51
|
Delbary-Gossart S, Lee S, Baroni M, Lamarche I, Arnone M, Canolle B, Lin A, Sacramento J, Salegio EA, Castel MN, Delesque-Touchard N, Alam A, Laboudie P, Ferzaz B, Savi P, Herbert JM, Manley GT, Ferguson AR, Bresnahan JC, Bono F, Beattie MS. A novel inhibitor of p75-neurotrophin receptor improves functional outcomes in two models of traumatic brain injury. Brain 2016; 139:1762-82. [PMID: 27084575 PMCID: PMC4892754 DOI: 10.1093/brain/aww074] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/20/2016] [Indexed: 11/14/2022] Open
Abstract
The p75 neurotrophin receptor is important in multiple physiological actions including neuronal survival and neurite outgrowth during development, and after central nervous system injury. We have discovered a novel piperazine-derived compound, EVT901, which interferes with p75 neurotrophin receptor oligomerization through direct interaction with the first cysteine-rich domain of the extracellular region. Using ligand binding assays with cysteine-rich domains-fused p75 neurotrophin receptor, we confirmed that EVT901 interferes with oligomerization of full-length p75 neurotrophin receptor in a dose-dependent manner. Here we report that EVT901 reduces binding of pro-nerve growth factor to p75 neurotrophin receptor, blocks pro-nerve growth factor induced apoptosis in cells expressing p75 neurotrophin receptor, and enhances neurite outgrowth in vitro. Furthermore, we demonstrate that EVT901 abrogates p75 neurotrophin receptor signalling by other ligands, such as prion peptide and amyloid-β. To test the efficacy of EVT901 in vivo, we evaluated the outcome in two models of traumatic brain injury. We generated controlled cortical impacts in adult rats. Using unbiased stereological analysis, we found that EVT901 delivered intravenously daily for 1 week after injury, reduced lesion size, protected cortical neurons and oligodendrocytes, and had a positive effect on neurological function. After lateral fluid percussion injury in adult rats, oral treatment with EVT901 reduced neuronal death in the hippocampus and thalamus, reduced long-term cognitive deficits, and reduced the occurrence of post-traumatic seizure activity. Together, these studies provide a new reagent for altering p75 neurotrophin receptor actions after injury and suggest that EVT901 may be useful in treatment of central nervous system trauma and other neurological disorders where p75 neurotrophin receptor signalling is affected.
Collapse
Affiliation(s)
| | - Sangmi Lee
- 2 Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Marco Baroni
- 3 Sanofi Research, Exploratory Unit, Via Gaetano Sbodio 2, 20134 Milano, Italy
| | - Isabelle Lamarche
- 4 From Sanofi Research, Early to Candidate, 195 route d'Espagne, 31036 Toulouse cedex, France
| | - Michele Arnone
- 4 From Sanofi Research, Early to Candidate, 195 route d'Espagne, 31036 Toulouse cedex, France
| | - Benoit Canolle
- 4 From Sanofi Research, Early to Candidate, 195 route d'Espagne, 31036 Toulouse cedex, France
| | - Amity Lin
- 2 Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Jeffrey Sacramento
- 2 Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Ernesto A Salegio
- 2 Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Marie-Noelle Castel
- 4 From Sanofi Research, Early to Candidate, 195 route d'Espagne, 31036 Toulouse cedex, France
| | | | - Antoine Alam
- 4 From Sanofi Research, Early to Candidate, 195 route d'Espagne, 31036 Toulouse cedex, France
| | - Patricia Laboudie
- 4 From Sanofi Research, Early to Candidate, 195 route d'Espagne, 31036 Toulouse cedex, France
| | - Badia Ferzaz
- 4 From Sanofi Research, Early to Candidate, 195 route d'Espagne, 31036 Toulouse cedex, France
| | - Pierre Savi
- 4 From Sanofi Research, Early to Candidate, 195 route d'Espagne, 31036 Toulouse cedex, France
| | - Jean-Marc Herbert
- 4 From Sanofi Research, Early to Candidate, 195 route d'Espagne, 31036 Toulouse cedex, France
| | - Geoffrey T Manley
- 2 Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Adam R Ferguson
- 2 Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Jacqueline C Bresnahan
- 2 Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Françoise Bono
- 1 Evotec, 195 route d'Espagne, 31036 Toulouse cedex, France
| | - Michael S Beattie
- 2 Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA
| |
Collapse
|
52
|
Progesterone in the treatment of neonatal arterial ischemic stroke and acute seizures: Role of BDNF/TrkB signaling. Neuropharmacology 2016; 107:317-328. [PMID: 27039043 DOI: 10.1016/j.neuropharm.2016.03.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023]
Abstract
Neonatal stroke is among the top ten causes of childhood death and permanent disability in survivors, but no safe and effective acute treatments exist. To advance understanding of its neuroprotective mechanisms, we examined the effects of progesterone (PROG) on local and systemic inflammation (IL-1β, IL-6, TNFα), brain derived neurotrophic factor/Tropomyosin receptor kinase B (BDNF/TrkB) signaling, vascular damage (vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9)), acute behavioral seizures and brain infarction size following neonatal arterial ischemic stroke in mice. CD1 mouse pups (postnatal day 12, mixed gender) received permanent unilateral right common carotid ligation (pUCCL) or sham surgery. Pups showing seizure activity during the first hour post-pUCCL were randomly assigned to receive PROG (8 mg/kg) or vehicle injections. PROG treatment significantly (p < 0.05) reduced seizure occurrence by ∼44% compared to vehicle and attenuated the expression of pro-inflammatory cytokines in serum and brain at different time-points. PROG differentially regulated the expression of BDNF and TrkB and the activity of VEGF and MMP-9 over the 7d period. Permanent UCCL resulted in severe hemispheric damage measured at 7 days post-pUCCL but PROG treatment produced a significant (p < 0.05) reduction in infarct volume (∼70%) compared to vehicle. A gender-based comparison of data revealed significantly greater seizure activity in males compared to females. However, we did not observe significant sex differences on any other markers of the injury at this early stage of development. PROG treatment is neuroprotective through a number of signaling pathways and can be beneficial in treating neonatal arterial ischemic stroke in CD1 mice.
Collapse
|
53
|
Gaub P, de Léon A, Gibon J, Soubannier V, Dorval G, Séguéla P, Barker PA. HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology. PLoS One 2016; 11:e0150601. [PMID: 26950209 PMCID: PMC4780767 DOI: 10.1371/journal.pone.0150601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 02/17/2016] [Indexed: 01/12/2023] Open
Abstract
Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease.
Collapse
Affiliation(s)
- Perrine Gaub
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Andrès de Léon
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Julien Gibon
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Vincent Soubannier
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Geneviève Dorval
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Philippe Séguéla
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Philip A. Barker
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H3A 2B4, Canada
- * E-mail:
| |
Collapse
|
54
|
Gürgör P, Pallesen LT, Johnsen L, Ulrichsen M, de Jong IEM, Vaegter CB. Neuronal death in the dorsal root ganglion after sciatic nerve injury does not depend on sortilin. Neuroscience 2016; 319:1-8. [PMID: 26812033 DOI: 10.1016/j.neuroscience.2016.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 01/20/2023]
Abstract
Injury to the sciatic nerve induces loss of sensory neurons in the affected dorsal root ganglia (DRGs). Previous studies have suggested the involvement of the neurotrophin receptors p75 neurotrophin receptor (p75(NTR)) and sortilin, proposing that sensory neuron subpopulations undergo proneurotrophin-induced apoptosis in a similar manner to what can be observed in the CNS following injury. To further investigate this hypothesis we induced sciatic nerve injury in sortilin-deficient mice, thereby preventing apoptotic signaling of proneurotrophins via the sortilin-p75(NTR) receptor complex. Using an unbiased stereological approach we found that loss of sortilin did not prevent the injury-induced loss of DRG neurons. This result demonstrates that previous findings linking p75(NTR) and proneurotrophins to loss of sensory neurons need to involve sortilin-independent pathways and suggests that proneurotrophins may elicit different functions in the CNS and PNS.
