing 16 experimentally known closo-(hetero)dodecaboranes. In general, we find very good agreement between GIAO and GIPAW when compared to experimental observations. However, accidental degeneracies of the shift values are better predicted by GIPAW. The optimized molecular geometries on the PBE level agree well with gaseous electron diffraction data and lead to theoretical isotropic chemical 11B shifts with root-mean-square errors of 2.1 and 1.0 ppm depending on the used model of converting absolute shieldings to chemical shifts. The comparison with results from hybrid functionals (B3LYP, B3LYP-D2, and PBE0) shows a minor improvement in accuracy, which is in agreement with 13C shifts of sp3-hybridized species. In order to prove the reliability of the conversion parameters obtained by PBE, we report the calculated 11B shifts of 1,2-, 1,7-, and 1,12-PCB10H11 with GIAO and GIPAW to our knowledge for the first time. Additionally, Bader's analysis is carried out on the converged electron density for all boron species within the molecular test set, yielding no simple direct relation between charge and isotropic shifts.
Collapse
Affiliation(s)
- Martin Ludwig
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität, Albertstraße 21, 79104 Freiburg, Germany
| | - Daniel Himmel
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität, Albertstraße 21, 79104 Freiburg, Germany
| | - Harald Hillebrecht
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität, Albertstraße 21, 79104 Freiburg, Germany
| |
Collapse
|
62
|
Irons TJP, Spence L, David G, Speake BT, Helgaker T, Teale AM. Analyzing Magnetically Induced Currents in Molecular Systems Using Current-Density-Functional Theory. J Phys Chem A 2020; 124:1321-1333. [DOI: 10.1021/acs.jpca.9b10833] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tom J. P. Irons
- School of Chemistry, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Lucy Spence
- School of Chemistry, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Grégoire David
- School of Chemistry, University of Nottingham, NG7 2RD Nottingham, U.K
| | | | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, N-0315 Oslo, Norway
- Centre for Advanced Study (CAS) at the Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway
| | - Andrew M. Teale
- School of Chemistry, University of Nottingham, NG7 2RD Nottingham, U.K
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, N-0315 Oslo, Norway
- Centre for Advanced Study (CAS) at the Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway
| |
Collapse
|
63
|
Webber AL, Yates JR, Zilka M, Sturniolo S, Uldry AC, Corlett EK, Pickard CJ, Pérez-Torralba M, Angeles Garcia M, Santa Maria D, Claramunt RM, Brown SP. Weak Intermolecular CH···N Hydrogen Bonding: Determination of 13CH- 15N Hydrogen-Bond Mediated J Couplings by Solid-State NMR Spectroscopy and First-Principles Calculations. J Phys Chem A 2020; 124:560-572. [PMID: 31880451 DOI: 10.1021/acs.jpca.9b10726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Weak hydrogen bonds are increasingly hypothesized to play key roles in a wide range of chemistry from catalysis to gelation to polymer structure. Here, 15N/13C spin-echo magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) experiments are applied to "view" intermolecular CH···N hydrogen bonding in two selectively labeled organic compounds, 4-[15N] cyano-4'-[13C2] ethynylbiphenyl (1) and [15N3,13C6]-2,4,6-triethynyl-1,3,5-triazine (2). The synthesis of 2-15N3,13C6 is reported here for the first time via a multistep procedure, where the key element is the reaction of [15N3]-2,4,6-trichloro-1,3,5-triazine (5) with [13C2]-[(trimethylsilyl)ethynyl]zinc chloride (8) to afford its immediate precursor [15N3,13C6]-2,4,6-tris[(trimethylsilyl)ethynyl]-1,3,5-triazine (9). Experimentally determined hydrogen-bond-mediated 2hJCN couplings (4.7 ± 0.4 Hz (1) and 4.1 ± 0.3 Hz (2)) are compared with density functional theory (DFT) gauge-including projector augmented wave (GIPAW) calculations, whereby species-independent coupling values 2hKCN (29.0 × 1019 kg m-2 s-2 A-2 (1) and 27.9 × 1019 kg m-2 s-2 A-2 (2)) quantitatively demonstrate the J couplings for these "weak" CH···N hydrogen bonds to be of a similar magnitude to those for conventionally observed NH···O hydrogen-bonding interactions in uracil (2hKNO: 28.1 and 36.8 × 1019 kg m-2 s-2 A-2). Moreover, the GIPAW calculations show a clear correlation between increasing 2hJCN (and 3hJCN) coupling and reducing C(H)···N and H···N hydrogen-bonding distances, with the Fermi contact term accounting for at least 98% of the isotropic 2hJCN coupling.
