51
|
|
52
|
Drücker P, Bachler S, Wolfmeier H, Schoenauer R, Köffel R, Babiychuk VS, Dittrich PS, Draeger A, Babiychuk EB. Pneumolysin-damaged cells benefit from non-homogeneous toxin binding to cholesterol-rich membrane domains. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:795-805. [PMID: 29679741 DOI: 10.1016/j.bbalip.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/07/2018] [Accepted: 04/15/2018] [Indexed: 11/27/2022]
Abstract
Nucleated cells eliminate lesions induced by bacterial pore-forming toxins, such as pneumolysin via shedding patches of damaged plasmalemma into the extracellular milieu. Recently, we have shown that the majority of shed pneumolysin is present in the form of inactive pre-pores. This finding is surprising considering that shedding is triggered by Ca2+-influx following membrane perforation and therefore is expected to positively discriminate for active pores versus inactive pre-pores. Here we provide evidence for the existence of plasmalemmal domains that are able to attract pneumolysin at high local concentrations. Within such a domain an immediate plasmalemmal perforation induced by a small number of pneumolysin pores would be capable of triggering the elimination of a large number of not yet active pre-pores/monomers and thus pre-empt more frequent and perilous perforation events. Our findings provide further insights into the functioning of the cellular repair machinery which benefits from an inhomogeneous plasmalemmal distribution of pneumolysin.
Collapse
Affiliation(s)
- Patrick Drücker
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Simon Bachler
- Department of Biosystems Science and Engineering, ETH, Zurich 4058 Basel, Switzerland
| | - Heidi Wolfmeier
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Roman Schoenauer
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - René Köffel
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Viktoria S Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH, Zurich 4058 Basel, Switzerland
| | - Annette Draeger
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Eduard B Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland.
| |
Collapse
|
53
|
Gertrude Gutierrez M, Yoshida S, Malmstadt N, Takeuchi S. Photolithographic patterned surface forms size-controlled lipid vesicles. APL Bioeng 2018; 2:016104. [PMID: 31069289 PMCID: PMC6481701 DOI: 10.1063/1.5002604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Using traditional 2-D photolithographic methods, surface patterns are made on agarose and used to form lipid vesicles with controlled size and layout. Depending on the size and layout of the patterned structures, the lipid bilayer vesicle size can be tuned and placement can be predetermined. Vesicles formed on 2-D patterned surfaces can be harvested for further investigations or can be assayed directly on the patterned surface. Lipid vesicles on the patterned surface are assayed for unilamellarity and protein incorporation, and vesicles are indeed unilamellar as observed from outer leaflet fluorescence quenching. Vesicles successfully incorporate the integral membrane protein α-hemolysin and maintain its membrane transport function.
Collapse
Affiliation(s)
| | - Shotaro Yoshida
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | | | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
54
|
Kubsch B, Robinson T, Steinkühler J, Dimova R. Phase Behavior of Charged Vesicles Under Symmetric and Asymmetric Solution Conditions Monitored with Fluorescence Microscopy. J Vis Exp 2017. [PMID: 29155700 PMCID: PMC5755220 DOI: 10.3791/56034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phase-separated giant unilamellar vesicles (GUVs) exhibiting coexisting liquid-ordered and liquid-disordered domains are a common biophysical tool to investigate the lipid raft hypothesis. Numerous studies, however, neglect the impact of physiological solution conditions. On that account, the current work presents the effect of high-salinity buffer and trans-membrane solution asymmetry on liquid-liquid phase separation in charged GUVs grown from dioleylphosphatidylglycerol, egg sphingomyelin, and cholesterol. The effects were studied under isothermal and varying temperature conditions. We describe equipment and experimental strategies applicable for monitoring the stability of coexisting liquid domains in charged vesicles under symmetric and asymmetric high-salinity solution conditions. This includes an approach to prepare charged multicomponent GUVs in high-salinity buffer at high temperatures. The protocol entails the option to perform a partial exchange of the external solution by a simple dilution step while minimizing the vesicle dilution. An alternative approach is presented utilizing a microfluidic device that allows for a complete external solution exchange. The solution effects on phase separation were also studied under varying temperatures. To this end, we present the basic design and utility of an in-house built temperature control chamber. Furthermore, we reflect on the assessment of the GUV phase state, pitfalls associated with it and how to circumvent them.