Collapse
Affiliation(s)
- P Gürgör
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - L T Pallesen
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - L Johnsen
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - M Ulrichsen
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark
| | - I E M de Jong
- H. Lundbeck A/S, Division of Neurodegeneration, Ottiliavej 9, Valby DK-2500, Denmark
| | - C B Vaegter
- The Lundbeck Foundation Research Center Mind, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus DK-8000, Denmark.
| |
Collapse
|
55
|
Wilson CM, Naves T, Al Akhrass H, Vincent F, Melloni B, Bonnaud F, Lalloué F, Jauberteau MO. A new role under sortilin's belt in cancer. Commun Integr Biol 2016; 9:e1130192. [PMID: 27066187 PMCID: PMC4802778 DOI: 10.1080/19420889.2015.1130192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022] Open
Abstract
The neurotensin receptor-3 also known as sortilin was the first member of the small family of vacuolar protein sorting 10 protein domain (Vps10p) discovered two decades ago in the human brain. The expression of sortilin is not confined to the nervous system but sortilin is ubiquitously expressed in many tissues. Sortilin has multiple roles in the cell as a receptor or a co-receptor, in protein transport of many interacting partners to the plasma membrane, to the endocytic pathway and to the lysosomes for protein degradation. Sortilin could be considered as the cells own shuttle system. In many human diseases including neurological diseases and cancer, sortilin expression has been shown to be deregulated. In addition, some studies have highlighted that the extracellular domain of sortilin is shedded into the culture media by an unknown mechanism. Sortilin can be released in exosomes and appears to control some mechanisms of exosome biogenesis. In lung cancer cells, sortilin can associate with two receptor tyrosine kinase receptors called the TES complex found in exosomes. Exosomes carrying the TES complex can convey a microenvironment control through the activation of ErbB signaling pathways and the release of angiogenic factors. Deregulation of sortilin function is now emerging to be implicated in four major human diseases- cardiovascular disease, Type 2 diabetes mellitus, Alzheimer disease and cancer.
Collapse
Affiliation(s)
- Cornelia M Wilson
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges, Limoges, France; University of Liverpool, Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, Liverpool, UK
| | - Thomas Naves
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges , Limoges, France
| | - Hussein Al Akhrass
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges , Limoges, France
| | - François Vincent
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges, Limoges, France; Service de Pathologie Respiratoire, Center Hospitalier et Universitaire de Limoges, Limoges, France
| | - Boris Melloni
- Service de Pathologie Respiratoire, Center Hospitalier et Universitaire de Limoges , Limoges, France
| | - François Bonnaud
- Service de Pathologie Respiratoire, Center Hospitalier et Universitaire de Limoges , Limoges, France
| | - Fabrice Lalloué
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges , Limoges, France
| | - Marie-Odile Jauberteau
- EA3842 Homéostasie cellulaire et pathologies and Chaire de Pneumologie Expérimentale, Faculté de Médecine, Université de Limoges , Limoges, France
| |
Collapse
|
56
|
Skeldal S, Kjaergaard MM, Alwasel S, Nyengaard JR. Establishing a cellular FRET-based fluorescence plate reader assay to monitor proNGF-induced cross-linking of sortilin and the neurotrophin receptor p75(NTR). INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 6:17-25. [PMID: 26823987 PMCID: PMC4700122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/06/2015] [Indexed: 06/05/2023]
Abstract
Whereas the proform of the nerve growth factor (proNGF) is crucial for eliminating superfluous cells during neuronal development it also promotes apoptosis following brain trauma and neuronal injury. The apoptotic signal is elicited upon formation of a trimeric receptor complex also containing the vps10p domain receptor sortilin and the neurotrophin receptor p75(NTR). However, proNGF-induced receptor complex formation has been difficult to directly assess other than by western blotting. We here describe a fluorescence resonance energy transfer (FRET) based fluorescence plate reader assay to monitor the interaction between fluorescently tagged sortilin and p75(NTR) in live cells. The method is based on a standard fluorescent plate reader found in many biochemical laboratories and the results are evaluated using a microscopy-based quantified sensitized acceptor emission FRET approach making use of a pair of FRET standard constructs. As a result, the effect of proNGF on the interaction between sortilin and p75(NTR) can be evaluated in live cells allowing for screening and selection of therapeutic compounds interfering with proNGF-induced cell death.
Collapse
Affiliation(s)
- Sune Skeldal
- The Lundbeck Foundation Research Center MIND, Aarhus University8000 Aarhus C, Denmark
- Stereology and Electron Microscopy Laboratory & Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University8000 Aarhus C, Denmark
- Department of Biomedicine, Aarhus University8000 Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University8000 Aarhus C, Denmark
| | - Maj M Kjaergaard
- The Lundbeck Foundation Research Center MIND, Aarhus University8000 Aarhus C, Denmark
- Stereology and Electron Microscopy Laboratory & Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University8000 Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University8000 Aarhus C, Denmark
| | - Saleh Alwasel
- Fetal Programming of Disease Research Chair, Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Jens R Nyengaard
- The Lundbeck Foundation Research Center MIND, Aarhus University8000 Aarhus C, Denmark
- Stereology and Electron Microscopy Laboratory & Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University8000 Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University8000 Aarhus C, Denmark
| |
Collapse
|
57
|
Alder J, Fujioka W, Giarratana A, Wissocki J, Thakkar K, Vuong P, Patel B, Chakraborty T, Elsabeh R, Parikh A, Girn HS, Crockett D, Thakker-Varia S. Genetic and pharmacological intervention of the p75NTR pathway alters morphological and behavioural recovery following traumatic brain injury in mice. Brain Inj 2015; 30:48-65. [PMID: 26579945 DOI: 10.3109/02699052.2015.1088963] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PRIMARY OBJECTIVE Neurotrophin levels are elevated after TBI, yet there is minimal regeneration. It was hypothesized that the pro-neurotrophin/p75NTR pathway is induced more than the mature neurotrophin/Trk pathway and that interfering with p75 signalling improves recovery following TBI. RESEARCH DESIGN Lateral Fluid Percussion (LFP) injury was performed on wildtype and p75 mutant mice. In addition, TrkB agonist 7,8 Dihydroxyflavone or p75 antagonist TAT-Pep5 were tested. Western blot and immunohistochemistry revealed biochemical and cellular changes. Morris Water Maze and Rotarod tests demonstrated cognitive and vestibulomotor function. MAIN OUTCOMES AND RESULTS p75 was up-regulated and TrkB was down-regulated 1 day post-LFP. p75 mutant mice as well as mice treated with the p75 antagonist or the TrkB agonist exhibited reduced neuronal death and degeneration and less astrocytosis. The cells undergoing apoptosis appear to be neurons rather than glia. There was improved motor function and spatial learning in p75 mutant mice and mice treated with the p75 antagonist. CONCLUSIONS Many of the pathological and behavioural consequences of TBI might be due to activation of the pro-neurotrophin/p75 toxic pathway overriding the protective mechanisms of the mature neurotrophin/Trk pathway. Targeting p75 can be a novel strategy to counteract the damaging effects of TBI.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Astrocytes/metabolism
- Astrocytes/pathology
- Brain Injuries, Traumatic/drug therapy
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/metabolism
- Brain-Derived Neurotrophic Factor/metabolism
- Cognition/physiology
- Flavones/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Nerve Growth Factors/metabolism
- Receptor, trkB/agonists
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptors, Nerve Growth Factor/antagonists & inhibitors
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Sensory Receptor Cells/metabolism
- Sensory Receptor Cells/pathology
Collapse
Affiliation(s)
- Janet Alder
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Wendy Fujioka
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Anna Giarratana
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Jenna Wissocki
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Keya Thakkar
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Phung Vuong
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Bijal Patel
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | | | - Rami Elsabeh
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Ankit Parikh
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Hartaj S Girn
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - David Crockett
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | | |
Collapse
|
58
|
Sebastiani A, Gölz C, Werner C, Schäfer MKE, Engelhard K, Thal SC. Proneurotrophin Binding to P75 Neurotrophin Receptor (P75ntr) Is Essential for Brain Lesion Formation and Functional Impairment after Experimental Traumatic Brain Injury. J Neurotrauma 2015; 32:1599-607. [PMID: 25879397 DOI: 10.1089/neu.2014.3751] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) initiates an excessive mediator release of e.g. neurotrophins, which promote neuronal survival, differentiation, and modulate synaptic plasticity. Paradoxically, mature forms of neurotrophins promote neuronal survival, whereas unprocessed forms of neurotrophins induce cell death through p75 neurotrophin receptor (p75NTR) signaling. p75NTR is widely expressed during synaptogenesis and is subsequently downregulated in adulthood. Repair mechanisms after acute cerebral insults can reactivate its expression. Therefore, the influence of p75NTR on secondary brain damage was addressed. mRNA levels of p75NTR and its ligands were quantified in brain tissue up to 7 days after experimental TBI (controlled cortical impact; CCI). Brain damage, motor function and inflammatory marker gene expression were determined in mice lacking the proneurotrophin-binding site of the p75NTR protein (NGFR(-/-)) and wild type littermates (NGFR(+/+)) 24 h and 5 days after CCI. In addition, the effect of TAT-Pep5 (pharmacological inhibitor of the intracellular p75NTR death domain) on lesion volume was evaluated 24 h after insult. p75NTR mRNA levels were induced nine-fold by TBI. In NGFR(-/-) mice, lesion volume was reduced by 29% at 24 h and by 21% 5 days after CCI. Motor coordination was significantly improved 24 h after trauma compared with the wild type. Pharmacological inhibition of the p75NTR signaling reduced lesion volume by 18%. The present study presents first time evidence that genetic mutation of the neurotrophin interaction site of p75NTR strongly limits post-traumatic cell death. In addition, we revealed pharmacological targeting of the intracellular p75NTR cell death domain as a promising approach to limit acute brain damage.