Collapse
Affiliation(s)
- Amy L Webber
- Department of Physics , University of Warwick , Coventry CV4 7AL , U.K
| | - Jonathan R Yates
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , U.K
| | - Miri Zilka
- Department of Physics , University of Warwick , Coventry CV4 7AL , U.K
| | - Simone Sturniolo
- Scientific Computing Department , Rutherford Appleton Laboratory , Chilton, Didcot , Oxfordshire OX11 0QX , U.K
| | - Anne-Christine Uldry
- Department for Biomedical Research , University of Bern , Freiburgstrasse 15 , Bern 3010 , Switzerland
| | - Emily K Corlett
- Department of Physics , University of Warwick , Coventry CV4 7AL , U.K
| | - Chris J Pickard
- Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , U.K.,Advanced Institute for Materials Research , Tohoku University 2-1-1 Katahira , Aoba, Sendai 980-8577 , Japan
| | - Marta Pérez-Torralba
- Departamento de Química Orgánica y Bio-Orgánica , Facultad de Ciencias, UNED , Senda del Rey 9 , Madrid E-28040 , Spain
| | - M Angeles Garcia
- Departamento de Química Orgánica y Bio-Orgánica , Facultad de Ciencias, UNED , Senda del Rey 9 , Madrid E-28040 , Spain
| | - Dolores Santa Maria
- Departamento de Química Orgánica y Bio-Orgánica , Facultad de Ciencias, UNED , Senda del Rey 9 , Madrid E-28040 , Spain
| | - Rosa M Claramunt
- Departamento de Química Orgánica y Bio-Orgánica , Facultad de Ciencias, UNED , Senda del Rey 9 , Madrid E-28040 , Spain
| | - Steven P Brown
- Department of Physics , University of Warwick , Coventry CV4 7AL , U.K
| |
Collapse
|
64
|
Gerrard W, Bratholm LA, Packer MJ, Mulholland AJ, Glowacki DR, Butts CP. IMPRESSION - prediction of NMR parameters for 3-dimensional chemical structures using machine learning with near quantum chemical accuracy. Chem Sci 2020; 11:508-515. [PMID: 32190270 PMCID: PMC7067266 DOI: 10.1039/c9sc03854j] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
The IMPRESSION (Intelligent Machine PREdiction of Shift and Scalar information Of Nuclei) machine learning system provides an efficient and accurate method for the prediction of NMR parameters from 3-dimensional molecular structures. Here we demonstrate that machine learning predictions of NMR parameters, trained on quantum chemical computed values, can be as accurate as, but computationally much more efficient (tens of milliseconds per molecular structure) than, quantum chemical calculations (hours/days per molecular structure) starting from the same 3-dimensional structure. Training the machine learning system on quantum chemical predictions, rather than experimental data, circumvents the need for the existence of large, structurally diverse, error-free experimental databases and makes IMPRESSION applicable to solving 3-dimensional problems such as molecular conformation and stereoisomerism.
Collapse
Affiliation(s)
| | | | - Martin J Packer
- Chemistry , R&D Oncology , AstraZeneca , Cambridge CB4 0QA , UK
| | | | | | | |
Collapse
|
65
|
Schattenberg CJ, Reiter K, Weigend F, Kaupp M. An Efficient Coupled-Perturbed Kohn–Sham Implementation of NMR Chemical Shift Computations with Local Hybrid Functionals and Gauge-Including Atomic Orbitals. J Chem Theory Comput 2020; 16:931-943. [DOI: 10.1021/acs.jctc.9b00944] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caspar Jonas Schattenberg
- Technische Universität Berlin, Institut für Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Kevin Reiter
- Karlsruher Institut für Technologie (KIT), Institut für Nanotechnologie, Postfach 3640, D-76021 Karlsruhe, Germany
| | - Florian Weigend
- Karlsruher Institut für Technologie (KIT), Institut für Nanotechnologie, Postfach 3640, D-76021 Karlsruhe, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
66
|
Antušek A, Repisky M. NMR absolute shielding scales and nuclear magnetic dipole moments of transition metal nuclei. Phys Chem Chem Phys 2020; 22:7065-7076. [DOI: 10.1039/d0cp00115e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports new, accurate nuclear magnetic dipole moments for transition metal nuclei where the long-standing systematic error due to obsolete diamagnetic correction has been eliminated by ab initio calculations of NMR shielding constants.