Collapse
|
55
|
Miller BA, Papke JB, Bindokas VP, Harkins AB. Light Activation of Calcein Inhibits Vesicle Release of Catecholamines. ACS Chem Neurosci 2017; 8:2309-2314. [PMID: 28707873 DOI: 10.1021/acschemneuro.7b00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Calcein, a fluorescent fluid phase marker, has been used to track and visualize cellular processes such as synaptic vesicle fusion. It is also the fluorophore for live cells in the commonly used Live/Dead viability assay. In pilot studies designed to determine fusion pore open size and vesicle movement in secretory cells, imaging analysis revealed that calcein reduced the number of vesicles released from the cells when stimulated with nicotine. Using amperometry to detect individual vesicle release events, we show that when calcein is present in the media, the number of vesicles that fuse with the cellular membrane is reduced when cells are stimulated with either nicotine or high K+. Experimentally, amperometric electrodes are not undergoing fouling in the presence of calcein. We hypothesized that calcein, when activated by light, releases reactive oxygen species that cause a reduction in secreted vesicles. We show that when calcein is protected from light during experimentation, little to no reduction of vesicle secretion occurred. Therefore, photoactivated calcein can cause deleterious results for measurements of cellular processes, likely to be the result of release of reactive oxygen species.
Collapse
Affiliation(s)
- Brooke A. Miller
- Department
of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Jason B. Papke
- Department
of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Vytas P. Bindokas
- Department
of Pharmacological and Physiological Sciences, University of Chicago, Chicago, Illinois 60637, United States
| | - Amy B. Harkins
- Department
of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63104, United States
- Department
of Biomedical Engineering, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
56
|
Pillong M, Hiss JA, Schneider P, Lin YC, Posselt G, Pfeiffer B, Blatter M, Müller AT, Bachler S, Neuhaus CS, Dittrich PS, Altmann KH, Wessler S, Schneider G. Rational Design of Membrane-Pore-Forming Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701316. [PMID: 28799716 DOI: 10.1002/smll.201701316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Specific interactions of peptides with lipid membranes are essential for cellular communication and constitute a central aspect of the innate host defense against pathogens. A computational method for generating innovative membrane-pore-forming peptides inspired by natural templates is presented. Peptide representation in terms of sequence- and topology-dependent hydrophobic moments is introduced. This design concept proves to be appropriate for the de novo generation of first-in-class membrane-active peptides with the anticipated mode of action. The designed peptides outperform the natural template in terms of their antibacterial activity. They form a kinked helical structure and self-assemble in the membrane by an entropy-driven mechanism to form dynamically growing pores that are dependent on the lipid composition. The results of this study demonstrate the unique potential of natural template-based peptide design for chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Max Pillong
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Jan A Hiss
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Petra Schneider
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Yen-Chu Lin
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Gernot Posselt
- Department of Molecular Biology, University of Salzburg, 5020, Salzburg, Austria
| | - Bernhard Pfeiffer
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Markus Blatter
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Alex T Müller
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Simon Bachler
- Department of Biosystems Science and Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | - Claudia S Neuhaus
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Silja Wessler
- Department of Molecular Biology, University of Salzburg, 5020, Salzburg, Austria
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
57
|
Oono M, Yamaguchi K, Rasyid A, Takano A, Tanaka M, Futai N. Reconfigurable microfluidic device with discretized sidewall. BIOMICROFLUIDICS 2017; 11:034103. [PMID: 28503247 PMCID: PMC5415406 DOI: 10.1063/1.4983148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Various microfluidic features, such as traps, have been used to manipulate flows, cells, and other particles within microfluidic systems. However, these features often become undesirable in subsequent steps requiring different fluidic configurations. To meet the changing needs of various microfluidic configurations, we developed a reconfigurable microfluidic channel with movable sidewalls using mechanically discretized sidewalls of laterally aligned rectangular pins. The user can deform the channel sidewall at any time after fabrication by sliding the pins. We confirmed that the flow resistance of the straight microchannel could be reversibly adjusted in the range of 101-105 Pa s/μl by manually displacing one of the pins comprising the microchannel sidewall. The reconfigurable microchannel also made it possible to manipulate flows and cells by creating a segmented patterned culture of COS-7 cells and a coculture of human umbilical vein endothelial cells (HUVECs) and human lung fibroblasts (hLFs) inside the microchannel. The reconfigurable microfluidic device successfully maintained a culture of COS-7 cells in a log phase throughout the entire period of 216 h. Furthermore, we performed a migration assay of cocultured HUVEC and hLF spheroids within one microchannel and observed their migration toward each other.
