51
|
Quiñonero D. Sigma-hole carbon-bonding interactions in carbon-carbon double bonds: an unnoticed contact. Phys Chem Chem Phys 2018; 19:15530-15540. [PMID: 28581553 DOI: 10.1039/c7cp01780d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this manuscript, we combine high-level ab initio calculations on some small complexes and a CSD survey to analyze the existence of unprecedented noncovalent carbon bonds in X2C[double bond, length as m-dash]CH2Y systems (Y = electron-rich atom or group). The methylene group is usually seen as a weak hydrogen bond donor when interacting with an electron-rich atom. However, we demonstrate that when the electron-rich atom is located equidistant from the two H atoms and along the C[double bond, length as m-dash]C bond a σ-hole noncovalent carbon-bonding interaction is established, instead of a bifurcated hydrogen bond, as derived from Atoms-in-Molecules (AIM) and Natural bond orbital (NBO) analyses. The physical nature of the interaction has been analyzed using the Symmetry Adapted Perturbation Theory (SAPT) method. The results indicate that electrostatics is very important followed by either the induction or dispersion terms in anionic and neutral complexes, respectively. In addition the CSD analysis reveals the existence of such interactions, giving reliability to our calculations, which are much more numerous for neutral than for anionic Y systems.
Collapse
Affiliation(s)
- D Quiñonero
- Department de Química, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
52
|
Affiliation(s)
- Yuanxin Wei
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| |
Collapse
|
53
|
Crowe D, Nicholson A, Fleming A, Carey E, Sánchez-Sanz G, Kelleher F. Conformational studies of Gram-negative bacterial quorum sensing 3-oxo N -acyl homoserine lactone molecules. Bioorg Med Chem 2017; 25:4285-4296. [DOI: 10.1016/j.bmc.2017.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 11/24/2022]
|
54
|
Scheiner S. Systematic Elucidation of Factors That Influence the Strength of Tetrel Bonds. J Phys Chem A 2017; 121:5561-5568. [DOI: 10.1021/acs.jpca.7b05300] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
55
|
Scheiner S. Assembly of Effective Halide Receptors from Components. Comparing Hydrogen, Halogen, and Tetrel Bonds. J Phys Chem A 2017; 121:3606-3615. [DOI: 10.1021/acs.jpca.7b02305] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and
Biochemistry Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
56
|
|
57
|
Scheiner S. Comparison of halide receptors based on H, halogen, chalcogen, pnicogen, and tetrel bonds. Faraday Discuss 2017; 203:213-226. [DOI: 10.1039/c7fd00043j] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of halide receptors are constructed and the geometries and energetics of their binding to F−, Cl−, and Br−assessed by quantum calculations. The dicationic receptors are based on a pair of imidazolium units, connectedviaa benzene spacer. The imidazoliums each donate a proton to a halide in a pair of H-bonds. Replacement of the two bonding protons by Br leads to bindingviaa pair of halogen bonds. Likewise, chalcogen, pnicogen, and tetrel bonds occur when the protons are replaced, respectively, by Se, As, and Ge. Regardless of the binding group considered, F−is bound much more strongly than are Cl−and Br−. With respect to the latter two halides, the binding energy is not very sensitive to the nature of the binding atom, whether H or some other atom. But there is a great deal of differentiation with respect to F−, where the order varies as tetrel > H ∼ pnicogen > halogen > chalcogen. The replacement of the various binding atoms by their analogues in the next row of the periodic table enhances the fluoride binding energy by 22–56%. The strongest fluoride binding agents utilize the tetrel bonds of the Sn atom, whereas it is I-halogen bonds that are preferred for Cl−and Br−. After incorporation of thermal and entropic effects, the halogen, chalcogen, and pnicogen bonding receptors do not represent much of an improvement over H-bonds with regard to this selectivity for F−, even I which binds quite strongly. In stark contrast, the tetrel-bonding derivatives, both Ge and Sn, show by far the greatest selectivity for F−over the other halides, as much as 1013, an enhancement of six orders of magnitude when compared to the H-bonding receptor.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
58
|
Liu M, Li Q, Scheiner S. Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF3and furanTF3(T = C, Si, and Ge) with NH3. Phys Chem Chem Phys 2017; 19:5550-5559. [DOI: 10.1039/c6cp07531b] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protonation not only changes the primary interaction mode between α/β-furanCF3/p-PyCF3and NH3but also prominently enhances the strength of the Si/Ge⋯N tetrel bond.