Collapse
Affiliation(s)
- Andrej Antušek
- Slovak University of Technology
- ATRI
- Faculty of Materials Science and Technology in Trnava
- 917 24 Trnava
- Slovak Republic
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences
- Department of Chemistry
- UiT – The Arctic University of Norway
- N-9037 Tromsø
- Norway
| |
Collapse
|
67
|
Wappett DA, Goerigk L. Toward a Quantum-Chemical Benchmark Set for Enzymatically Catalyzed Reactions: Important Steps and Insights. J Phys Chem A 2019; 123:7057-7074. [DOI: 10.1021/acs.jpca.9b05088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
68
|
Krivdin LB. Computational protocols for calculating 13C NMR chemical shifts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:103-156. [PMID: 31481156 DOI: 10.1016/j.pnmrs.2019.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
The most recent results dealing with the computation of 13C NMR chemical shifts in chemistry (small molecules, saturated, unsaturated and aromatic compounds, heterocycles, functional derivatives, coordination complexes, carbocations, and natural products) are reviewed, paying special attention to theoretical background and accuracy, the latter involving solvent effects, vibrational corrections, and relativistic effects.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
69
|
Castro AC, Fliegl H, Cascella M, Helgaker T, Repisky M, Komorovsky S, Medrano MÁ, Quiroga AG, Swart M. Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations. Dalton Trans 2019; 48:8076-8083. [PMID: 30916692 DOI: 10.1039/c9dt00570f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a combined experimental-theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac-Kohn-Sham method (mDKS) based on the Dirac-Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules.
Collapse
Affiliation(s)
- Abril C Castro
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Wang K, Sun M, Cui D, Shen T, Wu A, Xu X. Accurate prediction of nuclear magnetic resonance shielding constants: An extension of the focal-point analysis method for magnetic parameter calculations (FPA-M) with improved efficiency. J Chem Phys 2018; 149:184101. [PMID: 30441917 DOI: 10.1063/1.5041979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previously, we have proposed a method, FPA-M, for focal-point analysis of magnetic parameter calculations [Sun et al., J. Chem. Phys. 138, 124113 (2013)], where the shielding constants at equilibrium geometries σe are calculated with the second order Møller-Plesset perturbation (MP2) approach, which are extrapolated to the complete basis set (CBS) limit and then augmented by the [σe(CCSD(T)) - σe(MP2)] difference at a valence triple-ζ (VTZ) basis set, where CCSD(T) stands for the coupled cluster singles and doubles model with a perturbative correction for triple excitations. This FPA-M(MP2) method provides satisfactory results to approach to the corresponding CCSD(T)/CBS values for elements of the first two rows in the periodic tables. A series of extensions have been explored here, which replace the MP2/CBS with the Hartree-Fock (HF)/CBS for efficiency. In particular, the [σe(CCSD(T)) - σe(MP2)] VTZ difference is replaced by a step-wise correction from the [σe(CCSD(T)) - σe(MP2)] difference at a valence double-ζ basis set plus the [σe(MP2) - σe(HF)] VTZ difference, leading to a new scheme, denoted here as FPA-M(HF'). A systematical comparison has demonstrated that the FPA-M(HF') method provides an excellent balance between accuracy and efficiency, which makes routinely accurate calculations of the shielding constants for medium-sized organic molecules and biomolecules feasible.
Collapse
Affiliation(s)
- Kangli Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Meng Sun
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Deng Cui
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Tonghao Shen
- MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Anan Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Xin Xu
- MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
71
|
An automated framework for NMR chemical shift calculations of small organic molecules. J Cheminform 2018; 10:52. [PMID: 30367288 PMCID: PMC6755567 DOI: 10.1186/s13321-018-0305-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/09/2018] [Indexed: 12/04/2022] Open
Abstract
When using nuclear magnetic resonance (NMR) to assist in chemical identification in complex samples, researchers commonly rely on databases for chemical shift spectra. However, authentic standards are typically depended upon to build libraries experimentally. Considering complex biological samples, such as blood and soil, the entirety of NMR spectra required for all possible compounds would be infeasible to ascertain due to limitations of available standards and experimental processing time. As an alternative, we introduce the in silico Chemical Library Engine (ISiCLE) NMR chemical shift module to accurately and automatically calculate NMR chemical shifts of small organic molecules through use of quantum chemical calculations. ISiCLE performs density functional theory (DFT)-based calculations for predicting chemical properties—specifically NMR chemical shifts in this manuscript—via the open source, high-performance computational chemistry software, NWChem. ISiCLE calculates the NMR chemical shifts of sets of molecules using any available combination of DFT method, solvent, and NMR-active nuclei, using both user-selected reference compounds and/or linear regression methods. Calculated NMR chemical shifts are provided to the user for each molecule, along with comparisons with respect to a number of metrics commonly used in the literature. Here, we demonstrate ISiCLE using a set of 312 molecules, ranging in size up to 90 carbon atoms. For each, calculation of NMR chemical shifts have been performed with 8 different levels of DFT theory, and with solvation effects using the implicit solvent Conductor-like Screening Model. The DFT method dependence of the calculated chemical shifts have been systematically investigated through benchmarking and subsequently compared to experimental data available in the literature. Furthermore, ISiCLE has been applied to a set of 80 methylcyclohexane conformers, combined via Boltzmann weighting and compared to experimental values. We demonstrate that our protocol shows promise in the automation of chemical shift calculations and, ultimately, the expansion of chemical shift libraries.
