51
|
Saliba D, Luo X, Rizzuto FJ, Sleiman HF. Programming rigidity into size-defined wireframe DNA nanotubes. NANOSCALE 2023; 15:5403-5413. [PMID: 36826342 DOI: 10.1039/d2nr06185f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanotubes built from DNA hold promise for several biological and materials applications, due to their high aspect ratio and encapsulation potential. A particularly appealing goal is to control the size, shape, and dynamic behaviour of DNA nanotubes with minimal design alteration, as nanostructures of varying morphologies and lengths have been shown to exhibit distinct cellular uptake, encapsulation behaviour, and in vivo biodistribution. Herein, we report a systematic investigation, combining experimental and computational design, to modulate the length, flexibility, and longitudinal patterns of wireframe DNA nanotubes. Subtle design changes govern the structure and properties of our nanotubes, which are built from a custom-made, long, and size-defined template strand to which DNA rungs and linkers are attached. Unlike DNA origami, these custom-made strands possess regions with repeating sequences at strategic locations, thereby reducing the number of strands necessary for assembly. Through strand displacement, the nanotubes can be reversibly altered between extended and collapsed morphologies. These design concepts enable fine-tuning of the nanotube stiffness and may pave the way for the development of designer nanotubes for a variety of applications, including the study of cellular internalization, biodistribution, and uptake mechanisms for structures of varied shapes and sizes.
Collapse
Affiliation(s)
- Daniel Saliba
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
| | - Xin Luo
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
| | - Felix J Rizzuto
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
52
|
Mogheiseh M, Etemadi E, Hasanzadeh Ghasemi R. Design, molecular dynamics simulation, and investigation of the mechanical behavior of DNA origami nanotubes with auxetic and honeycomb structures. J Biomol Struct Dyn 2023; 41:14822-14831. [PMID: 36889931 DOI: 10.1080/07391102.2023.2186719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
Numerous applications of DNA origami nanotubes for load-bearing purposes necessitate the improvement of properties and mechanical behavior of these types of structures, as well as the use of innovative structures such as metamaterials. To this end, the present study aims to investigate the design, molecular dynamics (MD) simulation, and mechanical behavior of DNA origami nanotube structures consisting of honeycomb and re-entrant auxetic cross-sections. The results revealed both structures kept their structural stability. In addition, DNA origami based-nanotube with auxetic cross-section exhibits negative Poisson's ratio (NPR) under tensile loading. Furthermore, MD simulation results demonstrated that the values of stiffness, specific stiffness, energy absorption, and specific energy absorption in the structure with an auxetic cross-section are higher than that of a honeycomb cross-section, similar to their behavior in macro-scale structures. The finding of this study is to propose re-entrant auxetic structure as the next generation of DNA origami nanotubes. In addition, it can be utilized to aid scientists with the design and fabrication of novel auxetic DNA origami structures.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Mogheiseh
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Ehsan Etemadi
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
- School of Fashion & Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | |
Collapse
|
53
|
Zhang Y, He L, Li S. Temperature dependence of DNA elasticity: An all-atom molecular dynamics simulation study. J Chem Phys 2023; 158:094902. [PMID: 36889965 DOI: 10.1063/5.0138940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
We used all-atom molecular dynamics simulation to investigate the elastic properties of double-stranded DNA (dsDNA). We focused on the influences of temperature on the stretch, bend, and twist elasticities, as well as the twist-stretch coupling, of the dsDNA over a wide range of temperature. The results showed that the bending and twist persistence lengths, together with the stretch and twist moduli, decrease linearly with temperature. However, the twist-stretch coupling behaves in a positive correction and enhances as the temperature increases. The potential mechanisms of how temperature affects dsDNA elasticity and coupling were investigated by using the trajectories from atomistic simulation, in which thermal fluctuations in structural parameters were analyzed in detail. We analyzed the simulation results by comparing them with previous simulation and experimental data, which are in good agreement. The prediction about the temperature dependence of dsDNA elastic properties provides a deeper understanding of DNA elasticities in biological environments and potentially helps in the further development of DNA nanotechnology.
Collapse
Affiliation(s)
- Yahong Zhang
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
54
|
Udono H, Gong J, Sato Y, Takinoue M. DNA Droplets: Intelligent, Dynamic Fluid. Adv Biol (Weinh) 2023; 7:e2200180. [PMID: 36470673 DOI: 10.1002/adbi.202200180] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Breathtaking advances in DNA nanotechnology have established DNA as a promising biomaterial for the fabrication of programmable higher-order nano/microstructures. In the context of developing artificial cells and tissues, DNA droplets have emerged as a powerful platform for creating intelligent, dynamic cell-like machinery. DNA droplets are a microscale membrane-free coacervate of DNA formed through phase separation. This new type of DNA system couples dynamic fluid-like property with long-established DNA programmability. This hybrid nature offers an advantageous route to facile and robust control over the structures, functions, and behaviors of DNA droplets. This review begins by describing programmable DNA condensation, commenting on the physical properties and fabrication strategies of DNA hydrogels and droplets. By presenting an overview of the development pathways leading to DNA droplets, it is shown that DNA technology has evolved from static, rigid systems to soft, dynamic systems. Next, the basic characteristics of DNA droplets are described as intelligent, dynamic fluid by showcasing the latest examples highlighting their distinctive features related to sequence-specific interactions and programmable mechanical properties. Finally, this review discusses the potential and challenges of numerical modeling able to connect a robust link between individual sequences and macroscopic mechanical properties of DNA droplets.
Collapse
Affiliation(s)
- Hirotake Udono
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| |
Collapse
|
55
|
Morzy D, Tekin C, Caroprese V, Rubio-Sánchez R, Di Michele L, Bastings MMC. Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes. NANOSCALE 2023; 15:2849-2859. [PMID: 36688792 PMCID: PMC9909679 DOI: 10.1039/d2nr05368c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications. As both molecules carry a rich charge profile, and frequently coexist in complex ionic solutions, the electrostatics surely play a pivotal role in interactions between them. Here we discuss how each component of a DNA/ion/lipid system determines its electrostatic attachment. We examine membrane binding of a library of DNA molecules varying from nanoengineered DNA origami through plasmids to short DNA domains, demonstrating the interplay between the molecular structure of the nucleic acid and the phase of lipid bilayers. Furthermore, the magnitude of DNA/lipid interactions is tuned by varying the concentration of magnesium ions in the physiologically relevant range. Notably, we observe that the structural and mechanical properties of DNA are critical in determining its attachment to lipid bilayers and demonstrate that binding is correlated positively with the size, and negatively with the flexibility of the nucleic acid. The findings are utilized in a proof-of-concept comparison of membrane interactions of two DNA origami designs - potential nanotherapeutic platforms - showing how the results can have a direct impact on the choice of DNA geometry for biotechnological applications.
Collapse
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
| | - Cem Tekin
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
| | - Vincenzo Caroprese
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
| | - Roger Rubio-Sánchez
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Lorenzo Di Michele
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Maartje M C Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
- Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
56
|
Suma A, Carnevale V, Micheletti C. Nonequilibrium Thermodynamics of DNA Nanopore Unzipping. PHYSICAL REVIEW LETTERS 2023; 130:048101. [PMID: 36763417 DOI: 10.1103/physrevlett.130.048101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Using theory and simulations, we carried out a first systematic characterization of DNA unzipping via nanopore translocation. Starting from partially unzipped states, we found three dynamical regimes depending on the applied force f: (i) heterogeneous DNA retraction and rezipping (f<17 pN), (ii) normal (17 pN<f<60 pN), and (iii) anomalous (f>60 pN) drift-diffusive behavior. We show that the normal drift-diffusion regime can be effectively modeled as a one-dimensional stochastic process in a tilted periodic potential. We use the theory of stochastic processes to recover the potential from nonequilibrium unzipping trajectories and show that it corresponds to the free-energy landscape for single-base-pair unzipping. Applying this general approach to other single-molecule systems with periodic potentials ought to yield detailed free-energy landscapes from out-of-equilibrium trajectories.
Collapse
Affiliation(s)
- Antonio Suma
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
57
|
Lee J, Lee S. Non-Invasive, Reliable, and Fast Quantification of DNA Loading on Gold Nanoparticles by a One-Step Optical Measurement. Anal Chem 2023; 95:1856-1866. [PMID: 36633590 DOI: 10.1021/acs.analchem.2c03378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An exquisite, versatile, and reproducible quantification of DNA loading on gold nanoparticles (Au NPs) has long been pursued because this loading influences the analytical, therapeutic, and self-assembly behaviors of DNA-Au NPs. Nevertheless, the existing methods used thus far rely solely on the invasive detachment and subsequent spectroscopic quantification of DNA, which are error-prone and highly dependent on trained personnel. Here, we present a non-invasive optical framework that can determine the number of DNA strands on Au NPs by versatile one-step measurement of the visible absorption spectra of DNA-Au NP solutions without any invasive modifications or downstream processes. Using effective medium theory in conjunction with electromagnetic numerical calculation, the change in DNA loading density, resulting from varying the ion concentration, Au NP size, DNA strand length, and surrounding temperature, can be tracked in situ merely by the one-step measurement of visible absorption spectra, which is otherwise impossible to achieve. Moreover, the simplicity and robustness of this method promote reproducible DNA loading quantification regardless of experimental adeptness, which is in stark contrast with existing invasive and multistep methods. Overall, the optical framework outlined in this work can contribute to democratizing research on DNA-Au NPs and facilitating their rapid adoption in transformative applications.