Collapse
Affiliation(s)
- Masahiro Oono
- Department of Mechanical Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Keisuke Yamaguchi
- Department of Mechanical Engineering, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Amirul Rasyid
- Department of Mechanical Engineering, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Atsushi Takano
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372
| | - Masato Tanaka
- Department of Materials and Life Sciences, School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-machi, Hiki-gun, Saitama 350-0394, Japan
| | | |
Collapse
|
58
|
Stein H, Spindler S, Bonakdar N, Wang C, Sandoghdar V. Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations. Front Physiol 2017; 8:63. [PMID: 28243205 PMCID: PMC5303729 DOI: 10.3389/fphys.2017.00063] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
The cell membrane forms a dynamic and complex barrier between the living cell and its environment. However, its in vivo studies are difficult because it consists of a high variety of lipids and proteins and is continuously reorganized by the cell. Therefore, membrane model systems with precisely controlled composition are used to investigate fundamental interactions of membrane components under well-defined conditions. Giant unilamellar vesicles (GUVs) offer a powerful model system for the cell membrane, but many previous studies have been performed in unphysiologically low ionic strength solutions which might lead to altered membrane properties, protein stability and lipid-protein interaction. In the present work, we give an overview of the existing methods for GUV production and present our efforts on forming single, free floating vesicles up to several tens of μm in diameter and at high yield in various buffer solutions with physiological ionic strength and pH.
Collapse
Affiliation(s)
- Hannah Stein
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| | - Susann Spindler
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| | - Navid Bonakdar
- Max Planck Institute for the Science of Light Erlangen, Germany
| | - Chun Wang
- Max Planck Institute for the Science of Light Erlangen, Germany
| | - Vahid Sandoghdar
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| |
Collapse
|
59
|
Stein H, Spindler S, Bonakdar N, Wang C, Sandoghdar V. Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations. Front Physiol 2017; 8:63. [PMID: 28243205 DOI: 10.3389/fphys.2017.00063/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/23/2017] [Indexed: 05/27/2023] Open
Abstract
The cell membrane forms a dynamic and complex barrier between the living cell and its environment. However, its in vivo studies are difficult because it consists of a high variety of lipids and proteins and is continuously reorganized by the cell. Therefore, membrane model systems with precisely controlled composition are used to investigate fundamental interactions of membrane components under well-defined conditions. Giant unilamellar vesicles (GUVs) offer a powerful model system for the cell membrane, but many previous studies have been performed in unphysiologically low ionic strength solutions which might lead to altered membrane properties, protein stability and lipid-protein interaction. In the present work, we give an overview of the existing methods for GUV production and present our efforts on forming single, free floating vesicles up to several tens of μm in diameter and at high yield in various buffer solutions with physiological ionic strength and pH.