![]()
Collapse
|
72
|
Abstract
We investigate by explicit parameter optimization to what extent basis sets of polarized double-ζ quality can introduce compensating errors in five different density functional methods. It is shown that minor changes in the contraction coefficients of the valence functions in the basis sets can have a significant impact and allow different density functional methods to achieve very similar performances. This holds for nuclear magnetic shielding constants and for isomerization energies, barrier heights, and noncovalent interactions. It is furthermore shown that errors due to neglect of vibrational and solvent effects can be absorbed in the combined method and basis set errors. These findings hold for data sets consisting of 50-150 data points. This raises the question of whether the common practice of identifying combinations of density functional methods and basis sets that have a good performance against a selected set of reference data should be considered as data fitting in the combined parameter space spanned by the method and basis set.
Collapse
Affiliation(s)
- Frank Jensen
- Department of Chemistry , Aarhus University , DK-8000 Aarhus , Denmark
| |
Collapse
|
73
|
Stoychev GL, Auer AA, Neese F. Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory. J Chem Theory Comput 2018; 14:4756-4771. [DOI: 10.1021/acs.jctc.8b00624] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Georgi L. Stoychev
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| | - Alexander A. Auer
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
74
|
Reimann S, Borgoo A, Austad J, Tellgren EI, Teale AM, Helgaker T, Stopkowicz S. Kohn–Sham energy decomposition for molecules in a magnetic field. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1495849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sarah Reimann
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Alex Borgoo
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Jon Austad
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Erik I. Tellgren
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Andrew M. Teale
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
- Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Trygve Helgaker
- Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Stella Stopkowicz
- Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| |
Collapse
|
75
|
Castro AC, Swart M, Guerra CF. The influence of substituents and the environment on the NMR shielding constants of supramolecular complexes based on A-T and A-U base pairs. Phys Chem Chem Phys 2018; 19:13496-13502. [PMID: 28492643 DOI: 10.1039/c7cp00397h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study, we have theoretically analyzed supramolecular complexes based on the Watson-Crick A-T and A-U base pairs using dispersion-corrected density functional theory (DFT). Hydrogen atoms H8 and/or H6 in the natural adenine and thymine/uracil bases were replaced, respectively, by substituents X8, Y6 = NH-, NH2, NH3+ (N series), O-, OH, OH2+ (O series), F, Cl or Br (halogen series). We examined the effect of the substituents on the hydrogen-bond lengths, strength and bonding mechanism, and the NMR shielding constants of the C2-adenine and C2-thymine/uracil atoms in the base pairs. The general belief in the literature that there is a direct connection between changes in the hydrogen-bond strength and the C2-adenine shielding constant is conclusively rejected by our computations.
Collapse
Affiliation(s)
- Abril C Castro
- Institut de Química Computacional i Catàlisi (IQCC) & Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Spain
| | | | | |
Collapse
|
76
|
Jensen SR, Flå T, Jonsson D, Monstad RS, Ruud K, Frediani L. Magnetic properties with multiwavelets and DFT: the complete basis set limit achieved. Phys Chem Chem Phys 2018; 18:21145-61. [PMID: 27087397 DOI: 10.1039/c6cp01294a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiwavelets are emerging as an attractive alternative to traditional basis sets such as Gaussian-type orbitals and plane waves. One of their distinctive properties is the ability to reach the basis set limit (often a chimera for traditional approaches) reliably and consistently by fixing the desired precision ε. We present our multiwavelet implementation of the linear response formalism, applied to static magnetic properties, at the self-consistent field level of theory (both for Hartree-Fock and density functional theories). We demonstrate that the multiwavelets consistently improve the accuracy of the results when increasing the desired precision, yielding results that have four to five digits precision, thus providing a very useful benchmark which could otherwise only be estimated by extrapolation methods. Our results show that magnetizabilities obtained with the augmented quadruple-ζ basis (aug-cc-pCVQZ) are practically at the basis set limit, whereas absolute nuclear magnetic resonance shielding tensors are more challenging: even by making use of a standard extrapolation method, the accuracy is not substantially improved. In contrast, our results provide a benchmark that: (1) confirms the validity of the extrapolation ansatz; (2) can be used as a reference to achieve a property-specific extrapolation scheme, thus providing a means to obtain much better extrapolated results; (3) allows us to separate functional-specific errors from basis-set ones and thus to assess the level of cancellation between basis set and functional errors often exploited in density functional theory.