Collapse
Affiliation(s)
- Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| | - Christian Werner
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| |
Collapse
|
59
|
Tomellini E, Touil Y, Lagadec C, Julien S, Ostyn P, Ziental-Gelus N, Meignan S, Lengrand J, Adriaenssens E, Polakowska R, Le Bourhis X. Nerve growth factor and proNGF simultaneously promote symmetric self-renewal, quiescence, and epithelial to mesenchymal transition to enlarge the breast cancer stem cell compartment. Stem Cells 2015; 33:342-53. [PMID: 25286822 DOI: 10.1002/stem.1849] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022]
Abstract
The discovery of cancer stem cells (CSCs) fundamentally advanced our understanding of the mechanisms governing breast cancer development. However, the stimuli that control breast CSC self-renewal and differentiation have still not been fully detailed. We previously showed that nerve growth factor (NGF) and its precursor proNGF can stimulate breast cancer cell growth and invasion in an autocrine manner. In this study, we investigated the effects of NGF and proNGF on the breast CSC compartment and found that NGF or proNGF enrich for CSCs in several breast cancer cell lines. This enrichment appeared to be achieved by increasing the number of symmetric divisions of quiescent/slow-proliferating CSCs. Interestingly, in vitro NGF pretreatment of MCF-7 luminal breast cancer cells promoted epithelial to mesenchymal transition in tumors of severe combined immunodeficient mice. Furthermore, p75(NTR), the common receptor for both neurotrophins and proneurotrophins, mediated breast CSC self-renewal by regulating the expression of pluripotency transcription factors. Our data indicate, for the first time, that the NGF/proNGF/p75(NTR) axis plays a critical role in regulating breast CSC self-renewal and plasticity.
Collapse
Affiliation(s)
- Elisa Tomellini
- Inserm U908, Villeneuve d'Ascq, France; Université Lille 1, Villeneuve d'Ascq, France; Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Safina DR, Surin AM, Pinelis VG, Kostrov SV. Effect of neurotrophin-3 precursor on glutamate-induced calcium homeostasis deregulation in rat cerebellum granule cells. J Neurosci Res 2015; 93:1865-73. [DOI: 10.1002/jnr.23667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Dina R. Safina
- Laboratory of Protein Engineering; Institute of Molecular Genetics, Russian Academy of Sciences; Moscow Russia
| | - Alexander M. Surin
- Laboratory of Ionic Transport and Intracellular Signaling Pathology; Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences; Moscow Russia
- Laboratory of Molecular; Genetic, and Cell Biology, Scientific Center for Children's Health, Russian Academy of Medical Sciences; Moscow Russia
- Laboratory of Electrophysiology; Pirogov Russian National Research Medical University; Moscow Russia
| | - Vsevolod G. Pinelis
- Laboratory of Molecular; Genetic, and Cell Biology, Scientific Center for Children's Health, Russian Academy of Medical Sciences; Moscow Russia
| | - Sergey V. Kostrov
- Laboratory of Protein Engineering; Institute of Molecular Genetics, Russian Academy of Sciences; Moscow Russia
- Centre for Convergence of Nano-, Bio-, Information, and Cognitive Sciences and Technologies, National Research Centre “Kurchatov Institute,”; Moscow Russia
| |
Collapse
|
61
|
Sánchez E, Bergareche A, Krebs CE, Gorostidi A, Makarov V, Ruiz-Martinez J, Chorny A, Lopez de Munain A, Marti-Masso JF, Paisán-Ruiz C. SORT1 Mutation Resulting in Sortilin Deficiency and p75(NTR) Upregulation in a Family With Essential Tremor. ASN Neuro 2015; 7:7/4/1759091415598290. [PMID: 26297037 PMCID: PMC4550298 DOI: 10.1177/1759091415598290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
*These authors contributed equally to this work. Essential tremor (ET) is the most prevalent movement disorder affecting millions of people in the United States. Although a positive family history is one of the most important risk factors for ET, the genetic causes of ET remain unknown. In this study, whole exome sequencing and subsequent approaches were performed in a family with an autosomal dominant form of early-onset ET. Functional analyses including mutagenesis, cell culture, gene expression, enzyme-linked immunosorbent, and apoptosis assays were also performed. A disease-segregating mutation (p.Gly171Ala), absent in normal population, was identified in the SORT1 gene. The p.Gly171Ala mutation was shown not only to impair the expression of its encoding protein sortilin but also the mRNA levels of its binding partner p75 neurotrophin receptor that is known to be implicated in brain injury, neuronal apoptosis, and neurotransmission.
Collapse
Affiliation(s)
- Elena Sánchez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alberto Bergareche
- Biodonostia Research Institute, University of the Basque Country, San Sebastián, Gipuzkoa, Spain Department of Neurology, Hospital Universitario Donostia, San Sebastián, Guipuzcoa, Spain Centro de investigación biomédica en Red para enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Catharine E Krebs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Gorostidi
- Biodonostia Research Institute, University of the Basque Country, San Sebastián, Gipuzkoa, Spain Department of Neurology, Hospital Universitario Donostia, San Sebastián, Guipuzcoa, Spain Centro de investigación biomédica en Red para enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Javier Ruiz-Martinez
- Biodonostia Research Institute, University of the Basque Country, San Sebastián, Gipuzkoa, Spain Department of Neurology, Hospital Universitario Donostia, San Sebastián, Guipuzcoa, Spain Centro de investigación biomédica en Red para enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejo Chorny
- Department of Medicine, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Lopez de Munain
- Biodonostia Research Institute, University of the Basque Country, San Sebastián, Gipuzkoa, Spain Department of Neurology, Hospital Universitario Donostia, San Sebastián, Guipuzcoa, Spain Centro de investigación biomédica en Red para enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Department of Neurosciences, University of the Basque Country, San Sebastián, Guipuzcoa, Spain
| | - Jose Felix Marti-Masso
- Biodonostia Research Institute, University of the Basque Country, San Sebastián, Gipuzkoa, Spain Department of Neurology, Hospital Universitario Donostia, San Sebastián, Guipuzcoa, Spain Centro de investigación biomédica en Red para enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Department of Neurosciences, University of the Basque Country, San Sebastián, Guipuzcoa, Spain
| | - Coro Paisán-Ruiz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Departments of Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA Friedman Brain and Mindich Child Health and Development Institutes, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
62
|
Wu YW, Hao T, Kou XX, Gan YH, Ma XC. Synovial TRPV1 is upregulated by 17-β-estradiol and involved in allodynia of inflamed temporomandibular joints in female rats. Arch Oral Biol 2015; 60:1310-8. [PMID: 26117090 DOI: 10.1016/j.archoralbio.2015.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/09/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022]
Abstract
Women with reproductive capability are more likely to suffer from temporomandibular disorders (TMD), with orofacial pain as the most common complaint. In the past, we focused on the role of estradiol in TMD pain through the nervous system. In this study, we explored estradiol's influence on synoviocyte gene expressions involved in the allodynia of the inflamed TMJ. The influence of 17-β-estradiol on NGF and TRPV1 expression in TMJ synovium was determined in vivo and in vitro and analyzed by Western blot and real-time PCR. Complete Freund's adjuvant (CFA) injection into the TMJ was used to induce TMJ arthritis. Capsazepine served as a TRPV1 antagonist. Head withdrawal threshold was examined using a von Frey Anesthesiometer. We observed that estradiol upregulated the expressions of TRPV1 and NGF in a dose-dependent manner. In the primary cultured synoviocytes, TRPV1 was upregulated by lipopolysaccharide (LPS), estradiol, and NGF, while NGF antibodies fully blocked LPS and estradiol-induced upregulation of TRPV1. Activation of TRPV1 in the primary synoviocytes with capsaicin, a TRPV1 agonist, dose-dependently enhanced COX-2 transcription. Moreover, intra-TMJ injection of TRPV1 antagonist, capsazepine, significantly attenuated allodynia of the inflamed TMJ induced by intra-TMJ injection of CFA in female rats. This article presents a possible local mechanism for estradiol that may be involved in TMJ inflammation or pain in the synovial membrane through the pain-related gene TRPV1. This finding could potentially help clinicians understand the sexual dimorphism of TMD pain.