Collapse
Affiliation(s)
- Mingxiu Liu
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
59
|
Liu M, Li Q, Cheng J, Li W, Li HB. Tetrel bond of pseudohalide anions with XH3F (X = C, Si, Ge, and Sn) and its role in SN2 reaction. J Chem Phys 2016; 145:224310. [DOI: 10.1063/1.4971855] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mingxiu Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Jianbo Cheng
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Wenzuo Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Hai-Bei Li
- School of Ocean, Shandong University, Weihai 264209, People’s Republic of China
| |
Collapse
|
60
|
Dorris RE, Trendell WC, Peebles RA, Peebles SA. Rotational Spectrum, Structure, and Interaction Energy of the Trifluoroethylene···Carbon Dioxide Complex. J Phys Chem A 2016; 120:7865-7872. [PMID: 27684090 DOI: 10.1021/acs.jpca.6b08286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rotational spectra for four isotopologues of the 1:1 weakly bound complex between trifluoroethylene (HFC═CF2) and carbon dioxide (CO2) were recorded using 480 MHz bandwidth chirped-pulse and resonant cavity Fourier transform microwave spectroscopy between 5.0 and 18.5 GHz. Two planar forms are possible: experimental rotational constants, planar moments, and dipole moment components are consistent with the form in which CO2 is positioned at the CHF end of the TFE subunit and is approximately perpendicular to the C═C bond; the other form, with CO2 aligned roughly parallel to the C═C bond, is not observed, consistent with ab initio relative energy predictions. Symmetry-adapted perturbation theory (SAPT) calculations provided interaction energies for possible structural forms of this complex, and comparisons are made with this and other members of the series of carbon dioxide complexes with fluorinated ethylenes (vinyl fluoride, 1,1-difluoroethylene, cis- and trans-1,2-difluoroethylene, and trifluoroethylene).
Collapse
Affiliation(s)
- Rachel E Dorris
- Department of Chemistry, Eastern Illinois University , 600 Lincoln Avenue, Charleston, Illinois 61920 United States
| | - William C Trendell
- Department of Chemistry, Eastern Illinois University , 600 Lincoln Avenue, Charleston, Illinois 61920 United States
| | - Rebecca A Peebles
- Department of Chemistry, Eastern Illinois University , 600 Lincoln Avenue, Charleston, Illinois 61920 United States
| | - Sean A Peebles
- Department of Chemistry, Eastern Illinois University , 600 Lincoln Avenue, Charleston, Illinois 61920 United States
| |
Collapse
|
61
|
|
62
|
Bhasi P, Nhlabatsi ZP, Sitha S. Expanding the applicability of electrostatic potentials to the realm of transition states. Phys Chem Chem Phys 2016; 18:13002-9. [PMID: 27108668 DOI: 10.1039/c6cp01506a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Central to any reaction mechanism study, and sometimes a challenging job, is tracing a transition state in a reaction path. For the first time, electrostatic potentials (ESP) of the reactants were used as guiding tactics to predict whether there is a possibility of any transition state in a reaction surface. The main motive behind this strategy is to see whether the directionality nature of the transition state has something to do with the anisotropic natures of the ESP with their embedded directionalities. Strategically, some atmospherically important, but simple, reactions have been chosen for this study, which heretofore were believed to be barrierless. By carefully analysing the ESP maps of the reactants, regions of possible interactions were located. Using the bilinear interpolation of the 2D grids of the ESP surfaces, search co-ordinates were fine-tuned for a local gradient based approach for the search of a transition state. Out of the three reactions studied in this work, we were able to successfully locate transition states, for the first time, in two cases and the third one still proved to be barrierless. This gives a clear indication that though ESP maps can qualitatively predict the possibility of a transition state; it is not always true that there should definitely be a transition state, as some of the reaction surfaces may genuinely be barrierless. But, nevertheless this strategy definitely has credential to be tested for many more reactions, either new or already established, and may be applied to create the initial search co-ordinates for any well-established transition state search method. Moreover, we have observed that the analysis of the ESP maps of the reactants were very much useful in explaining the nature of interactions existing in those observed transition states and we hope the same can also be extended to any transition state in an electrostatically driven reaction potential energy surface.