Collapse
Affiliation(s)
- Jaewon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Department of Integrative Energy Engineering, Department of Biomicrosystem Technology, and KU Photonics Center, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
58
|
Kucinic A, Huang CM, Wang J, Su HJ, Castro CE. DNA origami tubes with reconfigurable cross-sections. NANOSCALE 2023; 15:562-572. [PMID: 36520453 DOI: 10.1039/d2nr05416g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Structural DNA nanotechnology has enabled the design and construction of complex nanoscale structures with precise geometry and programmable dynamic and mechanical properties. Recent efforts have led to major advances in the capacity to actuate shape changes of DNA origami devices and incorporate DNA origami into larger assemblies, which open the prospect of using DNA to design shape-morphing assemblies as components of micro-scale reconfigurable or sensing materials. Indeed, a few studies have constructed higher order assemblies with reconfigurable devices; however, these demonstrations have utilized structures with relatively simple motion, primarily hinges that open and close. To advance the shape changing capabilities of DNA origami assemblies, we developed a multi-component DNA origami 6-bar mechanism that can be reconfigured into various shapes and can be incorporated into larger assemblies while maintaining capabilities for a variety of shape transformations. We demonstrate the folding of the 6-bar mechanism into four different shapes and demonstrate multiple transitions between these shapes. We also studied the shape preferences of the 6-bar mechanism in competitive folding reactions to gain insight into the relative free energies of the shapes. Furthermore, we polymerized the 6-bar mechanism into tubes with various cross-sections, defined by the shape of the individual mechanism, and we demonstrate the ability to change the shape of the tube cross-section. This expansion of current single-device reconfiguration to higher order scales provides a foundation for nano to micron scale DNA nanotechnology applications such as biosensing or materials with tunable properties.
Collapse
Affiliation(s)
- Anjelica Kucinic
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chao-Min Huang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jingyuan Wang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Hai-Jun Su
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
59
|
Doye JPK, Fowler H, Prešern D, Bohlin J, Rovigatti L, Romano F, Šulc P, Wong CK, Louis AA, Schreck JS, Engel MC, Matthies M, Benson E, Poppleton E, Snodin BEK. The oxDNA Coarse-Grained Model as a Tool to Simulate DNA Origami. Methods Mol Biol 2023; 2639:93-112. [PMID: 37166713 DOI: 10.1007/978-1-0716-3028-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This chapter introduces how to run molecular dynamics simulations for DNA origami using the oxDNA coarse-grained model.
Collapse
Affiliation(s)
- Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Hannah Fowler
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Domen Prešern
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Joakim Bohlin
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | | | - Flavio Romano
- Dipartimento di Fisica, Sapienza Universitá di Roma, Rome, Italy
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Chak Kui Wong
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford, UK
| | - John S Schreck
- Computational and Information Systems Laboratory, National Center for Atmospheric Research (NCAR), Boulder, USA
| | - Megan C Engel
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Michael Matthies
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Erik Benson
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | - Erik Poppleton
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Benedict E K Snodin
- Department of Philosophy, Future of Humanity Institute, University of Oxford, Oxford, UK
| |
Collapse
|
60
|
Zheng Z, Kim SH, Chovin A, Clement N, Demaille C. Electrochemical response of surface-attached redox DNA governed by low activation energy electron transfer kinetics. Chem Sci 2023; 14:3652-3660. [PMID: 37006693 PMCID: PMC10055828 DOI: 10.1039/d3sc00320e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
We demonstrate, using high scan rate cyclic voltammetry and molecular dynamics simulations, that the electrochemical response of electrode-attached redox DNA is governed by low reorganization energy electron transfer kinetics.
Collapse
Affiliation(s)
- Zhiyong Zheng
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| | - Soo Hyeon Kim
- IIS, LIMMS/CNRS-IIS UMI2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Arnaud Chovin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| | - Nicolas Clement
- IIS, LIMMS/CNRS-IIS UMI2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Christophe Demaille
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| |
Collapse
|
61
|
Fu D, Pradeep Narayanan R, Prasad A, Zhang F, Williams D, Schreck JS, Yan H, Reif J. Automated design of 3D DNA origami with non-rasterized 2D curvature. SCIENCE ADVANCES 2022; 8:eade4455. [PMID: 36563147 PMCID: PMC9788767 DOI: 10.1126/sciadv.ade4455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Improving the precision and function of encapsulating three-dimensional (3D) DNA nanostructures via curved geometries could have transformative impacts on areas such as molecular transport, drug delivery, and nanofabrication. However, the addition of non-rasterized curvature escalates design complexity without algorithmic regularity, and these challenges have limited the ad hoc development and usage of previously unknown shapes. In this work, we develop and automate the application of a set of previously unknown design principles that now includes a multilayer design for closed and curved DNA nanostructures to resolve past obstacles in shape selection, yield, mechanical rigidity, and accessibility. We design, analyze, and experimentally demonstrate a set of diverse 3D curved nanoarchitectures, showing planar asymmetry and examining partial multilayer designs. Our automated design tool implements a combined algorithmic and numerical approximation strategy for scaffold routing and crossover placement, which may enable wider applications of general DNA nanostructure design for nonregular or oblique shapes.
Collapse
Affiliation(s)
- Daniel Fu
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Raghu Pradeep Narayanan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Abhay Prasad
- School of Molecular Sciences and Center for Molecular Design and Biomimetics at Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | - Dewight Williams
- Erying Materials Center, Office of Knowledge Enterprise Development, Arizona State University, Tempe, AZ, USA
| | - John S. Schreck
- National Center for Atmospheric Research (NCAR), Computational and Information Systems Laboratory, Boulder, CO, USA
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics at Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - John Reif
- Department of Computer Science, Duke University, Durham, NC, USA
| |
Collapse
|
62
|
Lu B, Vecchioni S, Ohayon YP, Canary JW, Sha R. The wending rhombus: Self-assembling 3D DNA crystals. Biophys J 2022; 121:4759-4765. [PMID: 36004779 PMCID: PMC9808540 DOI: 10.1016/j.bpj.2022.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023] Open
Abstract
In this perspective, we provide a summary of recent developments in self-assembling three-dimensional (3D) DNA crystals. Starting from the inception of this subfield, we describe the various advancements in structure that have led to an increase in the diversity of macromolecular crystal motifs formed through self-assembly, and we further comment on the future directions of the field, which exploit noncanonical base pairing interactions beyond Watson-Crick. We then survey the current applications of self-assembling 3D DNA crystals in reversibly active nanodevices and materials engineering and provide an outlook on the direction researchers are taking these structures. Finally, we compare 3D DNA crystals with DNA origami and suggest how these distinct subfields might work together to enhance biomolecule structure solution, nanotechnological motifs, and their applications.
Collapse
Affiliation(s)
- Brandon Lu
- Department of Chemistry, New York University, New York, New York
| | - Simon Vecchioni
- Department of Chemistry, New York University, New York, New York
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, New York
| | - James W Canary
- Department of Chemistry, New York University, New York, New York.
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York.
| |
Collapse
|
63
|
Büchl A, Kopperger E, Vogt M, Langecker M, Simmel FC, List J. Energy landscapes of rotary DNA origami devices determined by fluorescence particle tracking. Biophys J 2022; 121:4849-4859. [PMID: 36071662 PMCID: PMC9808541 DOI: 10.1016/j.bpj.2022.08.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Biomolecular nanomechanical devices are of great interest as tools for the processing and manipulation of molecules, thereby mimicking the function of nature's enzymes. DNA nanotechnology provides the capability to build molecular analogs of mechanical machine elements such as joints and hinges via sequence-programmable self-assembly, which are otherwise known from traditional mechanical engineering. Relative to their size, these molecular machine elements typically do not reach the same relative precision and reproducibility that we know from their macroscopic counterparts; however, as they are scaled down to molecular sizes, physical effects typically not considered by mechanical engineers such as Brownian motion, intramolecular forces, and the molecular roughness of the devices begin to dominate their behavior. In order to investigate the effect of different design choices on the roughness of the mechanical energy landscapes of DNA nanodevices in greater detail, we here study an exemplary DNA origami-based structure, a modularly designed rotor-stator arrangement, which resembles a rotatable nanorobotic arm. Using fluorescence tracking microscopy, we follow the motion of individual rotors and record their corresponding energy landscapes. We then utilize the modular construction of the device to exchange its constituent parts individually and systematically test the effect of different design variants on the movement patterns. This allows us to identify the design parameters that most strongly affect the shape of the energy landscapes of the systems. Taking into account these insights, we are able to create devices with significantly flatter energy landscapes, which translates to mechanical nanodevices with improved performance and behaviors more closely resembling those of their macroscopic counterparts.