Collapse
Affiliation(s)
- Yu-Wei Wu
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China.
| | - Ting Hao
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China
| | - Xiao-Xing Kou
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China
| | - Ye-Hua Gan
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China.
| | - Xu-Chen Ma
- Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China.
| |
Collapse
|
63
|
Abstract
To characterize the role of neurotrophin receptors on macrophages, we investigated the ability of nerve growth factor (NGF) and its precursor, proNGF, to regulate human macrophage phenotype. The p75 neurotrophin receptor (p75(NTR)) and TrkA were concentrated within overlapping domains on membrane ruffles. NGF stimulation of macrophages increased membrane ruffling, calcium spiking, phagocytosis and growth factor secretion. In contrast, proNGF induced podosome formation, increased migration, suppressed calcium spikes and increased neurotoxin secretion. These results demonstrate opposing roles of NGF and proNGF in macrophage regulation providing new avenues for pharmacological intervention during neuroinflammation.
Collapse
|
64
|
Imbalance of the nerve growth factor and its precursor as a potential biomarker for diabetic retinopathy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:571456. [PMID: 25853140 PMCID: PMC4380101 DOI: 10.1155/2015/571456] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 02/07/2023]
Abstract
Our previous studies have demonstrated that diabetes-induced oxidative stress alters homeostasis of retinal nerve growth factor (NGF) resulting in accumulation of its precursor, proNGF, at the expense of NGF which plays a critical role in preserving neuronal and retinal function. This imbalance coincided with retinal damage in experimental diabetes. Here we test the hypothesis that alteration of proNGF and NGF levels observed in retina and vitreous will be mirrored in serum of diabetic patients. Blood and vitreous samples were collected from patients (diabetic and nondiabetic) undergoing vitrectomy at Georgia Regents University under approved IRB. Levels of proNGF, NGF, and p75NTR shedding were detected using Western blot analysis. MMP-7 activity was also assayed. Diabetes-induced proNGF expression and impaired NGF expression were observed in vitreous and serum. Vitreous and sera from diabetic patients (n = 11) showed significant 40.8-fold and 3.6-fold increases, respectively, compared to nondiabetics (n = 9). In contrast, vitreous and sera from diabetic patients showed significant 44% and 64% reductions in NGF levels, respectively, compared to nondiabetics. ProNGF to NGF ratios showed significant correlation between vitreous and serum. Further characterization of diabetes-induced imbalance in the proNGF to NGF ratio will facilitate its utility as an early biomarker for diabetic complications.
Collapse
|
65
|
Wang T, Liu Y, Yang N, Ji C, Chan P, Zuo P. Anti-parkinsonian effects of octacosanol in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-treated mice. Neural Regen Res 2015; 7:1080-7. [PMID: 25722698 PMCID: PMC4340021 DOI: 10.3969/j.issn.1673-5374.2012.14.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 12/30/2022] Open
Abstract
Our previous research showed that octacosanol exerted its protective effects in 6-hydroxydopamine-induced Parkinsonian rats. The goal of this study was to investigate whether octacosanol would attenuate neurotoxicity in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-treated C57BL/6N mice and its potential mechanism. Behavioral tests, tyrosine hydroxylase immunohistochemistry and western blot were used to investigate the effects of octacosanol in a mouse model of Parkinson's disease. Oral administration of octacosanol (100 mg/kg) significantly improved behavioral impairments in mice treated by MPTP and markedly ameliorated morphological appearances of tyrosine hydroxylase-positive neuronal cells in the substantia nigra. Furthermore, octacosanol blocked MPTP-induced phosphorylation of p38MAPK and JNK, but not ERK1/2. These findings implicated that the protective effects afforded by octacosanol might be mediated by blocking the phosphorylation of p38MAPK and JNK on the signal transduction in vivo. Considering its excellent tolerability, octacosanol might be considered as a candidate agent for clinical application in treating Parkinson's disease.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Chao Ji
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Piu Chan
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Pingping Zuo
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
66
|
VonDran MW, LaFrancois J, Padow VA, Friedman WJ, Scharfman HE, Milner TA, Hempstead BL. p75NTR, but not proNGF, is upregulated following status epilepticus in mice. ASN Neuro 2014; 6:6/5/1759091414552185. [PMID: 25290065 PMCID: PMC4187006 DOI: 10.1177/1759091414552185] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ProNGF and p75(NTR) are upregulated and induce cell death following status epilepticus (SE) in rats. However, less is known about the proneurotrophin response to SE in mice, a more genetically tractable species where mechanisms can be more readily dissected. We evaluated the temporal- and cell-specific induction of the proneurotrophins and their receptors, including p75(NTR), sortilin, and sorCS2, following mild SE induced with kainic acid (KA) or severe SE induced by pilocarpine. We found that mature NGF, p75(NTR), and proBDNF were upregulated following SE, while proNGF was not altered, indicating potential mechanistic differences between rats and mice. ProBDNF was localized to mossy fibers and microglia following SE. p75(NTR) was transiently induced primarily in axons and axon terminals following SE, as well as in neuron and astrocyte cell bodies. ProBDNF and p75(NTR) increased independently of cell death and their localization was different depending on the severity of SE. We also examined the expression of proneurotrophin co-receptors, sortilin and sorCS2. Following severe SE, sorCS2, but not sortilin, was elevated in neurons and astrocytes. These data indicate that important differences exist between rat and mouse in the proneurotrophin response following SE. Moreover, the proBDNF and p75(NTR) increase after seizures in the absence of significant cell death suggests that proneurotrophin signaling may play other roles following SE.
Collapse
Affiliation(s)
- Melissa W VonDran
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - John LaFrancois
- Center of Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Victoria A Padow
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers Life Sciences Center, Rutgers University, Newark, NJ, USA
| | - Helen E Scharfman
- Center of Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Teresa A Milner
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Barbara L Hempstead
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
67
|
Meeker R, Williams K. Dynamic nature of the p75 neurotrophin receptor in response to injury and disease. J Neuroimmune Pharmacol 2014; 9:615-28. [PMID: 25239528 DOI: 10.1007/s11481-014-9566-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 12/23/2022]
Abstract
Neurotrophins and their respective tropomyosin related kinase (Trk) receptors (TrkA, TrkB, and TrkC) and the p75 neurotrophin receptor (p75(NTR)) play a fundamental role in the development and maintenance of the nervous system making them important targets for treatment of neurodegenerative diseases. Whereas Trk receptors are directly activated by specific neurotrophins, the p75(NTR) is a multifunctional receptor that exerts its effects via heterodimeric interactions with TrkA, TrkB, TrkC, sortilin or the Nogo receptor to regulate a wide array of cellular functions. By partnering with different receptors the p75(NTR) regulates binding of mature versus pro-neurotrophins and activation of different signaling pathways with outcomes ranging from growth and survival to cell death. While the developmental downregulation of the p75(NTR) has raised questions regarding its role in the mature nervous system, recent data have revealed widespread expression of low levels, a role in synaptic plasticity and adult neurogenesis and upregulation in response to injury or disease. Studies are needed to better understand these processes, particularly in the damaged nervous system, but will be complicated by expression of p75(NTR) on immune cells including macrophages and microglia that are intimately involved in disease and repair processes. Recent approaches that regulate p75(NTR) function with small non-peptide ligands have demonstrated potent neuroprotection in models of injury and neurodegenerative diseases that highlight the importance of the p75(NTR) as a therapeutic target. Future studies hold the promise of revealing a wealth of information on the multifaceted actions of the p75(NTR) that will inform the design of new neurotrophin-based therapies.