Collapse
Affiliation(s)
- Hannah Stein
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| | - Susann Spindler
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| | - Navid Bonakdar
- Max Planck Institute for the Science of Light Erlangen, Germany
| | - Chun Wang
- Max Planck Institute for the Science of Light Erlangen, Germany
| | - Vahid Sandoghdar
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| |
Collapse
|
60
|
Chen X, Shen J. Review of membranes in microfluidics. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2017; 92:271-282. [DOI: 10.1002/jctb.5105] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/14/2016] [Indexed: 01/12/2025]
Abstract
AbstractThis review reports the progress on the recent development of membranes in microfluidics. First of all, the definition and basic concepts of membranes are given. Second, the manufacturing methods of membranes in microfluidics are illustrated and discussed. And lastly, the applications of membranes in microfluidics that are the focus of this work are discussed including cells, proteins, microreactors, gas detection, drug screening, electrokinetical fluids, pump and valve and fluid transport control, chemical reagents detection and so on. A variety of microfluidic devices designed containing membranes are expounded and analyzed. This paper will provide a valuable reference to designers who research membranes and microfluidics for various applications. © 2016 Society of Chemical Industry
Collapse
Affiliation(s)
- Xueye Chen
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou 121001 China
| | - Jienan Shen
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou 121001 China
| |
Collapse
|
61
|
Kuhn P, Eyer K, Dittrich PS. A microfluidic device for the delivery of enzymes into cells by liposome fusion. Eng Life Sci 2017; 18:149-156. [PMID: 29416447 DOI: 10.1002/elsc.201600150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Liposomes are versatile carriers of drugs or biomolecules and are ideally suited to transport molecules into cells. However, mechanistic studies to understand and improve the fusion of liposomes with cell membranes and endosomes are difficult. Here, we report a method that allows for stable coimmobilization of liposomes and living cells, thereby bringing the membranes into close contact, which is essential for membrane fusion. The small unilamellar liposomes are tethered to the surface by a linker so that no modification of the liposome membrane for cell binding is required. The cells are positioned above the liposomes by posts that are integrated into the microfluidic device, and a pH drop induces the fusion of the cell-liposome membranes. Both membrane fusion and release of molecules into the cytosol are visualized by fluorescence dequenching assays. Furthermore, we proved the efficient delivery of the enzyme β-galactosidase into the cells when a fusogenic liposome composition was used. The device could be used for fusion studies but is also a versatile means for cell transfection.
Collapse
Affiliation(s)
- Phillip Kuhn
- Department of Chemistry and Applied Biosciences, Eth Zurich, Zurich, Switzerland
| | - Klaus Eyer
- Department of Chemistry and Applied Biosciences, Eth Zurich, Zurich, Switzerland
| | - Petra S Dittrich
- Department of Chemistry and Applied Biosciences, Eth Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
62
|
Chen X, Shen J, Hu Z, Huo X. Manufacturing methods and applications of membranes in microfluidics. Biomed Microdevices 2016; 18:104. [PMID: 27796675 DOI: 10.1007/s10544-016-0130-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
63
|
Direct Optofluidic Measurement of the Lipid Permeability of Fluoroquinolones. Sci Rep 2016; 6:32824. [PMID: 27604156 PMCID: PMC5015079 DOI: 10.1038/srep32824] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/11/2016] [Indexed: 11/17/2022] Open
Abstract
Quantifying drug permeability across lipid membranes is crucial for drug development. In addition, reduced membrane permeability is a leading cause of antibiotic resistance in bacteria, and hence there is a need for new technologies that can quantify antibiotic transport across biological membranes. We recently developed an optofluidic assay that directly determines the permeability coefficient of autofluorescent drug molecules across lipid membranes. Using ultraviolet fluorescence microscopy, we directly track drug accumulation in giant lipid vesicles as they traverse a microfluidic device while exposed to the drug. Importantly, our measurement does not require the knowledge of the octanol partition coefficient of the drug – we directly determine the permeability coefficient for the specific drug-lipid system. In this work, we report measurements on a range of fluoroquinolone antibiotics and find that their pH dependent lipid permeability can span over two orders of magnitude. We describe various technical improvements for our assay, and provide a new graphical user interface for data analysis to make the technology easier to use for the wider community.