Collapse
Affiliation(s)
- Adrian Büchl
- Physics Department E14, Technical University of Munich, Garching, Germany
| | - Enzo Kopperger
- Physics Department E14, Technical University of Munich, Garching, Germany
| | - Matthias Vogt
- Physics Department E14, Technical University of Munich, Garching, Germany
| | - Martin Langecker
- Physics Department E14, Technical University of Munich, Garching, Germany
| | - Friedrich C Simmel
- Physics Department E14, Technical University of Munich, Garching, Germany.
| | - Jonathan List
- Physics Department E14, Technical University of Munich, Garching, Germany.
| |
Collapse
|
64
|
Paloncýová M, Pykal M, Kührová P, Banáš P, Šponer J, Otyepka M. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204408. [PMID: 36216589 DOI: 10.1002/smll.202204408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Utilization of nucleic acids (NAs) in nanotechnologies and nanotechnology-related applications is a growing field with broad application potential, ranging from biosensing up to targeted cell delivery. Computer simulations are useful techniques that can aid design and speed up development in this field. This review focuses on computer simulations of hybrid nanomaterials composed of NAs and other components. Current state-of-the-art molecular dynamics simulations, empirical force fields (FFs), and coarse-grained approaches for the description of deoxyribonucleic acid and ribonucleic acid are critically discussed. Challenges in combining biomacromolecular and nanomaterial FFs are emphasized. Recent applications of simulations for modeling NAs and their interactions with nano- and biomaterials are overviewed in the fields of sensing applications, targeted delivery, and NA templated materials. Future perspectives of development are also highlighted.
Collapse
Affiliation(s)
- Markéta Paloncýová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Martin Pykal
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Petra Kührová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Pavel Banáš
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Jiří Šponer
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Michal Otyepka
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
65
|
Zhou C, Yang D, Sensale S, Sharma P, Wang D, Yu L, Arya G, Ke Y, Wang P. A bistable and reconfigurable molecular system with encodable bonds. SCIENCE ADVANCES 2022; 8:eade3003. [PMID: 36399380 PMCID: PMC9674029 DOI: 10.1126/sciadv.ade3003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Molecular systems with ability to controllably transform between different conformations play pivotal roles in regulating biochemical functions. Here, we report the design of a bistable DNA origami four-way junction (DOJ) molecular system that adopts two distinct stable conformations with controllable reconfigurability by using conformation-controlled base stacking. Exquisite control over DOJ's conformation and transformation is realized by programming the stacking bonds (quasi-blunt-ends) within the junction to induce prescribed coaxial stacking of neighboring junction arms. A specific DOJ conformation may be achieved by encoding the stacking bonds with binary stacking sequences based on thermodynamic calculations. Dynamic transformations of DOJ between various conformations are achieved by using specific environmental and molecular stimulations to reprogram the stacking codes. This work provides a useful platform for constructing self-assembled DNA nanostructures and nanomachines and insights for future design of artificial molecular systems with increasing complexity and reconfigurability.
Collapse
Affiliation(s)
- Chunyang Zhou
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- College of Life Sciences and Technology, Changchun University of Science and Technology, Changchun 130013, Jilin, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sebastian Sensale
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Pranav Sharma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Dongfang Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Lei Yu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
66
|
Dutta A, Tapio K, Suma A, Mostafa A, Kanehira Y, Carnevale V, Bussi G, Bald I. Molecular states and spin crossover of hemin studied by DNA origami enabled single-molecule surface-enhanced Raman scattering. NANOSCALE 2022; 14:16467-16478. [PMID: 36305892 PMCID: PMC9671141 DOI: 10.1039/d2nr03664a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The study of biologically relevant molecules and their interaction with external stimuli on a single molecular scale is of high importance due to the availability of distributed rather than averaged information. Surface enhanced Raman scattering (SERS) provides direct chemical information, but is rather challenging on the single molecule (SM) level, where it is often assumed to require a direct contact of analyte molecules with the metal surface. Here, we detect and investigate the molecular states of single hemin by SM-SERS. A DNA aptamer based G-quadruplex mediated recognition of hemin directs its placement in the SERS hot-spot of a DNA Origami Nanofork Antenna (DONA). The configuration of the DONA structure allows the molecule to be trapped at the plasmonic hot-spot preferentially in no-contact configuration with the metal surface. Owing to high field enhancement at the plasmonic hot spot, the detection of a single folded G-quadruplex becomes possible. For the first time, we present a systematic study by SM-SERS where most hemin molecule adopt a high spin and oxidation state (III) that showed state crossover to low spin upon strong-field-ligand binding. The present study therefore, provides a platform for studying biologically relevant molecules and their properties at SM sensitivity along with demonstrating a conceptual advancement towards successful monitoring of single molecular chemical interaction using DNA aptamers.
Collapse
Affiliation(s)
- Anushree Dutta
- Institute of Chemistry, Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Kosti Tapio
- Institute of Chemistry, Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Antonio Suma
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN, Sezione di Bari, via Amendola 173, 70126 Bari, Italy
| | - Amr Mostafa
- Institute of Chemistry, Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Yuya Kanehira
- Institute of Chemistry, Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| | - Ilko Bald
- Institute of Chemistry, Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
67
|
Li R, Zheng M, Madhvacharyula AS, Du Y, Mao C, Choi JH. Mechanical deformation behaviors and structural properties of ligated DNA crystals. Biophys J 2022; 121:4078-4090. [PMID: 36181269 PMCID: PMC9675025 DOI: 10.1016/j.bpj.2022.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022] Open
Abstract
DNA self-assembly has emerged as a powerful strategy for constructing complex nanostructures. While the mechanics of individual DNA strands have been studied extensively, the deformation behaviors and structural properties of self-assembled architectures are not well understood. This is partly due to the small dimensions and limited experimental methods available. DNA crystals are macroscopic crystalline structures assembled from nanoscale motifs via sticky-end association. The large DNA constructs may thus be an ideal platform to study structural mechanics. Here, we investigate the fundamental mechanical properties and behaviors of ligated DNA crystals made of tensegrity triangular motifs. We perform coarse-grained molecular dynamics simulations and confirm the results with nanoindentation experiments using atomic force microscopy. We observe various deformation modes, including untension, linear elasticity, duplex dissociation, and single-stranded component stretch. We find that the mechanical properties of a DNA architecture are correlated with those of its components. However, the structure shows complex behaviors which may not be predicted by components alone and the architectural design must be considered.
Collapse
Affiliation(s)
- Ruixin Li
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Mengxi Zheng
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | | | - Yancheng Du
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
68
|
Singh A, Maity A, Singh N. Structure and Dynamics of dsDNA in Cell-like Environments. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1587. [PMID: 36359677 PMCID: PMC9689892 DOI: 10.3390/e24111587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
Deoxyribonucleic acid (DNA) is a fundamental biomolecule for correct cellular functioning and regulation of biological processes. DNA's structure is dynamic and has the ability to adopt a variety of structural conformations in addition to its most widely known double-stranded DNA (dsDNA) helix structure. Stability and structural dynamics of dsDNA play an important role in molecular biology. In vivo, DNA molecules are folded in a tightly confined space, such as a cell chamber or a channel, and are highly dense in solution; their conformational properties are restricted, which affects their thermodynamics and mechanical properties. There are also many technical medical purposes for which DNA is placed in a confined space, such as gene therapy, DNA encapsulation, DNA mapping, etc. Physiological conditions and the nature of confined spaces have a significant influence on the opening or denaturation of DNA base pairs. In this review, we summarize the progress of research on the stability and dynamics of dsDNA in cell-like environments and discuss current challenges and future directions. We include studies on various thermal and mechanical properties of dsDNA in ionic solutions, molecular crowded environments, and confined spaces. By providing a better understanding of melting and unzipping of dsDNA in different environments, this review provides valuable guidelines for predicting DNA thermodynamic quantities and for designing DNA/RNA nanostructures.