Collapse
Affiliation(s)
- Rick Meeker
- Department of Neurology, University of North Carolina, CB #7025 6109F Neuroscience Research Building, 115 Mason Farm Road, Chapel Hill, NC, 27599, USA,
| | | |
Collapse
|
68
|
Shi J, Longo FM, Massa SM. A small molecule p75(NTR) ligand protects neurogenesis after traumatic brain injury. Stem Cells 2014; 31:2561-74. [PMID: 23940017 DOI: 10.1002/stem.1516] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/15/2013] [Indexed: 01/24/2023]
Abstract
The p75 neurotrophin receptor (p75(NTR)) influences the proliferation, survival, and differentiation of neuronal precursors and its expression is induced in injured brain, where it regulates cell survival. Here, we test the hypotheses that pharmacologic modulation of p75(NTR) signaling will promote neural progenitor survival and proliferation, and improve outcomes of traumatic brain injury (TBI). LM11A-31, an orally available, blood-brain barrier-permeant small-molecule p75(NTR) signaling modulator, significantly increased proliferation and survival, and decreased JNK phosphorylation, in hippocampal neural stem/progenitor cells in culture expressing wild-type p75(NTR), but had no effect on cells expressing a mutant neurotrophin-unresponsive form of the receptor. The compound also enhanced the production of mature neurons from adult hippocampal neural progenitors in vitro. In vivo, intranasal administration of LM11A-31 decreased postinjury hippocampal and cortical neuronal death, neural progenitor cell death, gliogenesis, and microglial activation, and enhanced long-term hippocampal neurogenesis and reversed spatial memory impairments. LM11A-31 diminished the postinjury increase of SOX2-expressing early progenitor cells, but protected and increased the proliferation of endogenous polysialylated-neural cell adhesion molecule positive intermediate progenitors, and restored the long-term production of mature granule neurons. These findings suggest that modulation of p75(NTR) actions using small molecules such as LM11A-31 may constitute a potent therapeutic strategy for TBI.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, Department of Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, California, USA
| | | | | |
Collapse
|
69
|
Kraemer BR, Snow JP, Vollbrecht P, Pathak A, Valentine WM, Deutch AY, Carter BD. A role for the p75 neurotrophin receptor in axonal degeneration and apoptosis induced by oxidative stress. J Biol Chem 2014; 289:21205-16. [PMID: 24939843 PMCID: PMC4118083 DOI: 10.1074/jbc.m114.563403] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/10/2014] [Indexed: 12/14/2022] Open
Abstract
The p75 neurotrophin receptor (p75(NTR)) mediates the death of specific populations of neurons during the development of the nervous system or after cellular injury. The receptor has also been implicated as a contributor to neurodegeneration caused by numerous pathological conditions. Because many of these conditions are associated with increases in reactive oxygen species, we investigated whether p75(NTR) has a role in neurodegeneration in response to oxidative stress. Here we demonstrate that p75(NTR) signaling is activated by 4-hydroxynonenal (HNE), a lipid peroxidation product generated naturally during oxidative stress. Exposure of sympathetic neurons to HNE resulted in neurite degeneration and apoptosis. However, these effects were reduced markedly in neurons from p75(NTR-/-) mice. The neurodegenerative effects of HNE were not associated with production of neurotrophins and were unaffected by pretreatment with a receptor-blocking antibody, suggesting that oxidative stress activates p75(NTR) via a ligand-independent mechanism. Previous studies have established that proteolysis of p75(NTR) by the metalloprotease TNFα-converting enzyme and γ-secretase is necessary for p75(NTR)-mediated apoptotic signaling. Exposure of sympathetic neurons to HNE resulted in metalloprotease- and γ-secretase-dependent cleavage of p75(NTR). Pharmacological blockade of p75(NTR) proteolysis protected sympathetic neurons from HNE-induced neurite degeneration and apoptosis, suggesting that cleavage of p75(NTR) is necessary for oxidant-induced neurodegeneration. In vivo, p75(NTR-/-) mice exhibited resistance to axonal degeneration associated with oxidative injury following administration of the neurotoxin 6-hydroxydopamine. Together, these data suggest a novel mechanism linking oxidative stress to ligand-independent cleavage of p75(NTR), resulting in axonal fragmentation and neuronal death.
Collapse
Affiliation(s)
| | | | | | | | - William M Valentine
- Pathology, Microbiology, and Immunology, the Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | | |
Collapse
|
70
|
Pimenta AC, Dourado DFAR, Martins JM, Melo A, Dias Soeiro Cordeiro MN, Almeida RD, Morra G, Moreira IS. Dynamic Structure of NGF and proNGF Complexed with p75NTR: Pro-Peptide Effect. J Chem Inf Model 2014; 54:2051-67. [DOI: 10.1021/ci500101n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A. C. Pimenta
- REQUIMTE
Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - D. F. A. R. Dourado
- Department
of Cell and Molecular Biology, Computational and Systems Biology, Uppsala Biomedicinska Centrum BMC, Box 596 751 24, Uppsala, Sweden
| | - J. M. Martins
- REQUIMTE
Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - A. Melo
- REQUIMTE
Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - M. N. Dias Soeiro Cordeiro
- REQUIMTE
Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - R. D. Almeida
- CNC-Center
for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - G. Morra
- Istituto di Chimica
del Riconoscimento Molecolare, CNR, 20131 Milano, Milano, Italy
| | - I. S. Moreira
- REQUIMTE
Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
71
|
Angelucci F, Gelfo F, Fiore M, Croce N, Mathé AA, Bernardini S, Caltagirone C. The effect of neuropeptide Y on cell survival and neurotrophin expression in in-vitro models of Alzheimer's disease. Can J Physiol Pharmacol 2014; 92:621-30. [PMID: 25026432 DOI: 10.1139/cjpp-2014-0099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a disorder characterized by the accumulation of abnormally folded protein fragments in neurons, i.e., β-amyloid (Aβ) and tau protein, leading to cell death. Several neuropeptides present in the central nervous system (CNS) are believed to be involved in the pathophysiology of AD. Among them, neuropeptide Y (NPY), a small peptide widely distributed throughout the brain, has generated interest because of its role in neuroprotection against excitotoxicity in animal models of AD. In addition, it has been shown that NPY modulates neurogenesis. Interestingly, these latter effects are similar to those elicited by neurotrophins, which are critical molecules for the function and survival of neurons that degenerate during the course of AD. In this review we summarize the evidence for the involvement of NPY and neurotrophins in AD pathogenesis, and the similarity between them in CNS neurons. Finally, we recapitulate our recent in-vitro evidence for the involvement of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the neuroprotective effect elicited by NPY in AD neuron-like models (neuroblastoma cells or primary cultures exposed to toxic concentrations of Aβ's pathogenic fragment 25-35), and propose a putative mechanism based on NPY-induced inhibition of voltage-dependent Ca(2+) influx in pre- and post-synaptic neurons.
Collapse
Affiliation(s)
- Francesco Angelucci
- a Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00142 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
72
|
Milanović D, Pešić V, Popić J, Tanić N, Kanazir S, Jevtović-Todorović V, Ruždijić S. Propofol anesthesia induces proapoptotic tumor necrosis factor-α and pro-nerve growth factor signaling and prosurvival Akt and XIAP expression in neonatal rat brain. J Neurosci Res 2014; 92:1362-73. [PMID: 24827783 DOI: 10.1002/jnr.23409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/27/2014] [Accepted: 04/08/2014] [Indexed: 11/12/2022]
Abstract
Previously we observed that prolonged exposure to propofol anesthesia causes caspase-3- and calpain-mediated neuronal death in the developing brain. The present study examines the effects of propofol anesthesia on the expression of tumor necrosis factor-α (TNFα), pro-nerve growth factor (NGF), and their receptors in the cortex and the thalamus. We also investigated how propofol influences the expression of Akt and X-linked inhibitor of apoptosis (XIAP) expression, proteins that promote prosurvival pathways. Seven-day-old rats (P7) were exposed to propofol anesthesia lasting 2, 4, or 6 hr and killed 0, 4, 16, or 24 hr after anesthesia termination. The relative levels of mRNA and protein expression were estimated by RT-PCR and Western blot analysis, respectively. The treatments caused marked activation of TNFα and its receptor TNFR-1 and pro-NGF and p75(NTR) receptor expression. In parallel with the induction of these prodeath signals, we established that propofol anesthesia promotes increased expression of the prosurvival molecules pAkt and XIAP during the 24-hr postanesthesia period. These results show that different brain structures respond to propofol anesthesia with a time- and duration of exposure-dependent increase in proapoptotic signaling and with concomitant increases in activities of prosurvival proteins. We hypothesized that the fine balance between these opposing processes sustains homeostasis in the immature rat brain and prevents unnecessary damage after exposure to an injurious stimulus. The existence of this highly regulated process provides a time frame for potential therapeutic intervention directed toward suppressing the deleterious component of propofol anesthesia.