Collapse
Affiliation(s)
- Stig Rune Jensen
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Tor Flå
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway. and Department of Mathematics and Statistics, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Dan Jonsson
- High-Performance Computing Group, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Rune Sørland Monstad
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Luca Frediani
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
77
|
Stoychev GL, Auer AA, Izsák R, Neese F. Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals. J Chem Theory Comput 2018; 14:619-637. [DOI: 10.1021/acs.jctc.7b01006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Georgi L. Stoychev
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A. Auer
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
78
|
Field-Theodore TE, Olejniczak M, Jaszuński M, Wilson DJD. NMR shielding constants in group 15 trifluorides. Phys Chem Chem Phys 2018; 20:23025-23033. [DOI: 10.1039/c8cp04056g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By combining large basis and complete basis set (CBS) extrapolations of the coupled-cluster equilibrium geometry results with rovibrational and relativistic corrections, we demonstrate that it is possible to achieve near-quantitative accuracy for the NMR shielding constants in three group 15 trifluorides – NF3, PF3 and AsF3.
Collapse
Affiliation(s)
- Terri E. Field-Theodore
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | | | - Michał Jaszuński
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warszawa
- Poland
| | - David J. D. Wilson
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
79
|
Reiter K, Mack F, Weigend F. Calculation of Magnetic Shielding Constants with meta-GGA Functionals Employing the Multipole-Accelerated Resolution of the Identity: Implementation and Assessment of Accuracy and Efficiency. J Chem Theory Comput 2017; 14:191-197. [DOI: 10.1021/acs.jctc.7b01115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin Reiter
- Institut
für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Fabian Mack
- Institut
für Physikalische Chemie, Abteilung für Theoretische
Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Institut
für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institut
für Physikalische Chemie, Abteilung für Theoretische
Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
80
|
Uhlíková T, Urban Š. Ab initio NMR parameters of BrCH3 and ICH3 with relativistic and vibrational corrections. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1416194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tereza Uhlíková
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Štěpán Urban
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
81
|
How reliable are Minnesota density functionals for modeling phosphorus–hydrogen NMR spin–spin coupling constants? Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2182-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
82
|
Iron MA. Evaluation of the Factors Impacting the Accuracy of 13C NMR Chemical Shift Predictions using Density Functional Theory-The Advantage of Long-Range Corrected Functionals. J Chem Theory Comput 2017; 13:5798-5819. [PMID: 29016125 DOI: 10.1021/acs.jctc.7b00772] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The various factors influencing the accuracy of 13C NMR calculations using density functional theory (DFT), including the basis set, exchange-correlation (XC) functional, and isotropic shielding calculation method, are evaluated. A wide selection of XC functionals (over 70) were considered, and it was found that long-range corrected functionals offer a significant improvement over the other classes of functionals. Based on a thorough study, it is recommended that for calculating NMR chemical shifts (δ) one should use the CSGT method, the COSMO solvation model, and the LC-TPSSTPSS exchange-correlation functional in conjunction with the cc-pVTZ basis set. A selection of problems in natural product identification are considered in light of the newly recommended level of theory.
Collapse
Affiliation(s)
- Mark A Iron
- Computational Chemistry Unit, Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 7610001, Israel
| |
Collapse
|
83
|
Grimme S, Bannwarth C, Dohm S, Hansen A, Pisarek J, Pracht P, Seibert J, Neese F. Vollautomatisierte quantenchemische Berechnung von Spin-Spin- gekoppelten magnetischen Kernspinresonanzspektren. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708266] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Christoph Bannwarth
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Sebastian Dohm
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Jana Pisarek
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Philipp Pracht
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Jakob Seibert
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstraße 32-34 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
84
|
Grimme S, Bannwarth C, Dohm S, Hansen A, Pisarek J, Pracht P, Seibert J, Neese F. Fully Automated Quantum-Chemistry-Based Computation of Spin-Spin-Coupled Nuclear Magnetic Resonance Spectra. Angew Chem Int Ed Engl 2017; 56:14763-14769. [PMID: 28906074 PMCID: PMC5698732 DOI: 10.1002/anie.201708266] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 11/27/2022]
Abstract
We present a composite procedure for the quantum‐chemical computation of spin–spin‐coupled 1H NMR spectra for general, flexible molecules in solution that is based on four main steps, namely conformer/rotamer ensemble (CRE) generation by the fast tight‐binding method GFN‐xTB and a newly developed search algorithm, computation of the relative free energies and NMR parameters, and solving the spin Hamiltonian. In this way the NMR‐specific nuclear permutation problem is solved, and the correct spin symmetries are obtained. Energies, shielding constants, and spin–spin couplings are computed at state‐of‐the‐art DFT levels with continuum solvation. A few (in)organic and transition‐metal complexes are presented, and very good, unprecedented agreement between the theoretical and experimental spectra was achieved. The approach is routinely applicable to systems with up to 100–150 atoms and may open new avenues for the detailed (conformational) structure elucidation of, for example, natural products or drug molecules.