Collapse
Affiliation(s)
- Priya Bhasi
- Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa.
| | | | | |
Collapse
|
63
|
Tetrel bonds between PySiX3 and some nitrogenated bases: Hybridization, substitution, and cooperativity. J Mol Graph Model 2016; 65:35-42. [DOI: 10.1016/j.jmgm.2016.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 01/16/2023]
|
64
|
Affiliation(s)
- A. Subha Mahadevi
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| | - G. Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| |
Collapse
|
65
|
Affiliation(s)
- Marta Marín-Luna
- Instituto de Química Médica (CSIC), C/Juan de la Cierva, 3, 28006-Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), C/Juan de la Cierva, 3, 28006-Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (CSIC), C/Juan de la Cierva, 3, 28006-Madrid, Spain
| |
Collapse
|
66
|
Wei Q, Li Q, Cheng J, Li W, Li HB. Comparison of tetrel bonds and halogen bonds in complexes of DMSO with ZF3X (Z = C and Si; X = halogen). RSC Adv 2016. [DOI: 10.1039/c6ra18316f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A theoretical study of the complexes formed by dimethylsulfoxide (DMSO) with ZF3X (Z = C and Si; X = halogen) has been performed at the MP2/aug-cc-pVTZ level.
Collapse
Affiliation(s)
- Quanchao Wei
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Jianbo Cheng
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Wenzuo Li
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Hai-Bei Li
- School of Ocean
- Shandong University
- Weihai 264209
- People's Republic of China
| |
Collapse
|
67
|
Zins EL, Alikhani ME. Double π-hole tetrel-chalcogen interactions can lead to stable molecular heterodimer. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1118570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- E. L. Zins
- MONARIS, UMR, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- CNRS, MONARIS, UMR, Université Pierre et Marie Curie, Paris, France
| | - M. E. Alikhani
- MONARIS, UMR, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- CNRS, MONARIS, UMR, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
68
|
Southern SA, Bryce DL. NMR Investigations of Noncovalent Carbon Tetrel Bonds. Computational Assessment and Initial Experimental Observation. J Phys Chem A 2015; 119:11891-9. [PMID: 26562616 DOI: 10.1021/acs.jpca.5b10848] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Group IV tetrel elements may act as tetrel bond donors, whereby a region of positive electrostatic potential (σ-hole) interacts with a Lewis base. The results of calculations of NMR parameters are reported for a series of model compounds exhibiting tetrel bonding from a methyl carbon to the oxygen or nitrogen atoms in various functional groups. The (13)C chemical shift (δiso) and the (1c)J((13)C,Y) coupling (Y = (17)O, (15)N) across the tetrel bond are recorded as a function of geometry. The sensitivity of the NMR parameters to the noncovalent interaction is demonstrated via an increase in δiso and in |(1c)J((13)C,Y)| as the tetrel bond shortens. Gauge-including projector-augmented wave density functional theory (DFT) calculations of δiso are reported for crystals that exhibit tetrel bonding in the solid state. Experimental δiso values for solid sarcosine and its tetrel-bonded salts corroborate the computational findings. This work offers new insights into tetrel bonding and facilitates the incorporation of tetrel bonds as restraints in NMR crystallographic structure refinement.
Collapse
Affiliation(s)
- Scott A Southern
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa , 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa , 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
69
|
Esrafili MD, Nurazar R. Chalcogen bonds formed through π-holes: SO3 complexes with nitrogen and phosphorus bases. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1098742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mehdi D. Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| | - Roghaye Nurazar
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| |
Collapse
|
70
|
Scheiner S. Comparison of CH···O, SH···O, Chalcogen, and Tetrel Bonds Formed by Neutral and Cationic Sulfur-Containing Compounds. J Phys Chem A 2015; 119:9189-99. [DOI: 10.1021/acs.jpca.5b06831] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
71
|
Nepal B, Scheiner S. Competitive Halide Binding by Halogen Versus Hydrogen Bonding: Bis-triazole Pyridinium. Chemistry 2015; 21:13330-5. [DOI: 10.1002/chem.201501921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/12/2022]
|
72
|
Brea O, Mó O, Yáñez M, Alkorta I, Elguero J. Creating σ-Holes through the Formation of Beryllium Bonds. Chemistry 2015. [DOI: 10.1002/chem.201500981] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
73
|
An ab initio investigation of chalcogen–hydride interactions involving HXeH as a chalcogen bond acceptor. Struct Chem 2015. [DOI: 10.1007/s11224-015-0626-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
74
|
Esrafili MD, Mohammadirad N, Solimannejad M. Tetrel bond cooperativity in open-chain (CH3CN)n and (CH3NC)n clusters (n=2–7): An ab initio study. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
75
|
Saadat K, Tavakol H. An exceptional functionalization of doped fullerene observed via theoretical studies on the interactions of sulfur-doped fullerenes with halogens and halides. RSC Adv 2015. [DOI: 10.1039/c5ra08141f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interactions of sulfur-doped fullerenes with halogens and halides have been explored for possible applications such as sensor fabrication and adsorption processes.
Collapse
Affiliation(s)
- Kayvan Saadat
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 8415683111
- Iran
| | - Hossein Tavakol
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 8415683111
- Iran
| |
Collapse
|