Collapse
Affiliation(s)
- Desanka Milanović
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | | | | | | | | | | | | |
Collapse
|
73
|
Grabenstatter HL, Carlsen J, Raol YH, Yang T, Hund D, Cruz Del Angel Y, White AM, Gonzalez MI, Longo FM, Russek SJ, Brooks-Kayal AR. Acute administration of the small-molecule p75(NTR) ligand does not prevent hippocampal neuron loss or development of spontaneous seizures after pilocarpine-induced status epilepticus. J Neurosci Res 2014; 92:1307-18. [PMID: 24801281 DOI: 10.1002/jnr.23402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 02/02/2023]
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are initially expressed in a precursor form (e.g., pro-BDNF) and cleaved to form mature BDNF (mBDNF). After pilocarpine-induced status epilepticus (SE), increases in neurotrophins regulate a wide variety of cell-signaling pathways, including prosurvival and cell-death machinery in a receptor-specific manner. Pro-BDNF preferentially binds to the p75 neurotrophin receptor (p75(NTR) ), whereas mBDNF is the major ligand of the tropomyosin-related kinase receptor. To elucidate a potential role for p75(NTR) in acute stages of epileptogenesis, rats were injected prior to and at onset of SE with LM11A-31, a small-molecule ligand that binds to p75(NTR) to promote survival signaling and inhibit neuronal cell death. Modulation of early p75(NTR) signaling and its effects on electrographic SE, SE-induced neurodegeneration, and subsequent spontaneous seizures were examined after LM11A-31 administration. Despite an established neuroprotective effect of LM11A-31 in several animal models of neurodegenerative disorders (e.g., Alzheimer's disease, traumatic brain injury, and spinal cord injury), high-dose LM11A-31 administration prior to and at onset of SE did not reduce the intensity of electrographic SE, prevent SE-induced neuronal cell injury, or inhibit the progression of epileptogenesis. Further studies are required to understand the role of p75(NTR) activation during epileptogenesis and in seizure-induced cell injury in the hippocampus, among other potential cellular pathologies contributing to the onset of spontaneous seizures. Additional studies utilizing more prolonged treatment with LM11A-31 are required to reach a definite conclusion on its potential neuroprotective role in epilepsy.
Collapse
Affiliation(s)
- H L Grabenstatter
- Department of Pediatrics, Division of Neurology, and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Thakker-Varia S, Behnke J, Doobin D, Dalal V, Thakkar K, Khadim F, Wilson E, Palmieri A, Antila H, Rantamaki T, Alder J. VGF (TLQP-62)-induced neurogenesis targets early phase neural progenitor cells in the adult hippocampus and requires glutamate and BDNF signaling. Stem Cell Res 2014; 12:762-77. [PMID: 24747217 PMCID: PMC4991619 DOI: 10.1016/j.scr.2014.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/24/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023] Open
Abstract
The neuropeptide VGF (non-acronymic), which has antidepressant-like effects, enhances adult hippocampal neurogenesis as well as synaptic activity and plasticity in the hippocampus, however the interaction between these processes and the mechanism underlying this regulation remain unclear. In this study, we demonstrate that VGF-derived peptide TLQP-62 specifically enhances the generation of early progenitor cells in nestin-GFP mice. Specifically, TLQP-62 significantly increases the number of Type 2a neural progenitor cells (NPCs) while reducing the number of more differentiated Type 3 cells. The effect of TLQP-62 on proliferation rather than differentiation was confirmed using NPCs in vitro; TLQP-62 but not scrambled peptide PEHN-62 increases proliferation in a cell line as well as in primary progenitors from adult hippocampus. Moreover, TLQP-62 but not scrambled peptide increases Cyclin D mRNA expression. The proliferation of NPCs induced by TLQP-62 requires synaptic activity, in particular through NMDA and metabotropic glutamate receptors. The activation of glutamate receptors by TLQP-62 activation induces phosphorylation of CaMKII through NMDA receptors and protein kinase D through metabotropic glutamate receptor 5 (mGluR5). Furthermore, pharmacological antagonists to CaMKII and PKD inhibit TLQP-62-induced proliferation of NPCs indicating that these signaling molecules downstream of glutamate receptors are essential for the actions of TLQP-62 on neurogenesis. We also show that TLQP-62 gradually activates Brain-Derived Neurotrophic Factor (BDNF)-receptor TrkB in vitro and that Trk signaling is required for TLQP-62-induced proliferation of NPCs. Understanding the precise molecular mechanism of how TLQP-62 influences neurogenesis may reveal mechanisms by which VGF-derived peptides act as antidepressant-like agents.
Collapse
Affiliation(s)
- Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Joseph Behnke
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - David Doobin
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Vidhi Dalal
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Keya Thakkar
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Farah Khadim
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Elizabeth Wilson
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Alicia Palmieri
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Hanna Antila
- Neuroscience Center, University of Helsinki, P.O. Box 56, Viikinkaari 4, 00014 Helsinki, Finland.
| | - Tomi Rantamaki
- Neuroscience Center, University of Helsinki, P.O. Box 56, Viikinkaari 4, 00014 Helsinki, Finland.
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
75
|
Arisi I, D'Onofrio M, Brandi R, Malerba F, Paoletti F, Storti AE, Florenzano F, Fasulo L, Cattaneo A. proNGF/NGF mixtures induce gene expression changes in PC12 cells that neither singly produces. BMC Neurosci 2014; 15:48. [PMID: 24713110 PMCID: PMC4098786 DOI: 10.1186/1471-2202-15-48] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growing evidence shows that, in vivo, the precursor of Nerve Growth Factor (NGF), proNGF, displays biological activities different from those of its mature NGF counterpart, mediated by distinct, and somewhat complementary, receptor binding properties. NGF and proNGF induce distinct transcriptional signatures in target cells, highlighting their different bioactivities. In vivo, proNGF and mature NGF coexist. It was proposed that the relative proNGF/NGF ratio is important for their biological outcomes, especially in pathological conditions, since proNGF, the principal form of NGF in Central Nervous System (CNS), is increased in Alzheimer's disease brains. These observations raise a relevant question: does proNGF, in the presence of NGF, influence the NGF transcriptional response and viceversa? In order to understand the specific proNGF effect on NGF activity, depending on the relative proNGF/NGF concentration, we investigated whether proNGF affects the pattern of well-known NGF-regulated mRNAs. RESULTS To test any influence of proNGF on pure NGF expression fingerprinting, the expression level of a set of candidate genes was analysed by qReal-Time PCR in rat adrenal pheochromocytoma cell line PC12, treated with a mixture of NGF and proNGF recombinant proteins, in different stoichiometric ratios. These candidates were selected amongst a set of genes well-known as being rapidly induced by NGF treatment. We found that, when PC12 cells are treated with proNGF/NGF mixtures, a unique pattern of gene expression, which does not overlap with that deriving from treatment with either proNGF or NGF alone, is induced. The specific effect is also dependent on the stoichiometric composition of the mixture. The proNGF/NGF equimolar mixture seems to partially neutralize the specific effects of the proNGF or NGF individual treatments, showing a weaker overall response, compared to the individual contributions of NGF and proNGF alone. CONCLUSIONS Using gene expression as a functional read-out, our data demonstrate that the relative availability of NGF and proNGF in vivo might modulate the biological outcome of these ligands.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonino Cattaneo
- Neurotrophic Factors and Neurodegenerative Diseases Laboratory, European Brain Research Institute (EBRI) "Rita Levi-Montalcini", Via del Fosso di Fiorano, 64, 00143 Roma, Italy.