Collapse
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Christoph Bannwarth
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Sebastian Dohm
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Jana Pisarek
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Philipp Pracht
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Jakob Seibert
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 32-34, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
85
|
Reimann S, Borgoo A, Tellgren EI, Teale AM, Helgaker T. Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection. J Chem Theory Comput 2017; 13:4089-4100. [PMID: 28768100 DOI: 10.1021/acs.jctc.7b00295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.
Collapse
Affiliation(s)
- Sarah Reimann
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo , P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Alex Borgoo
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo , P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Erik I Tellgren
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo , P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Andrew M Teale
- School of Chemistry, University of Nottingham, University Park , Nottingham NG7 2RD, U.K
| | - Trygve Helgaker
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo , P.O. Box 1033, Blindern, Oslo N-0315, Norway
| |
Collapse
|
86
|
Mata RA, Suhm MA. Benchmarking Quantum Chemical Methods: Are We Heading in the Right Direction? Angew Chem Int Ed Engl 2017; 56:11011-11018. [PMID: 28452424 PMCID: PMC5582598 DOI: 10.1002/anie.201611308] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/20/2016] [Indexed: 11/15/2022]
Abstract
Theoreticians and experimentalists should work together more closely to establish reliable rankings and benchmarks for quantum chemical methods. Comparison to carefully designed experimental benchmark data should be a priority. Guidelines to improve the situation for experiments and calculations are proposed.
Collapse
Affiliation(s)
- Ricardo A. Mata
- Institut für Physikalische ChemieUniversität GöttingenTammannstrasse 637077GöttingenGermany
| | - Martin A. Suhm
- Institut für Physikalische ChemieUniversität GöttingenTammannstrasse 637077GöttingenGermany
| |
Collapse
|
87
|
Xin D, Sader CA, Chaudhary O, Jones PJ, Wagner K, Tautermann CS, Yang Z, Busacca CA, Saraceno RA, Fandrick KR, Gonnella NC, Horspool K, Hansen G, Senanayake CH. Development of a 13C NMR Chemical Shift Prediction Procedure Using B3LYP/cc-pVDZ and Empirically Derived Systematic Error Correction Terms: A Computational Small Molecule Structure Elucidation Method. J Org Chem 2017; 82:5135-5145. [DOI: 10.1021/acs.joc.7b00321] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongyue Xin
- Material
and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - C. Avery Sader
- Material
and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
- Chemical
Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Om Chaudhary
- Material
and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
- Chemical
Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Paul-James Jones
- Information
Technology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Klaus Wagner
- Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | | | - Zheng Yang
- Information
Technology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Carl A. Busacca
- Chemical
Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Reginaldo A. Saraceno
- Material
and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Keith R. Fandrick
- Chemical
Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Nina C. Gonnella
- Material
and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Keith Horspool
- Material
and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | | | - Chris H. Senanayake
- Chemical
Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| |
Collapse
|
88
|
Mata RA, Suhm MA. Quantenchemische Methoden im Leistungsvergleich: Stimmt die Richtung noch? Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ricardo A. Mata
- Institut für Physikalische Chemie; Universität Göttingen; Tammannstraße 6 37077 Göttingen Deutschland
| | - Martin A. Suhm
- Institut für Physikalische Chemie; Universität Göttingen; Tammannstraße 6 37077 Göttingen Deutschland
| |
Collapse
|
89
|
Kim J, Hong K, Hwang SY, Ryu S, Choi S, Kim WY. Effects of the locality of a potential derived from hybrid density functionals on Kohn-Sham orbitals and excited states. Phys Chem Chem Phys 2017; 19:10177-10186. [PMID: 28374031 DOI: 10.1039/c7cp00704c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory (DFT) has been an essential tool for electronic structure calculations in various fields. In particular, its hybrid method including the Hartree-Fock (HF) exchange term remarkably improves the reliability of DFT for chemical applications and computational material design. There are two different types of exchange-correlation potential that can be derived from hybrid functionals. The conventional approach adopts a non-multiplicative potential including the non-local HF exchange operator. Herein, we propose to use a local multiplicative potential as an alternative for accurate excited state calculations. We show that such a local potential can be derived from existing global hybrid functionals using the optimized effective potential method. As a proof-of-concept, we chose PBE0 and investigated its performance for the Caricato benchmark set. Unlike the conventional one, the local potential produced orbital energy gaps with no strong dependence on the mixing ratio as a good approximation for optical excitations. Furthermore, its time-dependent DFT resulted in a surprisingly small mean absolute error even with a local density approximation kernel, surpassing all reported values with various popular functionals. In particular, most excitations were dictated by single orbital transitions due to physically meaningful virtual orbitals, which is beneficial to clear interpretations in the molecular orbital picture.