Collapse
|
69
|
Lee AJ, Rackers JA, Bricker WP. Predicting accurate ab initio DNA electron densities with equivariant neural networks. Biophys J 2022; 121:3883-3895. [PMID: 36057785 PMCID: PMC9674991 DOI: 10.1016/j.bpj.2022.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
One of the fundamental limitations of accurately modeling biomolecules like DNA is the inability to perform quantum chemistry calculations on large molecular structures. We present a machine learning model based on an equivariant Euclidean neural network framework to obtain accurate ab initio electron densities for arbitrary DNA structures that are much too large for conventional quantum methods. The model is trained on representative B-DNA basepair steps that capture both base pairing and base stacking interactions. The model produces accurate electron densities for arbitrary B-DNA structures with typical errors of less than 1%. Crucially, the error does not increase with system size, which suggests that the model can extrapolate to large DNA structures with negligible loss of accuracy. The model also generalizes reasonably to other DNA structural motifs such as the A- and Z-DNA forms, despite being trained on only B-DNA configurations. The model is used to calculate electron densities of several large-scale DNA structures, and we show that the computational scaling for this model is essentially linear. We also show that this machine learning electron density model can be used to calculate accurate electrostatic potentials for DNA. These electrostatic potentials produce more accurate results compared with classical force fields and do not show the usual deficiencies at short range.
Collapse
Affiliation(s)
- Alex J Lee
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico
| | - Joshua A Rackers
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico.
| | - William P Bricker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
70
|
Narayanan RP, Procyk J, Nandi P, Prasad A, Xu Y, Poppleton E, Williams D, Zhang F, Yan H, Chiu PL, Stephanopoulos N, Šulc P. Coarse-Grained Simulations for the Characterization and Optimization of Hybrid Protein-DNA Nanostructures. ACS NANO 2022; 16:14086-14096. [PMID: 35980981 PMCID: PMC9590280 DOI: 10.1021/acsnano.2c04013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present here the combination of experimental and computational modeling tools for the design and characterization of protein-DNA hybrid nanostructures. Our work incorporates several features in the design of these nanostructures: (1) modeling of the protein-DNA linker identity and length; (2) optimizing the design of protein-DNA cages to account for mechanical stresses; (3) probing the incorporation efficiency of protein-DNA conjugates into DNA nanostructures. The modeling tools were experimentally validated using structural characterization methods like cryo-TEM and AFM. Our method can be used for fitting low-resolution electron density maps when structural insights cannot be deciphered from experiments, as well as enable in-silico validation of nanostructured systems before their experimental realization. These tools will facilitate the design of complex hybrid protein-DNA nanostructures that seamlessly integrate the two different biomolecules.
Collapse
Affiliation(s)
- Raghu Pradeep Narayanan
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for molecular design and biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Jonah Procyk
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for molecular design and biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Purbasha Nandi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Abhay Prasad
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for molecular design and biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Yang Xu
- Center for molecular design and biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Erik Poppleton
- Center for molecular design and biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Dewight Williams
- Eyring Materials Center, Office of Knowledge Enterprise Development, Arizona State University, Tempe, Arizona 85287, United States
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Hao Yan
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for molecular design and biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for molecular design and biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Petr Šulc
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for molecular design and biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
71
|
Heterogeneous migration routes of DNA triplet repeat slip-outs. BIOPHYSICAL REPORTS 2022; 2:None. [PMID: 36299495 PMCID: PMC9586884 DOI: 10.1016/j.bpr.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022]
Abstract
It is unclear how the length of a repetitive DNA tract determines the onset and progression of repeat expansion diseases, but the dynamics of secondary DNA structures formed by repeat sequences are believed to play an important role. It was recently shown that three-way DNA junctions containing slip-out hairpins of CAG or CTG repeats and contiguous triplet repeats in the adjacent duplex displayed single-molecule FRET (smFRET) dynamics that were ascribed to both local conformational motions and longer-range branch migration. Here we explore these so-called "mobile" slip-out structures through a detailed kinetic analysis of smFRET trajectories and coarse-grained modeling. Despite the apparent structural simplicity, with six FRET states resolvable, most smFRET states displayed biexponential dwell-time distributions, attributed to structural heterogeneity and overlapping FRET states. Coarse-grained modeling for a (GAC)10 repeat slip-out included trajectories that corresponded to a complete round of branch migration; the structured free energy landscape between slippage events supports the dynamical complexity observed by smFRET. A hairpin slip-out with 40 CAG repeats, which is above the repeat length required for disease in several triplet repeat disorders, displayed smFRET dwell times that were on average double those of 3WJs with 10 repeats. The rate of secondary-structure rearrangement via branch migration, relative to particular DNA processing pathways, may be an important factor in the expansion of triplet repeat expansion diseases.
Collapse
|
72
|
Sun LZ, Qian JL, Cai P, Xu X. Mutual effects between single-stranded DNA conformation and Na +-Mg 2+ ion competition in mixed salt solutions. Phys Chem Chem Phys 2022; 24:20867-20881. [PMID: 36043348 DOI: 10.1039/d2cp02737b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ion-dependence of single-stranded DNA (ssDNA) conformational changes has attracted growing attention because of its biological and technological importance. Although single-species ion effects have been extensively explored, it is challenging to study the ssDNA conformational properties under mixed monovalent/divalent ion conditions due to the complications of ssDNA flexibility and ion-ion competition. In this study, we apply Langevin dynamics simulations to investigate mixed Na+/Mg2+ ion-dependent ssDNA conformations. The ssDNA structure is described using a coarse-grained model, in which the phosphate, base, and sugar of each nucleotide are represented by three different beads. A novel improvement in our simulation model is that mixed-salt-related electrostatic interactions are computed via combining Manning counterion condensation (MCC) theory with the Monte Carlo tightly bound ion (MCTBI) model. Based on this MCC-MCTBI combination, we report new empirical functions to describe the ion-concentration-dependent and ssDNA conformation/structure-dependent electrostatic effects. The calculation results relating to the ion binding properties and the simulation results relating to the ssDNA conformational properties are validated against experimental results. In addition, our simulation results suggest a quantitative relationship between the ssDNA conformation and Na+-Mg2+ competition; this in turn reveals their mutual impact in the ion atmosphere.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Jun-Lin Qian
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Pinggen Cai
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| |
Collapse
|
73
|
Li S, Coffinier Y, Lagadec C, Cleri F, Nishiguchi K, Fujiwara A, Fujii T, Kim SH, Clément N. Redox-labelled electrochemical aptasensors with nanosupported cancer cells. Biosens Bioelectron 2022; 216:114643. [PMID: 36030742 DOI: 10.1016/j.bios.2022.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
The transfer of redox-labelled bioelectrochemical sensors from proteins to cells is not straightforward because of the cell downward force issue on the surface of the sensors. In this paper, 20-nm-thick nanopillars are introduced to overcome this issue, in a well-controlled manner. We show on both molecular dynamics simulations and experiments that suspending cells a few nanometers above an electrode surface enables redox-labelled tethered DNA aptamer probes to move freely, while remaining at an interaction distance from a target membrane protein, i. e. epithelial cell adhesion molecule (EpCAM), which is typically overexpressed in cancer cells. By this nanopillar configuration, the interaction of aptamer with cancer cells is clearly observable, with 13 cells as the lower limit of detection. Nanoconfinement induced by the gap between the electrode surface and the cell membrane appears to improve the limit of detection and to lower the melting temperature of DNA aptamer hairpins, offering an additional degree of freedom to optimize molecular recognition mechanisms. This novel nanosupported electrochemical DNA cell sensor scheme including Brownian-fluctuating redox species opens new opportunities for the design of all-electrical sensors using redox-labelled probes.
Collapse
Affiliation(s)
- S Li
- IIS, LIMMS/CNRS-IIS IRL2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505, Japan.
| | - Y Coffinier
- IEMN, CNRS UMR8520, Univ. Lille Avenue Poincaré, BP 60069, Villeneuve D'Ascq Cedex, 59652, France
| | - C Lagadec
- Univ. Lille, CNRS, Inserm, CHU Lille, Centre Oscar Lambret, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - F Cleri
- IEMN, CNRS UMR8520, Univ. Lille Avenue Poincaré, BP 60069, Villeneuve D'Ascq Cedex, 59652, France
| | - K Nishiguchi
- NTT Basic Research Laboratories, NTT Corporation, 3-1, Morinosato-Wakamiya, Atsugi-shi, 243-0198, Japan
| | - A Fujiwara
- NTT Basic Research Laboratories, NTT Corporation, 3-1, Morinosato-Wakamiya, Atsugi-shi, 243-0198, Japan
| | - T Fujii
- IIS, LIMMS/CNRS-IIS IRL2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505, Japan
| | - S-H Kim
- IIS, LIMMS/CNRS-IIS IRL2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505, Japan
| | - N Clément
- IIS, LIMMS/CNRS-IIS IRL2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505, Japan.