Collapse
|
64
|
Jørgensen IL, Kemmer GC, Pomorski TG. Membrane protein reconstitution into giant unilamellar vesicles: a review on current techniques. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:103-119. [DOI: 10.1007/s00249-016-1155-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 12/11/2022]
|
65
|
Sturzenegger F, Robinson T, Hess D, Dittrich PS. Membranes under shear stress: visualization of non-equilibrium domain patterns and domain fusion in a microfluidic device. SOFT MATTER 2016; 12:5072-5076. [PMID: 27241894 DOI: 10.1039/c6sm00049e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study we investigate the effect of shear force on lipid membranes induced by external fluid flow. We use giant unilamellar vesicles (GUVs) as simple cell models and chose a ternary lipid mixture that exhibits liquid-ordered and liquid-disordered domains. These domains are stained with different dyes to allow visualization of changes within the membrane after the application of flow. A microfluidic device served as a valuable platform to immobilize the vesicles and apply shear forces of a defined strength. Moreover, integration of valves allowed us to stop the flow instantaneously and visualize the relaxing domain patterns by means of high-resolution fluorescence microscopy. We observed the formation of transient, non-deterministic patterns of the formerly round domains during application of flow. When the flow is stopped, round domains are formed again on a time scale of ms to s. At longer time scales of several seconds to minutes, the domains fuse into larger domains until they reach equilibrium. These processes are accelerated with increasing temperature and vesicles with budding domains do not fuse unless the temperature is elevated. Our results show the strong effect of the flow on the lipid membrane and we believe that this phenomenon plays a crucial role in the processes of mechanotransduction in living cells.
Collapse
|
66
|
Solution Asymmetry and Salt Expand Fluid-Fluid Coexistence Regions of Charged Membranes. Biophys J 2016; 110:2581-2584. [PMID: 27288275 PMCID: PMC4919722 DOI: 10.1016/j.bpj.2016.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 01/08/2023] Open
Abstract
Liquid-liquid phase separation in giant unilamellar vesicles (GUVs) leads to the formation of intramembrane domains. To mimic charged biological membranes, we studied phase separation and domain formation in GUVs of ternary lipid mixtures composed of egg sphingomyelin, cholesterol, and the negatively charged lipid dioleoylphosphatidylglycerol. The GUVs were exposed to solutions of sucrose and high-saline buffer. The phase diagram was determined using epifluorescence microscopy for vesicle populations with symmetric and asymmetric solution compositions across the membranes. Trans-membrane solution asymmetry was found to affect the membrane phase state. Furthermore, compared to the case of salt-free conditions, the phase diagram in the presence of high-saline buffer (both symmetrically or asymmetrically present across the membrane) was found to exhibit a significantly extended region of liquid-ordered and liquid-disordered coexistence. These observations were confirmed on single GUVs using microfluidics and confocal microscopy. Moreover, we found that the miscibility temperatures markedly increased for vesicles in the presence of symmetric and asymmetric salt solutions. Our results demonstrate a substantial effect of salt and solution asymmetry on the phase behavior of charged membranes, which has direct implications for protein adsorption onto these membranes and for the repartitioning of proteins within the membrane domains.
Collapse
|
67
|
Lira RB, Steinkühler J, Knorr RL, Dimova R, Riske KA. Posing for a picture: vesicle immobilization in agarose gel. Sci Rep 2016; 6:25254. [PMID: 27140695 PMCID: PMC4853705 DOI: 10.1038/srep25254] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/13/2016] [Indexed: 01/14/2023] Open
Abstract
Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs.