| |
Collapse
|
76
|
Fields J, Dumaop W, Langford TD, Rockenstein E, Masliah E. Role of neurotrophic factor alterations in the neurodegenerative process in HIV associated neurocognitive disorders. J Neuroimmune Pharmacol 2014; 9:102-16. [PMID: 24510686 PMCID: PMC3973421 DOI: 10.1007/s11481-013-9520-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/26/2013] [Indexed: 12/30/2022]
Abstract
Migration of HIV infected cells into the CNS is associated with a spectrum of neurological disorders, ranging from milder forms of HIV-associated neurocognitive disorders (HAND) to HIV-associated dementia (HAD). These neuro-psychiatric syndromes are related to the neurodegenerative pathology triggered by the release of HIV proteins and cytokine/chemokines from monocytes/macrophages into the CNS -a condition known as HIV encephalitis (HIVE). As a result of more effective combined anti-retroviral therapy patients with HIV are living longer and thus the frequency of HAND has increased considerably, resulting in an overlap between the neurodegenerative pathology associated with HIV and that related to aging. In fact, HIV infection is believed to hasten the aging process. The mechanisms through which HIV and aging lead to neurodegeneration include: abnormal calcium flux, excitotoxicity, signaling abnormalities, oxidative stress and autophagy defects. Moreover, recent studies have shown that defects in the processing and transport of neurotrophic factors such as fibroblast growth factors (FGFs), neural growth factor (NGF) and brain-derived growth factor (BDNF) might also play a role. Recent evidence implicates alterations in neurotrophins in the pathogenesis of neurodegeneration associated with HAND in the context of aging. Here, we report FGF overexpression curtails gp120-induced neurotoxicity in a double transgenic mouse model. Furthermore, our data show disparities in brain neurotrophic factor levels may be exacerbated in HIV patients over 50 years of age. In this review, we discuss the most recent findings on neurotrophins and HAND in the context of developing new therapies to combat HIV infection in the aging population.
Collapse
Affiliation(s)
- Jerel Fields
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
77
|
Barbey AK, Colom R, Paul E, Forbes C, Krueger F, Goldman D, Grafman J. Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor. PLoS One 2014; 9:e88733. [PMID: 24586380 PMCID: PMC3935849 DOI: 10.1371/journal.pone.0088733] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/10/2014] [Indexed: 01/19/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC) shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI). In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156) consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points), verbal comprehension (6 IQ points), perceptual organization (6 IQ points), working memory (8 IQ points), and processing speed (8 IQ points) after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI.
Collapse
Affiliation(s)
- Aron K. Barbey
- Decision Neuroscience Laboratory, University of Illinois, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
- Department of Internal Medicine, University of Illinois, Champaign, Illinois, United States of America
- Department of Psychology, University of Illinois, Champaign, Illinois, United States of America
- Department of Speech and Hearing Science, University of Illinois, Champaign, Illinois, United States of America
- Neuroscience Program, University of Illinois, Champaign, Illinois, United States of America
| | - Roberto Colom
- Universidad Autónoma de Madrid, Fundación CIEN/Fundación Reina Sofía, Madrid, Spain
| | - Erick Paul
- Decision Neuroscience Laboratory, University of Illinois, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Chad Forbes
- Department of Psychology, University of Delaware, Delaware, Maryland, United States of America
| | - Frank Krueger
- Department of Molecular Neuroscience, George Mason University, Virginia, United States of America
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jordan Grafman
- Traumatic Brain Injury Research Laboratory, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
78
|
Irmady K, Jackman KA, Padow VA, Shahani N, Martin LA, Cerchietti L, Unsicker K, Iadecola C, Hempstead BL. Mir-592 regulates the induction and cell death-promoting activity of p75NTR in neuronal ischemic injury. J Neurosci 2014; 34:3419-28. [PMID: 24573298 PMCID: PMC3935094 DOI: 10.1523/jneurosci.1982-13.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 11/21/2022] Open
Abstract
The neurotrophin receptor p75(NTR) has been implicated in mediating neuronal apoptosis after injury to the CNS. Despite its frequent induction in pathologic states, there is limited understanding of the mechanisms that regulate p75(NTR) expression after injury. Here, we show that after focal cerebral ischemia in vivo or oxygen-glucose deprivation in organotypic hippocampal slices or neurons, p75(NTR) is rapidly induced. A concomitant induction of proNGF, a ligand for p75(NTR), is also observed. Induction of this ligand/receptor system is pathologically relevant, as a decrease in apoptosis, after oxygen-glucose deprivation, is observed in hippocampal neurons or slices after delivery of function-blocking antibodies to p75(NTR) or proNGF and in p75(NTR) and ngf haploinsufficient slices. Furthermore, a significant decrease in infarct volume was noted in p75(NTR)-/- mice compared with the wild type. We also investigated the regulatory mechanisms that lead to post-ischemic induction of p75(NTR). We demonstrate that induction of p75(NTR) after ischemic injury is independent of transcription but requires active translation. Basal levels of p75(NTR) in neurons are maintained in part by the expression of microRNA miR-592, and an inverse correlation is seen between miR-592 and p75(NTR) levels in the adult brain. After cerebral ischemia, miR-592 levels fall, with a corresponding increase in p75(NTR) levels. Importantly, overexpression of miR-592 in neurons decreases the level of ischemic injury-induced p75(NTR) and attenuates activation of pro-apoptotic signaling and cell death. These results identify miR-592 as a key regulator of p75(NTR) expression and point to a potential therapeutic candidate to limit neuronal apoptosis after ischemic injury.
Collapse
Affiliation(s)
| | - Katherine A. Jackman
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10065, and
| | | | - Neelam Shahani
- Interdisciplinary Center for Neurosciences, Department of Neuroanatomy, University of Heidelberg, INF 307, D69120 Heidelberg, Germany
| | | | | | - Klaus Unsicker
- Interdisciplinary Center for Neurosciences, Department of Neuroanatomy, University of Heidelberg, INF 307, D69120 Heidelberg, Germany
| | - Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10065, and
| | | |
Collapse
|
79
|
Andersen JL, Schrøder TJ, Christensen S, Strandbygård D, Pallesen LT, García-Alai MM, Lindberg S, Langgård M, Eskildsen JC, David L, Tagmose L, Simonsen KB, Maltas PJ, Rønn LCB, de Jong IEM, Malik IJ, Egebjerg J, Karlsson JJ, Uppalanchi S, Sakumudi DR, Eradi P, Watson SP, Thirup S. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor-ligand complex. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:451-60. [PMID: 24531479 PMCID: PMC3940197 DOI: 10.1107/s1399004713030149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/04/2013] [Indexed: 01/03/2023]
Abstract
Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin-AF40431 complex were obtained by co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine.
Collapse
Affiliation(s)
- Jacob Lauwring Andersen
- The Lundbeck Foundation Research Centre MIND, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Tenna Juul Schrøder
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Søren Christensen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Dorthe Strandbygård
- The Lundbeck Foundation Research Centre MIND, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Lone Tjener Pallesen
- The Lundbeck Foundation Research Centre MIND, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Maria Marta García-Alai
- The Lundbeck Foundation Research Centre MIND, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Samsa Lindberg
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Morten Langgård
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | | | - Laurent David
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Lena Tagmose
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Klaus Baek Simonsen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Philip James Maltas
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | | | - Inge E. M. de Jong
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Ibrahim John Malik
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Jan Egebjerg
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Jens-Jacob Karlsson
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Srinivas Uppalanchi
- Medicinal Chemistry, GVK BioScience, Plot No. 28 A, IDA Nacharam, Hyderabad 500 076, India
| | - Durga Rao Sakumudi
- Medicinal Chemistry, GVK BioScience, Plot No. 28 A, IDA Nacharam, Hyderabad 500 076, India
| | - Pradheep Eradi
- Medicinal Chemistry, GVK BioScience, Plot No. 28 A, IDA Nacharam, Hyderabad 500 076, India
| | - Steven P. Watson
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Søren Thirup
- The Lundbeck Foundation Research Centre MIND, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| |
Collapse
|
80
|
Kraemer BR, Yoon SO, Carter BD. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol 2014; 220:121-164. [PMID: 24668472 DOI: 10.1007/978-3-642-45106-5_6] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The p75 neurotrophin receptor (p75(NTR)) regulates a wide range of cellular functions, including programmed cell death, axonal growth and degeneration, cell proliferation, myelination, and synaptic plasticity. The multiplicity of cellular functions governed by the receptor arises from the variety of ligands and co-receptors which associate with p75(NTR) and regulate its signaling. P75(NTR) promotes survival through interactions with Trk receptors, inhibits axonal regeneration via partnerships with Nogo receptor (Nogo-R) and Lingo-1, and promotes apoptosis through association with Sortilin. Signals downstream of these interactions are further modulated through regulated intramembrane proteolysis (RIP) of p75(NTR) and by interactions with numerous cytosolic partners. In this chapter, we discuss the intricate signaling mechanisms of p75(NTR), emphasizing how these signals are differentially regulated to mediate these diverse cellular functions.