| |
Collapse
|
74
|
Kurisinkal EE, Caroprese V, Koga MM, Morzy D, Bastings MMC. Selective Integrin α5β1 Targeting through Spatially Constrained Multivalent DNA-Based Nanoparticles. Molecules 2022; 27:molecules27154968. [PMID: 35956918 PMCID: PMC9370198 DOI: 10.3390/molecules27154968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Targeting cells specifically based on receptor expression levels remains an area of active research to date. Selective binding of receptors cannot be achieved by increasing the individual binding strength, as this does not account for differing distributions of receptor density across healthy and diseased cells. Engaging receptors above a threshold concentration would be desirable in devising selective diagnostics. Integrins are prime target candidates as they are readily available on the cell surface and have been reported to be overexpressed in diseases. Insights into their spatial organization would therefore be advantageous to design selective targeting agents. Here, we investigated the effect of activation method on integrin α5β1 clustering by immunofluorescence and modeled the global neighbor distances with input from an immuno-staining assay and image processing of microscopy images. This data was used to engineer spatially-controlled DNA-scaffolded bivalent ligands, which we used to compare trends in spatial-selective binding observed across HUVEC, CHO and HeLa in resting versus activated conditions in confocal microscopy images. For HUVEC and CHO, the data demonstrated an improved selectivity and localisation of binding for smaller spacings ~7 nm and ~24 nm, in good agreement with the model. A deviation from the mode predictions for HeLa was observed, indicative of a clustered, instead of homogeneous, integrin organization. Our findings demonstrate how low-technology imaging methods can guide the design of spatially controlled ligands to selectively differentiate between cell type and integrin activation state.
Collapse
Affiliation(s)
- Eva E. Kurisinkal
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Vincenzo Caroprese
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Marianna M. Koga
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Maartje M. C. Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
- Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
- Correspondence:
| |
Collapse
|
75
|
Panczyk T, Nieszporek K, Wolski P. Stability and Existence of Noncanonical I-motif DNA Structures in Computer Simulations Based on Atomistic and Coarse-Grained Force Fields. Molecules 2022; 27:molecules27154915. [PMID: 35956863 PMCID: PMC9370271 DOI: 10.3390/molecules27154915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Cytosine-rich DNA sequences are able to fold into noncanonical structures, in which semi-protonated cytosine pairs develop extra hydrogen bonds, and these bonds are responsible for the overall stability of a structure called the i-motif. The i-motif can be formed in many regions of the genome, but the most representative is the telomeric region in which the CCCTAA sequences are repeated thousands of times. The ability to reverse folding/unfolding in response to pH change makes the above sequence and i-motif very promising components of nanomachines, extended DNA structures, and drug carriers. Molecular dynamics analysis of such structures is highly beneficial due to direct insights into the microscopic structure of the considered systems. We show that Amber force fields for DNA predict the stability of the i-motif over a long timescale; however, these force fields are not able to predict folding of the cytosine-rich sequences into the i-motif. The reason is the kinetic partitioning of the folding process, which makes the transitions between various intermediates too time-consuming in atomistic force field representation. Application of coarse-grained force fields usually highly accelerates complex structural transitions. We, however, found that three of the most popular coarse-grained force fields for DNA (oxDNA, 3SPN, and Martini) were not able to predict the stability of the i-motif structure. Obviously, they were not able to accelerate the folding of unfolded states into an i-motif. This observation must be strongly highlighted, and the need to develop suitable extensions of coarse-grained force fields for DNA is pointed out. However, it will take a great deal of effort to successfully solve these problems.
Collapse
Affiliation(s)
- Tomasz Panczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland;
- Correspondence:
| | - Krzysztof Nieszporek
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin pl. Maria Curie-Sklodowska 3, 20031 Lublin, Poland;
| | - Pawel Wolski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland;
| |
Collapse
|
76
|
Xie C, Hu Y, Chen Z, Chen K, Pan L. Tuning curved DNA origami structures through mechanical design and chemical adducts. NANOTECHNOLOGY 2022; 33:405603. [PMID: 35772292 DOI: 10.1088/1361-6528/ac7d62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The bending and twisting of DNA origami structures are important features for controlling the physical properties of DNA nanodevices. It has not been fully explored yet how to finely tune the bending and twisting of curved DNA structures. Traditional tuning of the curved DNA structures was limited to controlling the in-plane-bending angle through varying the numbers of base pairs of deletions and insertions. Here, we developed two tuning strategies of curved DNA origami structures fromin silicoandin vitroaspects.In silico, the out-of-plane bending and twisting angles of curved structures were introduced, and were tuned through varying the patterns of base pair deletions and insertions.In vitro, a chemical adduct (ethidium bromide) was applied to dynamically tune a curved spiral. The 3D structural conformations, like chirality, of the curved DNA structures were finely tuned through these two strategies. The simulation and TEM results demonstrated that the patterns of base pair insertions and deletions and chemical adducts could effectively tune the bending and twisting of curved DNA origami structures. These strategies expand the programmable accuracy of curved DNA origami structures and have potential in building efficient dynamic functional nanodevices.
Collapse
Affiliation(s)
- Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, People's Republic of China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
77
|
Fontana F, Bellini T, Todisco M. Liquid Crystal Ordering in DNA Double Helices with Backbone Discontinuities. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Fontana
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, via Vanvitelli 32, 20129 Milano, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, via Vanvitelli 32, 20129 Milano, Italy
| | - Marco Todisco
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
78
|
Appeldorn JH, Lemcke S, Speck T, Nikoubashman A. Employing Artificial Neural Networks to Identify Reaction Coordinates and Pathways for Self-Assembly. J Phys Chem B 2022; 126:5007-5016. [DOI: 10.1021/acs.jpcb.2c02232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jörn H. Appeldorn
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Simon Lemcke
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
79
|
Kaufhold WT, Pfeifer W, Castro CE, Di Michele L. Probing the Mechanical Properties of DNA Nanostructures with Metadynamics. ACS NANO 2022; 16:8784-8797. [PMID: 35580231 PMCID: PMC9245350 DOI: 10.1021/acsnano.1c08999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molecular dynamics simulations are often used to provide feedback in the design workflow of DNA nanostructures. However, even with coarse-grained models, the convergence of distributions from unbiased simulation is slow, limiting applications to equilibrium structural properties. Given the increasing interest in dynamic, reconfigurable, and deformable devices, methods that enable efficient quantification of large ranges of motion, conformational transitions, and mechanical deformation are critically needed. Metadynamics is an automated biasing technique that enables the rapid acquisition of molecular conformational distributions by flattening free energy landscapes. Here we leveraged this approach to sample the free energy landscapes of DNA nanostructures whose unbiased dynamics are nonergodic, including bistable Holliday junctions and part of a bistable DNA origami structure. Taking a DNA origami-compliant joint as a case study, we further demonstrate that metadynamics can predict the mechanical response of a full DNA origami device to an applied force, showing good agreement with experiments. Our results exemplify the efficient computation of free energy landscapes and force response in DNA nanodevices, which could be applied for rapid feedback in iterative design workflows and generally facilitate the integration of simulation and experiments. Metadynamics will be particularly useful to guide the design of dynamic devices for nanorobotics, biosensing, or nanomanufacturing applications.
Collapse
Affiliation(s)
- Will T. Kaufhold
- Department
of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemistry and fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Wolfgang Pfeifer
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus 43210, Ohio, United States
| | - Carlos E. Castro
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus 43210, Ohio, United States
| | - Lorenzo Di Michele
- Department
of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemistry and fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
80
|
Kaufhold WT, Pfeifer W, Castro CE, Di Michele L. Probing the Mechanical Properties of DNA Nanostructures with Metadynamics. ACS NANO 2022; 16:8784-8797. [PMID: 35580231 DOI: 10.48550/arxiv.2110.01477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Molecular dynamics simulations are often used to provide feedback in the design workflow of DNA nanostructures. However, even with coarse-grained models, the convergence of distributions from unbiased simulation is slow, limiting applications to equilibrium structural properties. Given the increasing interest in dynamic, reconfigurable, and deformable devices, methods that enable efficient quantification of large ranges of motion, conformational transitions, and mechanical deformation are critically needed. Metadynamics is an automated biasing technique that enables the rapid acquisition of molecular conformational distributions by flattening free energy landscapes. Here we leveraged this approach to sample the free energy landscapes of DNA nanostructures whose unbiased dynamics are nonergodic, including bistable Holliday junctions and part of a bistable DNA origami structure. Taking a DNA origami-compliant joint as a case study, we further demonstrate that metadynamics can predict the mechanical response of a full DNA origami device to an applied force, showing good agreement with experiments. Our results exemplify the efficient computation of free energy landscapes and force response in DNA nanodevices, which could be applied for rapid feedback in iterative design workflows and generally facilitate the integration of simulation and experiments. Metadynamics will be particularly useful to guide the design of dynamic devices for nanorobotics, biosensing, or nanomanufacturing applications.