Collapse
Affiliation(s)
- Rafael B. Lira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jan Steinkühler
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Roland L. Knorr
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Karin A. Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
68
|
Kolesinska B, Eyer K, Robinson T, Dittrich PS, Beck AK, Seebach D, Walde P. Interaction of β(3) /β(2) -peptides, consisting of Val-Ala-Leu segments, with POPC giant unilamellar vesicles (GUVs) and white blood cancer cells (U937)--a new type of cell-penetrating peptides, and a surprising chain-length dependence of their vesicle- and cell-lysing activity. Chem Biodivers 2016; 12:697-732. [PMID: 26010661 DOI: 10.1002/cbdv.201500085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 01/28/2023]
Abstract
Many years ago, β(2) /β(3) -peptides, consisting of alternatively arranged β(2) - and β(3) h-amino-acid residues, have been found to undergo folding to a unique type of helix, the 10/12-helix, and to exhibit non-polar, lipophilic properties (Helv. Chim. Acta 1997, 80, 2033). We have now synthesized such 'mixed' hexa-, nona-, dodeca-, and octadecapeptides, consisting of Val-Ala-Leu triads, with N-terminal fluorescein (FAM) labels, i.e., 1-4, and studied their interactions with POPC (=1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) giant unilamellar vesicles (GUVs) and with human white blood cancer cells U937. The methods used were microfluidic technology, fluorescence correlation spectroscopy (FCS), a flow-cytometry assay, a membrane-toxicity assay with the dehydrogenase G6PDH as enzymatic reporter, and visual microscopy observations. All β(3) /β(2) -peptide derivatives penetrate the GUVs and/or the cells. As shown with the isomeric β(3) /β(2) -, β(3) -, and β(2) -nonamers, 2, 5, and 6, respectively, the derivatives 5 and 6 consisting exclusively of β(3) - or β(2) -amino-acid residues, respectively, interact neither with the vesicles nor with the cells. Depending on the method of investigation and on the pretreatment of the cells, the β(3) /β(2) -nonamer and/or the β(3) /β(2) -dodecamer derivative, 2 and/or 3, respectively, cause a surprising disintegration or lysis of the GUVs and cells, comparable with the action of tensides, viral fusion peptides, and host-defense antimicrobial peptides. Possible sources of the chain-length-dependent destructive potential of the β(3) /β(2) -nona- and β(3) /β(2) -dodecapeptide derivatives, and a possible relationship with the phosphate-to-phosphate and hydrocarbon thicknesses of GUVs, and eukaryotic cells are discussed. Further investigations with other types of GUVs and of eukaryotic or prokaryotic cells will be necessary to elucidate the mechanism(s) of interaction of 'mixed' β(3) /β(2) -peptides with membranes and to evaluate possible biomedical applications.
Collapse
Affiliation(s)
- Beata Kolesinska
- Institute of Organic Chemistry, Technical University of Łodz, Zeromskiego 116, PL-90-924 Łodz (phone: +48-42-631-3149).
| | - Klaus Eyer
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, (phone: +41-44-632-2990; fax: +41-44-632-114).,École Supérieure de Physique et de Chimie Industrielle de la Ville de Paris, 10 Rue de Vauquelin, FR-75005 Paris
| | - Tom Robinson
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, (phone: +41-44-632-2990; fax: +41-44-632-114).,Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Am Mühlenberg 1, DE-14476 Potsdam-Golm
| | - Petra S Dittrich
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, (phone: +41-44-632-2990; fax: +41-44-632-114).
| | - Albert K Beck
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, (phone: +41-44-632-2990; fax: +41-44-632-114)
| | - Dieter Seebach
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, (phone: +41-44-632-2990; fax: +41-44-632-114).
| | - Peter Walde
- Institut für Polymere, Departement Materialwissenschaft, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 5, CH-8093 Zürich, (phone: +41-44-632-0473; fax: +41-44-632-126).
| |
Collapse
|
69
|
Schlicht B, Zagnoni M. Droplet-interface-bilayer assays in microfluidic passive networks. Sci Rep 2015; 5:9951. [PMID: 25909686 PMCID: PMC4408985 DOI: 10.1038/srep09951] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/24/2015] [Indexed: 01/02/2023] Open
Abstract
Basic biophysical studies and pharmacological processes can be investigated by mimicking the intracellular and extracellular environments across an artificial cell membrane construct. The ability to reproduce in vitro simplified scenarios found in live cell membranes in an automated manner has great potential for a variety of synthetic biology and compound screening applications. Here, we present a fully integrated microfluidic system for the production of artificial lipid bilayers based on the miniaturisation of droplet-interface-bilayer (DIB) techniques. The platform uses a microfluidic design that enables the controlled positioning and storage of phospholipid-stabilized water-in-oil droplets, leading successfully to the scalable and automated formation of arrays of DIBs to mimic cell membrane processes. To ensure robustness of operation, we have investigated how lipid concentration, immiscible phase flow velocities and the device geometrical parameters affect the system performance. Finally, we produced proof-of-concept data showing that diffusive transport of molecules and ions across on-chip DIBs can be studied and quantified using fluorescence-based assays.