Collapse
Affiliation(s)
- Jaewook Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
90
|
de Wijs GA, Laskowski R, Blaha P, Havenith RWA, Kresse G, Marsman M. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations. J Chem Phys 2017; 146:064115. [DOI: 10.1063/1.4975122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- G. A. de Wijs
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - R. Laskowski
- Institute of High Performance Computing, A∗STAR, 1 Fusionopolis Way, #16-16, Connexis, Singapore 138632
| | - P. Blaha
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - R. W. A. Havenith
- Zernike Institute for Advanced Materials, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
- Ghent Quantum Chemistry Group, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Gent, Belgium
| | - G. Kresse
- University of Vienna, Faculty of Physics and Center for Computational Materials Science, Sensengasse 8/12, A-1090 Vienna, Austria
| | - M. Marsman
- University of Vienna, Faculty of Physics and Center for Computational Materials Science, Sensengasse 8/12, A-1090 Vienna, Austria
| |
Collapse
|
91
|
Håkansson P. Prediction of low-field nuclear singlet lifetimes with molecular dynamics and quantum-chemical property surface. Phys Chem Chem Phys 2017; 19:10237-10254. [DOI: 10.1039/c6cp08394c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics and quantum chemistry methods are implemented to quantify nuclear spin-1/2 pair singlet-state relaxation rates. Illustrated is the relevant spin-internal-motion mechanism (SIM).
Collapse
Affiliation(s)
- Pär Håkansson
- School of Chemistry
- University of Southampton
- SO17 1BJ Southampton
- UK
| |
Collapse
|
92
|
Olejniczak M, Bast R, Pereira Gomes AS. On the calculation of second-order magnetic properties using subsystem approaches in a relativistic framework. Phys Chem Chem Phys 2017; 19:8400-8415. [DOI: 10.1039/c6cp08561j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The implementation of second-order magnetic properties in a frozen density embedding scheme in a four component relativistic framework is outlined and applied to model H2X–H2O systems (X = Se, Te, Po).
Collapse
Affiliation(s)
- Małgorzata Olejniczak
- Université de Lille
- CNRS
- UMR 8523 – PhLAM – Physique des Lasers
- Atomes et Molécules
- F-59000 Lille
| | - Radovan Bast
- High Performance Computing Group
- UiT The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | | |
Collapse
|
93
|
Bhowmick A, Brookes DH, Yost SR, Dyson HJ, Forman-Kay JD, Gunter D, Head-Gordon M, Hura GL, Pande VS, Wemmer DE, Wright PE, Head-Gordon T. Finding Our Way in the Dark Proteome. J Am Chem Soc 2016; 138:9730-42. [PMID: 27387657 PMCID: PMC5051545 DOI: 10.1021/jacs.6b06543] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The traditional structure-function paradigm has provided significant insights for well-folded proteins in which structures can be easily and rapidly revealed by X-ray crystallography beamlines. However, approximately one-third of the human proteome is comprised of intrinsically disordered proteins and regions (IDPs/IDRs) that do not adopt a dominant well-folded structure, and therefore remain "unseen" by traditional structural biology methods. This Perspective considers the challenges raised by the "Dark Proteome", in which determining the diverse conformational substates of IDPs in their free states, in encounter complexes of bound states, and in complexes retaining significant disorder requires an unprecedented level of integration of multiple and complementary solution-based experiments that are analyzed with state-of-the art molecular simulation, Bayesian probabilistic models, and high-throughput computation. We envision how these diverse experimental and computational tools can work together through formation of a "computational beamline" that will allow key functional features to be identified in IDP structural ensembles.
Collapse
Affiliation(s)
- Asmit Bhowmick
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - David H. Brookes
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Shane R. Yost
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California 92037
| | - Julie D. Forman-Kay
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Daniel Gunter
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley CA, 94720
| | | | - Gregory L. Hura
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, 94720
| | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - David E. Wemmer
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Peter E. Wright
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Teresa Head-Gordon
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, 94720
| |
Collapse
|
94
|
Hartman JD, Kudla RA, Day GM, Mueller LJ, Beran GJO. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals. Phys Chem Chem Phys 2016; 18:21686-709. [PMID: 27431490 DOI: 10.1039/c6cp01831a] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2.