Collapse
Affiliation(s)
- Will T Kaufhold
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
- Department of Chemistry and fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Wolfgang Pfeifer
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus 43210, Ohio, United States
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus 43210, Ohio, United States
| | - Lorenzo Di Michele
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
- Department of Chemistry and fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| |
Collapse
|
81
|
The Free-Energy Landscape of a Mechanically Bistable DNA Origami. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular simulations using coarse-grained models allow the structure, dynamics and mechanics of DNA origamis to be comprehensively characterized. Here, we focus on the free-energy landscape of a jointed DNA origami that has been designed to exhibit two mechanically stable states and for which a bistable landscape has been inferred from ensembles of structures visualized by electron microscopy. Surprisingly, simulations using the oxDNA model predict that the defect-free origami has a single free-energy minimum. The expected second state is not stable because the hinge joints do not simply allow free angular motion but instead lead to increasing free-energetic penalties as the joint angles relevant to the second state are approached. This raises interesting questions about the cause of this difference between simulations and experiment, such as how assembly defects might affect the ensemble of structures observed experimentally.
Collapse
|
82
|
Design and simulation of DNA, RNA and hybrid protein-nucleic acid nanostructures with oxView. Nat Protoc 2022; 17:1762-1788. [PMID: 35668321 DOI: 10.1038/s41596-022-00688-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Abstract
Molecular simulation has become an integral part of the DNA/RNA nanotechnology research pipeline. In particular, understanding the dynamics of structures and single-molecule events has improved the precision of nanoscaffolds and diagnostic tools. Here we present oxView, a design tool for visualization, design, editing and analysis of simulations of DNA, RNA and nucleic acid-protein nanostructures. oxView provides an accessible software platform for designing novel structures, tweaking existing designs, preparing them for simulation in the oxDNA/RNA molecular simulation engine and creating visualizations of simulation results. In several examples, we present procedures for using the tool, including its advanced features that couple the design capabilities with a coarse-grained simulation engine and scripting interface that can programmatically edit structures and facilitate design of complex structures from multiple substructures. These procedures provide a practical basis from which researchers, including experimentalists with limited computational experience, can integrate simulation and 3D visualization into their existing research programs.
Collapse
|
83
|
Hübner K, Raab M, Bohlen J, Bauer J, Tinnefeld P. Salt-induced conformational switching of a flat rectangular DNA origami structure. NANOSCALE 2022; 14:7898-7905. [PMID: 35587049 DOI: 10.1039/d1nr07793g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A rectangular DNA origami structure is one of the most studied and often used motif for applications in DNA nanotechnology. Here, we present two assays to study structural changes in DNA nanostructures and reveal a reversible rolling-up of the rectangular DNA origami structure induced by bivalent cations such as magnesium or calcium. First, we applied one-color and two-color superresolution DNA-PAINT with protruding strands along the long edges of the DNA origami rectangle. At increasing salt concentration, a single line instead of two lines is observed as a first indicator of rolling-up. Two-color measurements also revealed different conformations with parallel and angled edges. Second, we placed a gold nanoparticle and a dye molecule at different positions on the DNA origami structure. Distance dependent fluorescence quenching by the nanoparticle reports on dynamic transitions as well as it provides evidence that the rolling-up occurs preferentially along the diagonal of the DNA origami rectangle. The results will be helpful to test DNA structural models and the assays presented will be useful to study further structural transitions in DNA nanotechnology.
Collapse
Affiliation(s)
- Kristina Hübner
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany.
| | - Mario Raab
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany.
| | - Johann Bohlen
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany.
| | - Julian Bauer
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany.
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany.
| |
Collapse
|
84
|
Qian JL, Sun LZ. Dataset of normalized probability distributions of virtual bond lengths, bond angles, and dihedral angles for the coarse-grained single-stranded DNA structures. Data Brief 2022; 42:108284. [PMID: 35637888 PMCID: PMC9142626 DOI: 10.1016/j.dib.2022.108284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022] Open
Abstract
The utility of the coarse-grained (CG) single-stranded DNA (ssDNA) model can drastically reduce the compute time for simulating the ssDNA dynamics. The model-matched CG potentials and the inherent potential constants can be derived by coarse-graining the experimentally measured ssDNA structures. A useful and widespread treatment of the CG model is to use three different pseudo-atoms P, S, and B to represent the atomic groups of phosphate, sugar, and base, respectively, in each nucleotide of the ssDNA structures. The three pseudo-atoms generate nine types of the structural parameters to characterize the unstructured ssDNA conformations, including three (virtual) bond lengths (P-S, S-B, and S-P) between two neighbouring beads, four bond angles (P-S-P, S-P-S, P-S-B, and B-S-P) between three adjacent bonds, and two dihedral angles (P-S-P-S and S-P-S-P) between three successive bonds. This paper mainly presents the data of normalized probability distributions of the bond lengths, bond angles, and dihedral angles for the CG ssDNAs.
Collapse
|
85
|
Assenza S, Pérez R. Accurate Sequence-Dependent Coarse-Grained Model for Conformational and Elastic Properties of Double-Stranded DNA. J Chem Theory Comput 2022; 18:3239-3256. [PMID: 35394775 PMCID: PMC9097290 DOI: 10.1021/acs.jctc.2c00138] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
We introduce MADna,
a sequence-dependent coarse-grained model of
double-stranded DNA (dsDNA), where each nucleotide is described by
three beads localized at the sugar, at the base moiety, and at the
phosphate group, respectively. The sequence dependence is included
by considering a step-dependent parametrization of the bonded interactions,
which are tuned in order to reproduce the values of key observables
obtained from exhaustive atomistic simulations from the literature.
The predictions of the model are benchmarked against an independent
set of all-atom simulations, showing that it captures with high fidelity
the sequence dependence of conformational and elastic features beyond
the single step considered in its formulation. A remarkably good agreement
with experiments is found for both sequence-averaged and sequence-dependent
conformational and elastic features, including the stretching and
torsion moduli, the twist–stretch and twist–bend couplings,
the persistence length, and the helical pitch. Overall, for the inspected
quantities, the model has a precision comparable to atomistic simulations,
hence providing a reliable coarse-grained description for the rationalization
of single-molecule experiments and the study of cellular processes
involving dsDNA. Owing to the simplicity of its formulation, MADna
can be straightforwardly included in common simulation engines. Particularly,
an implementation of the model in LAMMPS is made available on an online
repository to ease its usage within the DNA research community.
Collapse
|
86
|
Sun LZ, Qian JL, Cai P, Hu HX, Xu X, Luo MB. Mg2+ effects on the single-stranded DNA conformations and nanopore translocation dynamics. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
87
|
Xin Y, Piskunen P, Suma A, Li C, Ijäs H, Ojasalo S, Seitz I, Kostiainen MA, Grundmeier G, Linko V, Keller A. Environment-Dependent Stability and Mechanical Properties of DNA Origami Six-Helix Bundles with Different Crossover Spacings. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107393. [PMID: 35363419 DOI: 10.1002/smll.202107393] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Indexed: 05/25/2023]
Abstract
The internal design of DNA nanostructures defines how they behave in different environmental conditions, such as endonuclease-rich or low-Mg2+ solutions. Notably, the inter-helical crossovers that form the core of such DNA objects have a major impact on their mechanical properties and stability. Importantly, crossover design can be used to optimize DNA nanostructures for target applications, especially when developing them for biomedical environments. To elucidate this, two otherwise identical DNA origami designs are presented that have a different number of staple crossovers between neighboring helices, spaced at 42- and 21- basepair (bp) intervals, respectively. The behavior of these structures is then compared in various buffer conditions, as well as when they are exposed to enzymatic digestion by DNase I. The results show that an increased number of crossovers significantly improves the nuclease resistance of the DNA origami by making it less accessible to digestion enzymes but simultaneously lowers its stability under Mg2+ -free conditions by reducing the malleability of the structures. Therefore, these results represent an important step toward rational, application-specific DNA nanostructure design.
Collapse
Affiliation(s)
- Yang Xin
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Antonio Suma
- Dipartimento di Fisica, Università di Bari and Sezione INFN di Bari, Bari, 70126, Italy
| | - Changyong Li
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Sofia Ojasalo
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Iris Seitz
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
88
|
OxDNA to Study Species Interactions. ENTROPY 2022; 24:e24040458. [PMID: 35455121 PMCID: PMC9029285 DOI: 10.3390/e24040458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
Molecular ecology uses molecular genetic data to answer traditional ecological questions in biogeography and biodiversity, among others. Several ecological principles, such as the niche hypothesis and the competitive exclusions, are based on the fact that species compete for resources. More in generally, it is now recognized that species interactions play a crucial role in determining the coexistence and abundance of species. However, experimentally controllable platforms, which allow us to study and measure competitions among species, are rare and difficult to implement. In this work, we suggest exploiting a Molecular Dynamics coarse-grained model to study interactions among single strands of DNA, representing individuals of different species, which compete for binding to other oligomers considered as resources. In particular, the well-established knowledge of DNA–DNA interactions at the nanoscale allows us to test the hypothesis that the maximum consecutive overlap between pairs of oligomers measure the species’ competitive advantages. However, we suggest that a more complex structure also plays a role in the ability of the species to successfully bind to the target resource oligomer. We complement the simulations with experiments on populations of DNA strands which qualitatively confirm our hypotheses. These tools constitute a promising starting point for further developments concerning the study of controlled, DNA-based, artificial ecosystems.