Collapse
Affiliation(s)
- Bárbara Schlicht
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK
| | - Michele Zagnoni
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK
| |
Collapse
|
70
|
Valkenier H, López Mora N, Kros A, Davis AP. Visualization and quantification of transmembrane ion transport into giant unilamellar vesicles. Angew Chem Int Ed Engl 2014; 54:2137-41. [PMID: 25556546 PMCID: PMC4506561 DOI: 10.1002/anie.201410200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/21/2014] [Indexed: 12/02/2022]
Abstract
Transmembrane ion transporters (ionophores) are widely investigated as supramolecular agents with potential for biological activity. Tests are usually performed in synthetic membranes that are assembled into large unilamellar vesicles (LUVs). However transport must be followed through bulk properties of the vesicle suspension, because LUVs are too small for individual study. An alternative approach is described whereby ion transport can be revealed and quantified through direct observation. The method employs giant unilamellar vesicles (GUVs), which are 20–60 μm in diameter and readily imaged by light microscopy. This allows characterization of individual GUVs containing transporter molecules, followed by studies of transport through fluorescence emission from encapsulated indicators. The method provides new levels of certainty and relevance, given that the GUVs are similar in size to living cells. It has been demonstrated using a highly active anion carrier, and should aid the development of compounds for treating channelopathies such as cystic fibrosis.
Collapse
Affiliation(s)
- Hennie Valkenier
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS (UK)
| | | | | | | |
Collapse
|
71
|
Valkenier H, López Mora N, Kros A, Davis AP. Visualization and Quantification of Transmembrane Ion Transport into Giant Unilamellar Vesicles. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
72
|
Tonooka T, Sato K, Osaki T, Kawano R, Takeuchi S. Lipid bilayers on a picoliter microdroplet array for rapid fluorescence detection of membrane transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3275-3282. [PMID: 24616419 DOI: 10.1002/smll.201303332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Indexed: 06/03/2023]
Abstract
This paper describes picoliter-sized lipid bilayer chambers and their theoretical model for the rapid detection of membrane transport. To prepare the chambers, semispherical aqueous droplets are patterned on a hydrophilic/hydrophobic substrate and then brought into contact with another aqueous droplet in lipid-dispersed organic solvent, resulting in the formation of the lipid bilayers on the semispherical droplets. The proposed method implements the lipid bilayer chambers with 25-fold higher ratio of lipid membrane area (S) to chamber volume (V) compared to the previous spherical droplet chambers. Using these chambers, we are able to trace the time-course of Ca(2+) influx through α-hemolysin pores by a fluorescent indicator. Moreover, we confirm that the detection time of the substrate transport is inversely proportional to the S/V ratio of the developed chambers, which is consistent with the simulation results based on the developed model. Our chambers and model might be useful for rapid functional analyses of membrane transport phenomena.
Collapse
Affiliation(s)
- Taishi Tonooka
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | | | | | | | | |
Collapse
|
73
|
Robinson T, Verboket PE, Eyer K, Dittrich PS. Controllable electrofusion of lipid vesicles: initiation and analysis of reactions within biomimetic containers. LAB ON A CHIP 2014; 14:2852-9. [PMID: 24911345 DOI: 10.1039/c4lc00460d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present a microfluidic device that is able to trap multiple giant unilamellar vesicles (GUVs) and initiate electrofusion via integrated microelectrodes. PDMS posts were designed to trap and isolate two or more vesicles. Electrodes patterned onto the glass surface of the microchannels are able to apply a short, high voltage pulse across the traps for controllable electrofusion of the GUVs. The entire array of traps and electrodes are designed such that an average of 60 individual fusion experiments can be performed on-chip. An assay based on Förster resonance energy transfer (FRET) is performed to show successful lipid mixing. Not only can the device be used to record the dynamics of lipid membrane fusion, but it can be used for reaction monitoring by fusing GUVs containing reactants. We demonstrate this by fusing vesicles encapsulating femtolitre volumes of cobalt chloride or EDTA and monitoring the amount of the complexation product over time.