Collapse
Affiliation(s)
- Joshua D Hartman
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | | | | | | | |
Collapse
|
95
|
Abstract
Interest in molecular crystals has grown thanks to their relevance to pharmaceuticals, organic semiconductor materials, foods, and many other applications. Electronic structure methods have become an increasingly important tool for modeling molecular crystals and polymorphism. This article reviews electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Møller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo. It also discusses the use of these models for predicting a variety of crystal properties that are relevant to the study of polymorphism, including lattice energies, structures, crystal structure prediction, polymorphism, phase diagrams, vibrational spectroscopies, and nuclear magnetic resonance spectroscopy. Finally, tools for analyzing crystal structures and intermolecular interactions are briefly discussed.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California , Riverside, California 92521, United States
| |
Collapse
|
96
|
Alipour M, Fallahzadeh P. First principles optimally tuned range-separated density functional theory for prediction of phosphorus–hydrogen spin–spin coupling constants. Phys Chem Chem Phys 2016; 18:18431-40. [DOI: 10.1039/c6cp02648f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel optimally tuned range-separated approximations for predicting NMR spin–spin coupling constants are proposed and benchmarked numerically.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz
- Iran
| | | |
Collapse
|
97
|
Demissie TB. Theoretical analysis of NMR shieldings in XSe and XTe (X = Si, Ge, Sn and Pb): the spin-rotation constant saga. Phys Chem Chem Phys 2016; 18:3112-23. [DOI: 10.1039/c5cp07025b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How the electronic contribution to the spin-rotation constant is close to the paramagnetic contribution of the NMR absolute shielding constant?
Collapse
Affiliation(s)
- Taye Beyene Demissie
- Centre for Theoretical and Computational Chemistry
- Department of Chemistry
- UiT The Arctic University of Norway
- N-9037 Tromsø
- Norway
| |
Collapse
|
98
|
Reid DM, Kobayashi R, Collins MA. Systematic Study of Locally Dense Basis Sets for NMR Shielding Constants. J Chem Theory Comput 2015; 10:146-52. [PMID: 26579898 DOI: 10.1021/ct4007579] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper presents a systematic study of partitioning schemes for locally dense basis sets in the context of NMR shielding calculations. The partitionings explored were based exclusively on connectivity and utilized the basis sets from the pcS-n series. Deviations from pcS-4 shieldings were calculated for a set of 28 organic molecules at the HF, B3LYP, and KT3 levels of theory, with the primary goal being the determination of an efficient scheme that achieves maximal deviations of 0.1 ppm for (1)H and 1 ppm for (13)C. Both atom based and group based divisions of basis sets were examined, with the latter providing the most promising results. It is demonstrated that for the systems studied, at least pcS-1 is required for all parts of the molecule. This, coupled with pcS-3 on the group of interest and pcS-2 on the adjacent groups, is sufficient to achieve the desired level of accuracy at a minimal computational expense. In addition, the suitability of the pcS-n basis sets for post-SCF methods was confirmed through a comparison with other standard basis sets at the MP2 level.
Collapse
Affiliation(s)
- David M Reid
- Research School of Chemistry, The Australian National University , Acton ACT 0200, Australia
| | - Rika Kobayashi
- Australian National University Supercomputer Facility, The Australian National University , Acton ACT 0200, Australia
| | - Michael A Collins
- Research School of Chemistry, The Australian National University , Acton ACT 0200, Australia
| |
Collapse
|
99
|
Sumowski CV, Hanni M, Schweizer S, Ochsenfeld C. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides. J Chem Theory Comput 2015; 10:122-33. [PMID: 26579896 DOI: 10.1021/ct400713t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.
Collapse
Affiliation(s)
- Chris Vanessa Sumowski
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU) , Butenandtstr. 7, D-81377 Munich, Germany and Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU) , Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Matti Hanni
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU) , Butenandtstr. 7, D-81377 Munich, Germany and Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU) , Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Sabine Schweizer
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU) , Butenandtstr. 7, D-81377 Munich, Germany and Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU) , Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU) , Butenandtstr. 7, D-81377 Munich, Germany and Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU) , Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
100
|
Hartman JD, Beran GJO. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals. J Chem Theory Comput 2015; 10:4862-72. [PMID: 26584373 DOI: 10.1021/ct500749h] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
First-principles chemical shielding tensor predictions play a critical role in studying molecular crystal structures using nuclear magnetic resonance. Fragment-based electronic structure methods have dramatically improved the ability to model molecular crystal structures and energetics using high-level electronic structure methods. Here, a many-body expansion fragment approach is applied to the calculation of chemical shielding tensors in molecular crystals. First, the impact of truncating the many-body expansion at different orders and the role of electrostatic embedding are examined on a series of molecular clusters extracted from molecular crystals. Second, the ability of these techniques to assign three polymorphic forms of the drug sulfanilamide to the corresponding experimental (13)C spectra is assessed. This challenging example requires discriminating among spectra whose (13)C chemical shifts differ by only a few parts per million (ppm) across the different polymorphs. Fragment-based PBE0/6-311+G(2d,p) level chemical shielding predictions correctly assign these three polymorphs and reproduce the sulfanilamide experimental (13)C chemical shifts with 1 ppm accuracy. The results demonstrate that fragment approaches are competitive with the widely used gauge-invariant projector augmented wave (GIPAW) periodic density functional theory calculations.
Collapse
Affiliation(s)
- Joshua D Hartman
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | - Gregory J O Beran
- Department of Chemistry, University of California , Riverside, California 92521, United States
| |
Collapse
|