Collapse
|
89
|
Liu L, Hong F, Liu H, Zhou X, Jiang S, Šulc P, Jiang JH, Yan H. A localized DNA finite-state machine with temporal resolution. SCIENCE ADVANCES 2022; 8:eabm9530. [PMID: 35333578 PMCID: PMC8956261 DOI: 10.1126/sciadv.abm9530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/02/2022] [Indexed: 05/21/2023]
Abstract
The identity and timing of environmental stimulus play a pivotal role in living organisms in programming their signaling networks and developing specific phenotypes. The ability to unveil history-dependent signals will advance our understanding of temporally regulated biological processes. Here, we have developed a two-input, five-state DNA finite-state machine (FSM) to sense and record the temporally ordered inputs. The spatial organization of the processing units on DNA origami enables facile modulation of the energy landscape of DNA strand displacement reactions, allowing precise control of the reactions along predefined paths for different input orders. The use of spatial constraints brings about a simple, modular design for the FSM with a minimum set of orthogonal components and confers minimized leaky reactions and fast kinetics. The FSM demonstrates the capability of sensing the temporal orders of two microRNAs, highlighting its potential for temporally resolved biosensing and smart therapeutics.
Collapse
Affiliation(s)
- Lan Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Fan Hong
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hao Liu
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Xu Zhou
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Petr Šulc
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Corresponding author. (H.Y.); (J.-H.J.)
| | - Hao Yan
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Corresponding author. (H.Y.); (J.-H.J.)
| |
Collapse
|
90
|
Lee JG, Kim KS, Lee JY, Kim DN. Predicting the Free-Form Shape of Structured DNA Assemblies from Their Lattice-Based Design Blueprint. ACS NANO 2022; 16:4289-4297. [PMID: 35188742 DOI: 10.1021/acsnano.1c10347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structured DNA assemblies have been designed primarily on a three-dimensional lattice because it is easy to arrange and cross-link the helices there. However, when we design free-form structures including wireframes and topologically closed circular objects on a lattice, artificially stretched bonds connecting bases are inevitably and arbitrarily formed. They often lead to nonconvergence or convergence to a wrong configuration in computational analysis to predict the equilibrium shape of the structure when started from its lattice-based configuration, which hinders the design process of free-form structures. Here, we present a computational procedure enabling the shape prediction of free-form structures from their lattice-based design blueprint without any convergence issue. It automatically partitions the structure into substructures and relocates them into a new configuration. When the analysis for calculating the equilibrium shape begins from this configuration, no convergence issue occurs because substructures and stretched bonds connecting them do not overlap and intertwine each other during analysis. Using the proposed approach, we could obtain the free-form shape of a comprehensive set of wireframe and circular structures accurately and quickly. We further demonstrated that it also facilitated a design of wireframe structures with nonstraight edges.
Collapse
Affiliation(s)
- Jae Gyung Lee
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Kyung Soo Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
91
|
Lim W, Randisi F, Doye JPK, Louis AA. The interplay of supercoiling and thymine dimers in DNA. Nucleic Acids Res 2022; 50:2480-2492. [PMID: 35188542 PMCID: PMC8934635 DOI: 10.1093/nar/gkac082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Thymine dimers are a major mutagenic photoproduct induced by UV radiation. While they have been the subject of extensive theoretical and experimental investigations, questions of how DNA supercoiling affects local defect properties, or, conversely, how the presence of such defects changes global supercoiled structure, are largely unexplored. Here, we introduce a model of thymine dimers in the oxDNA forcefield, parametrized by comparison to melting experiments and structural measurements of the thymine dimer induced bend angle. We performed extensive molecular dynamics simulations of double-stranded DNA as a function of external twist and force. Compared to undamaged DNA, the presence of a thymine dimer lowers the supercoiling densities at which plectonemes and bubbles occur. For biologically relevant supercoiling densities and forces, thymine dimers can preferentially segregate to the tips of the plectonemes, where they enhance the probability of a localized tip-bubble. This mechanism increases the probability of highly bent and denatured states at the thymine dimer site, which may facilitate repair enzyme binding. Thymine dimer-induced tip-bubbles also pin plectonemes, which may help repair enzymes to locate damage. We hypothesize that the interplay of supercoiling and local defects plays an important role for a wider set of DNA damage repair systems.
Collapse
Affiliation(s)
- Wilber Lim
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Ferdinando Randisi
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- FabricNano Limited, 192 Drummond St, London NW1 3HP, UK
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
92
|
Wong CK, Tang C, Schreck JS, Doye JPK. Characterizing the free-energy landscapes of DNA origamis. NANOSCALE 2022; 14:2638-2648. [PMID: 35129570 DOI: 10.1039/d1nr05716b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We show how coarse-grained modelling combined with umbrella sampling using distance-based order parameters can be applied to compute the free-energy landscapes associated with mechanical deformations of large DNA nanostructures. We illustrate this approach for the strong bending of DNA nanotubes and the potentially bistable landscape of twisted DNA origami sheets. The homogeneous bending of the DNA nanotubes is well described by the worm-like chain model; for more extreme bending the nanotubes reversibly buckle with the bending deformations localized at one or two "kinks". For a twisted one-layer DNA origami, the twist is coupled to the bending of the sheet giving rise to a free-energy landscape that has two nearly-degenerate minima that have opposite curvatures. By contrast, for a two-layer origami, the increased stiffness with respect to bending leads to a landscape with a single free-energy minimum that has a saddle-like geometry. The ability to compute such landscapes is likely to be particularly useful for DNA mechanotechnology and for understanding stress accumulation during the self-assembly of origamis into higher-order structures.
Collapse
Affiliation(s)
- Chak Kui Wong
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Chuyan Tang
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - John S Schreck
- National Center for Atmospheric Research, Computational and Information Systems Laboratory, 850 Table Mesa Drive, Boulder, CO 80305, USA
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
93
|
Choudhary A, Maffeo C, Aksimentiev A. Multi-resolution simulation of DNA transport through large synthetic nanostructures. Phys Chem Chem Phys 2022; 24:2706-2716. [PMID: 35050282 PMCID: PMC8855663 DOI: 10.1039/d1cp04589j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Modeling and simulation has become an invaluable partner in development of nanopore sensing systems. The key advantage of the nanopore sensing method - the ability to rapidly detect individual biomolecules as a transient reduction of the ionic current flowing through the nanopore - is also its key deficiency, as the current signal itself rarely provides direct information about the chemical structure of the biomolecule. Complementing experimental calibration of the nanopore sensor readout, coarse-grained and all-atom molecular dynamics simulations have been used extensively to characterize the nanopore translocation process and to connect the microscopic events taking place inside the nanopore to the experimentally measured ionic current blockades. Traditional coarse-grained simulations, however, lack the precision needed to predict ionic current blockades with atomic resolution whereas traditional all-atom simulations are limited by the length and time scales amenable to the method. Here, we describe a multi-resolution framework for modeling electric field-driven passage of DNA molecules and nanostructures through to-scale models of synthetic nanopore systems. We illustrate the method by simulating translocation of double-stranded DNA through a solid-state nanopore and a micron-scale slit, capture and translocation of single-stranded DNA in a double nanopore system, and modeling ionic current readout from a DNA origami nanostructure passage through a nanocapillary. We expect our multi-resolution simulation framework to aid development of the nanopore field by providing accurate, to-scale modeling capability to research laboratories that do not have access to leadership supercomputer facilities.
Collapse
Affiliation(s)
- Adnan Choudhary
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
94
|
Adendorff MR, Tang GQ, Millar D, Bathe M, Bricker W. Computational investigation of the impact of core sequence on immobile DNA four-way junction structure and dynamics. Nucleic Acids Res 2022; 50:717-730. [PMID: 34935970 PMCID: PMC8789063 DOI: 10.1093/nar/gkab1246] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Immobile four-way junctions (4WJs) are core structural motifs employed in the design of programmed DNA assemblies. Understanding the impact of sequence on their equilibrium structure and flexibility is important to informing the design of complex DNA architectures. While core junction sequence is known to impact the preferences for the two possible isomeric states that junctions reside in, previous investigations have not quantified these preferences based on molecular-level interactions. Here, we use all-atom molecular dynamics simulations to investigate base-pair level structure and dynamics of four-way junctions, using the canonical Seeman J1 junction as a reference. Comparison of J1 with equivalent single-crossover topologies and isolated nicked duplexes reveal conformational impact of the double-crossover motif. We additionally contrast J1 with a second junction core sequence termed J24, with equal thermodynamic preference for each isomeric configuration. Analyses of the base-pair degrees of freedom for each system, free energy calculations, and reduced-coordinate sampling of the 4WJ isomers reveal the significant impact base sequence has on local structure, isomer bias, and global junction dynamics.