Collapse
Affiliation(s)
- T Robinson
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
| | | | | | | |
Collapse
|
74
|
Cama J, Chimerel C, Pagliara S, Javer A, Keyser UF. A label-free microfluidic assay to quantitatively study antibiotic diffusion through lipid membranes. LAB ON A CHIP 2014; 14:2303-2308. [PMID: 24825393 DOI: 10.1039/c4lc00217b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
With the rise in antibiotic resistance amongst pathogenic bacteria, the study of antibiotic activity and transport across cell membranes is gaining widespread importance. We present a novel, label-free microfluidic assay that quantifies the permeability coefficient of a broad spectrum fluoroquinolone antibiotic, norfloxacin, across lipid membranes using the UV autofluorescence of the drug. We use giant lipid vesicles as highly controlled model systems to study the diffusion through lipid membranes. Our technique directly determines the permeability coefficient without requiring the measurement of the partition coefficient of the antibiotic.
Collapse
Affiliation(s)
- J Cama
- Biological and Soft Systems, Dept. of Physics, Univ. of Cambridge, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| | | | | | | | | |
Collapse
|
75
|
Shiomi H, Tsuda S, Suzuki H, Yomo T. Liposome-based liquid handling platform featuring addition, mixing, and aliquoting of femtoliter volumes. PLoS One 2014; 9:e101820. [PMID: 24991878 PMCID: PMC4081812 DOI: 10.1371/journal.pone.0101820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/10/2014] [Indexed: 11/18/2022] Open
Abstract
This paper describes the utilization of giant unilamellar vesicles (GUVs) as a platform for handling chemical and biochemical reagents. GUVs with diameters of 5 to 10 µm and containing chemical/biochemical reagents together with inert polymers were fused with electric pulses (electrofusion). After reagent mixing, the fused GUVs spontaneously deformed to a budding shape, separating the mixed solution into sub-volumes. We utilized a microfluidic channel and optical tweezers to select GUVs of interest, bring them into contact, and fuse them together to mix and aliquot the reaction product. We also show that, by lowering the ambient temperature close to the phase transition temperature Tm of the lipid used, daughter GUVs completely detached (fission). This process performs all the liquid-handing features used in bench-top biochemistry using the GUV, which could be advantageous for the membrane-related biochemical assays.
Collapse
Affiliation(s)
- Hideaki Shiomi
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Soichiro Tsuda
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
- ERATO, JST, Tokyo, Japan
| | - Hiroaki Suzuki
- ERATO, JST, Tokyo, Japan
- Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
- ERATO, JST, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
76
|
Robinson T, Kuhn P, Eyer K, Dittrich PS. Microfluidic trapping of giant unilamellar vesicles to study transport through a membrane pore. BIOMICROFLUIDICS 2013; 7:44105. [PMID: 24404039 PMCID: PMC3739824 DOI: 10.1063/1.4816712] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/10/2013] [Indexed: 05/05/2023]
Abstract
We present a microfluidic platform able to trap single GUVs in parallel. GUVs are used as model membranes across many fields of biophysics including lipid rafts, membrane fusion, and nanotubes. While their creation is relatively facile, handling and addressing single vesicles remains challenging. The PDMS microchip used herein contains 60 chambers, each with posts able to passively capture single GUVs without compromising their integrity. The design allows for circular valves to be lowered from the channel ceiling to isolate the vesicles from rest of the channel network. GUVs containing calcein were trapped and by rapidly opening the valves, the membrane pore protein α-hemolysin (αHL) was introduced to the membrane. Confocal microscopy revealed the kinetics of the small molecule efflux for different protein concentrations. This microfluidic approach greatly improves the number of experiments possible and can be applied to a wide range of biophysical applications.
Collapse
Affiliation(s)
- T Robinson
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - P Kuhn
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - K Eyer
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - P S Dittrich
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|