Collapse
Affiliation(s)
- Matthew R Adendorff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guo Qing Tang
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William P Bricker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
95
|
Poppleton E, Mallya A, Dey S, Joseph J, Šulc P. Nanobase.org: a repository for DNA and RNA nanostructures. Nucleic Acids Res 2022; 50:D246-D252. [PMID: 34747480 PMCID: PMC8728195 DOI: 10.1093/nar/gkab1000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
We introduce a new online database of nucleic acid nanostructures for the field of DNA and RNA nanotechnology. The database implements an upload interface, searching and database browsing. Each deposited nanostructures includes an image of the nanostructure, design file, an optional 3D view, and additional metadata such as experimental data, protocol or literature reference. The database accepts nanostructures in any preferred format used by the uploader for the nanostructure design. We further provide a set of conversion tools that encourage design file conversion into common formats (oxDNA and PDB) that can be used for setting up simulations, interactive editing or 3D visualization. The aim of the repository is to provide to the DNA/RNA nanotechnology community a resource for sharing their designs for further reuse in other systems and also to function as an archive of the designs that have been achieved in the field so far. Nanobase.org is available at https://nanobase.org/.
Collapse
Affiliation(s)
- Erik Poppleton
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
| | - Aatmik Mallya
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
| | - Swarup Dey
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
- Wyss Institute, Harvard University, Boston, MA 02115, USA
| | - Joel Joseph
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
| |
Collapse
|
96
|
Kuťák D, Poppleton E, Miao H, Šulc P, Barišić I. Unified Nanotechnology Format: One Way to Store Them All. Molecules 2021; 27:63. [PMID: 35011301 PMCID: PMC8746876 DOI: 10.3390/molecules27010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The domains of DNA and RNA nanotechnology are steadily gaining in popularity while proving their value with various successful results, including biosensing robots and drug delivery cages. Nowadays, the nanotechnology design pipeline usually relies on computer-based design (CAD) approaches to design and simulate the desired structure before the wet lab assembly. To aid with these tasks, various software tools exist and are often used in conjunction. However, their interoperability is hindered by a lack of a common file format that is fully descriptive of the many design paradigms. Therefore, in this paper, we propose a Unified Nanotechnology Format (UNF) designed specifically for the biomimetic nanotechnology field. UNF allows storage of both design and simulation data in a single file, including free-form and lattice-based DNA structures. By defining a logical and versatile format, we hope it will become a widely accepted and used file format for the nucleic acid nanotechnology community, facilitating the future work of researchers and software developers. Together with the format description and publicly available documentation, we provide a set of converters from existing file formats to simplify the transition. Finally, we present several use cases visualizing example structures stored in UNF, showcasing the various types of data UNF can handle.
Collapse
Affiliation(s)
- David Kuťák
- Business Unit Molecular Diagnostics, AIT Austrian Institute of Technology, 1210 Vienna, Austria
- Visualization Laboratory, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
| | - Erik Poppleton
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA; (E.P.); (P.Š.)
| | - Haichao Miao
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Petr Šulc
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA; (E.P.); (P.Š.)
| | - Ivan Barišić
- Business Unit Molecular Diagnostics, AIT Austrian Institute of Technology, 1210 Vienna, Austria
| |
Collapse
|
97
|
Su H, Brockman JM, Duan Y, Sen N, Chhabra H, Bazrafshan A, Blanchard AT, Meyer T, Andrews B, Doye JPK, Ke Y, Dyer RB, Salaita K. Massively Parallelized Molecular Force Manipulation with On-Demand Thermal and Optical Control. J Am Chem Soc 2021; 143:19466-19473. [PMID: 34762807 DOI: 10.1021/jacs.1c08796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In single-molecule force spectroscopy (SMFS), a tethered molecule is stretched using a specialized instrument to study how macromolecules extend under force. One problem in SMFS is the serial and slow nature of the measurements, performed one molecule at a time. To address this long-standing challenge, we report on the origami polymer force clamp (OPFC) which enables parallelized manipulation of the mechanical forces experienced by molecules without the need for dedicated SMFS instruments or surface tethering. The OPFC positions target molecules between a rigid nanoscale DNA origami beam and a responsive polymer particle that shrinks on demand. As a proof-of-concept, we record the steady state and time-resolved mechanical unfolding dynamics of DNA hairpins using the fluorescence signal from ensembles of molecules and confirm our conclusion using modeling.
Collapse
Affiliation(s)
- Hanquan Su
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joshua M Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Navoneel Sen
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Hemani Chhabra
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Alisina Bazrafshan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Travis Meyer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Brooke Andrews
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Yonggang Ke
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
98
|
Yoo J, Park S, Maffeo C, Ha T, Aksimentiev A. DNA sequence and methylation prescribe the inside-out conformational dynamics and bending energetics of DNA minicircles. Nucleic Acids Res 2021; 49:11459-11475. [PMID: 34718725 PMCID: PMC8599915 DOI: 10.1093/nar/gkab967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic genome and methylome encode DNA fragments' propensity to form nucleosome particles. Although the mechanical properties of DNA possibly orchestrate such encoding, the definite link between 'omics' and DNA energetics has remained elusive. Here, we bridge the divide by examining the sequence-dependent energetics of highly bent DNA. Molecular dynamics simulations of 42 intact DNA minicircles reveal that each DNA minicircle undergoes inside-out conformational transitions with the most likely configuration uniquely prescribed by the nucleotide sequence and methylation of DNA. The minicircles' local geometry consists of straight segments connected by sharp bends compressing the DNA's inward-facing major groove. Such an uneven distribution of the bending stress favors minimum free energy configurations that avoid stiff base pair sequences at inward-facing major grooves. Analysis of the minicircles' inside-out free energy landscapes yields a discrete worm-like chain model of bent DNA energetics that accurately account for its nucleotide sequence and methylation. Experimentally measuring the dependence of the DNA looping time on the DNA sequence validates the model. When applied to a nucleosome-like DNA configuration, the model quantitatively reproduces yeast and human genomes' nucleosome occupancy. Further analyses of the genome-wide chromatin structure data suggest that DNA bending energetics is a fundamental determinant of genome architecture.
Collapse
Affiliation(s)
- Jejoong Yoo
- Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangwoo Park
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Christopher Maffeo
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD 21218, USA
| | - Aleksei Aksimentiev
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
99
|
Yang Y, Lu Q, Huang C, Qian H, Zhang Y, Deshpande S, Arya G, Ke Y, Zauscher S. Programmable Site‐Specific Functionalization of DNA Origami with Polynucleotide Brushes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yunqi Yang
- Department of Mechanical Engineering and Materials Science Duke University Durham NC 27708 USA
| | - Qinyi Lu
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Chao‐Min Huang
- Department of Mechanical Engineering and Materials Science Duke University Durham NC 27708 USA
| | - Hongji Qian
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Yunlong Zhang
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Sonal Deshpande
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science Duke University Durham NC 27708 USA
| | - Yonggang Ke
- Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science Duke University Durham NC 27708 USA
| |
Collapse
|
100
|
KOH HEEYUEN, LEE JAEGYUNG, LEE JAEYOUNG, KIM RYAN, TABATA OSAMU, JIN-WOO KIM, KIM DONYUN. Design Approaches and Computational Tools for DNA Nanostructures. IEEE OPEN JOURNAL OF NANOTECHNOLOGY 2021; 2:86-100. [PMID: 35756857 PMCID: PMC9232119 DOI: 10.1109/ojnano.2021.3119913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Designing a structure in nanoscale with desired shape and properties has been enabled by structural DNA nanotechnology. Design strategies in this research field have evolved to interpret various aspects of increasingly more complex nanoscale assembly and to realize molecular-level functionality by exploring static to dynamic characteristics of the target structure. Computational tools have naturally been of significant interest as they are essential to achieve a fine control over both shape and physicochemical properties of the structure. Here, we review the basic design principles of structural DNA nanotechnology together with its computational analysis and design tools.
Collapse
Affiliation(s)
- HEEYUEN KOH
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - JAE GYUNG LEE
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - JAE YOUNG LEE
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - RYAN KIM
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Bio/Nano Technology Group, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701 USA
| | - OSAMU TABATA
- Faculty of Engineering, Kyoto University of Advanced Science, Kyoto 621-8555, Japan
| | - KIM JIN-WOO
- Bio/Nano Technology Group, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701 USA
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701 USA
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR 72701 USA
| | - DO-NYUN KIM
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|