Collapse
Affiliation(s)
- B R Kraemer
- Department of Biochemistry, Vanderbilt University School of Medicine, 625 Light Hall, Nashville, TN, 37232, USA
| | | | | |
Collapse
|
81
|
Abstract
The sortilin family of Vps10p-domain receptors includes sortilin, SorLA, and SorCS1-3. These type-I transmembrane receptors predominate in distinct neuronal tissues, but expression is also present in certain specialized non-neuronal cell populations including hepatocytes and cells of the immune system. The biology of sortilins is complex as they participate in both cell signaling and in intracellular protein sorting. Sortilins function physiologically in signaling by pro- and mature neurotrophins in neuronal viability and functionality. Recent genome-wide association studies have linked members to neurological disorders such as Alzheimer's disease and bipolar disorder and outside the nervous system to development of coronary artery disease and type-2 diabetes. Particularly well described are the receptor functions in neuronal signaling by pro- (proNT) and mature (NT) neurotrophins and in the processing/metabolism of amyloid precursor protein (APP).
Collapse
Affiliation(s)
- S Glerup
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic EMBL Partnership, and The Lundbeck Foundation Research Center MIND, Department of Biomedicine, University of Aarhus, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | | | | |
Collapse
|
82
|
Verge VMK, Andreassen CS, Arnason TG, Andersen H. Mechanisms of disease: role of neurotrophins in diabetes and diabetic neuropathy. HANDBOOK OF CLINICAL NEUROLOGY 2014; 126:443-60. [PMID: 25410238 DOI: 10.1016/b978-0-444-53480-4.00032-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuropathy is an insidious and devastating consequence of diabetes. Early studies provided a strong rationale for deficient neurotrophin support in the pathogenesis of diabetic neuropathy in a number of critical tissues and organs. It has now been over a decade since the first failed human neurotrophin supplementation clinical trials, but mounting evidence still implicates these trophic factors in diabetic neuropathy. Since then, tremendous advances have been made in our understanding of the complexities of neurotrophin signaling and processing and how the diabetic milieu might impact this. This in turn changes both our perception of how the altered trophic environment contributes to the etiology of diabetic neuropathy and the design of future neurotrophin therapeutic interventions. This chapter summarizes some of these findings and attempts to integrate neurotrophin actions on the nervous system with an increasing appreciation of their role in the regulation of metabolic processes in diabetes that impact the diabetic neuropathic state.
Collapse
Affiliation(s)
- Valerie M K Verge
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada; Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon City Hospital, Saskatoon, Canada.
| | - Christer S Andreassen
- Department of Otorhinolaryngology and Head and Neck Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Terra G Arnason
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada; Department of Medicine, Division of Endocrinology and Metabolism, University of Saskatchewan, Saskatoon, Canada
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
83
|
Abstract
Like most growth factors, neurotrophins are initially synthesized as precursors that are cleaved to release C-terminal mature forms. The well-characterized mature neurotrophins bind to Trk receptors to initiate survival and differentiative responses. More recently, the precursor forms or proneurotrophins have been found to act as distinct ligands by binding to an unrelated receptor complex consisting of the p75 neurotrophin receptor (p75) and sortilin to initiate cell death. Induction of proNGF and p75 has been observed in preclinical injury models and in pathological states in the central nervous system, and strategies that block the proNGF/p75 interaction are effective in limiting neuronal apoptosis. In contrast, the mechanisms that regulate expression of other proneurotrophins, including proBDNF and proNT-3, are less well understood. Here, recent findings on the biological actions, regulation of expression, and pathophysiological effects of proneurotrophins will be reviewed.
Collapse
Affiliation(s)
- B L Hempstead
- Department of Medicine, Weill Cornell Medical College, Room C610, 1300 York Ave, New York, NY, 10065, USA,
| |
Collapse
|
84
|
Estrada JA, Contreras I, Pliego-Rivero FB, Otero GA. Molecular mechanisms of cognitive impairment in iron deficiency: alterations in brain-derived neurotrophic factor and insulin-like growth factor expression and function in the central nervous system. Nutr Neurosci 2013; 17:193-206. [PMID: 24074845 DOI: 10.1179/1476830513y.0000000084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The present review examines the relationship between iron deficiency and central nervous system (CNS) development and cognitive impairment, focusing on the cellular and molecular mechanisms related to the expression and function of growth factors, particularly the insulin-like growth factors I and II (IGF-I/II) and brain-derived neurotrophic factor (BDNF), in the CNS. METHODS Nutritional deficiencies are important determinants in human cognitive impairment. Among these, iron deficiency has the highest prevalence worldwide. Although this ailment is known to induce psychomotor deficits during development, the precise molecular and cellular mechanisms underlying these alterations have not been properly elucidated. This review summarizes the available information on the effect of iron deficiency on the expression and function of growth factors in the CNS, with an emphasis on IGF-I/II and BDNF. RESULTS AND DISCUSSION Recent studies have shown that specific growth factors, such as IGF-I/II and BDNF, have an essential role in cognition, particularly in processes involving learning and memory, by the activation of intracellular-signaling pathways involved in cell proliferation, differentiation, and survival. It is known that nutritional deficiencies promote reductions in systemic and CNS concentrations of growth factors, and that altered expression of these molecules and their receptors in the CNS leads to psychomotor and developmental deficits. Iron deficiency may induce these deficits by decreasing the expression and function of IGF-I/II and BDNF in specific areas of the brain.
Collapse
|
85
|
Shen W, Zhu L, Lee SR, Chung SH, Gillies MC. Involvement of NT3 and P75(NTR) in photoreceptor degeneration following selective Müller cell ablation. J Neuroinflammation 2013; 10:137. [PMID: 24224958 PMCID: PMC3831588 DOI: 10.1186/1742-2094-10-137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurotrophins can regulate opposing functions that result in cell survival or apoptosis, depending on which form of the protein is secreted and which receptor and signaling pathway is activated. We have recently developed a transgenic model in which inducible and patchy Müller cell ablation leads to photoreceptor degeneration. This study aimed to examine the roles of mature neurotrophin-3 (NT3), pro-NT3 and p75 neurotrophin receptor (P75(NTR)) in photoreceptor degeneration in this model. METHODS Transgenic mice received tamoxifen to induce Müller cell ablation. Changes in the status of Müller and microglia cells as well as expression of mature NT3, pro-NT3 and P75(NTR) were examined by immunohistochemistry and Western blot analysis. Recombinant mature NT3 and an antibody neutralizing 75(NTR) were injected intravitreally 3 and 6 days after Müller cell ablation to examine their effects on photoreceptor degeneration and microglial activation. RESULTS We found that patchy loss of Müller cells was associated with activation of surviving Müller cells and microglial cells, concurrently with reduced expression of mature NT3 and upregulation of pro-NT3 and P75(NTR). Intravitreal injection of mature NT3 and a neutralizing antibody to P75NTR, either alone or in combination, attenuated photoreceptor degeneration and the beneficial effect was associated with inhibition of microglial activation. CONCLUSIONS Our data suggest that Müller cell ablation alters the balance between the protective and deleterious effects of mature NT3 and pro-NT3. Modulation of the neuroprotective action of mature NT3 and pro-apoptotic pro-NT3/P75(NTR) signaling may represent a novel pharmacological strategy for photoreceptor protection in retinal disease.
Collapse
Affiliation(s)
- Weiyong Shen
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Ling Zhu
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - So-Ra Lee
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Sook H Chung
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| |
Collapse
|
86
|
Mysona BA, Al-Gayyar MMH, Matragoon S, Abdelsaid MA, El-Azab MF, Saragovi HU, El-Remessy AB. Modulation of p75(NTR) prevents diabetes- and proNGF-induced retinal inflammation and blood-retina barrier breakdown in mice and rats. Diabetologia 2013; 56:2329-39. [PMID: 23918145 PMCID: PMC3791887 DOI: 10.1007/s00125-013-2998-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is characterised by early blood-retina barrier (BRB) breakdown and neurodegeneration. Diabetes causes imbalance of nerve growth factor (NGF), leading to accumulation of the NGF precursor (proNGF), as well as the NGF receptor, p75 neurotrophin receptor (p75(NTR)), suggesting a possible pathological role of the proNGF-p75(NTR) axis in the diabetic retina. To date, the role of this axis in diabetes-induced retinal inflammation and BRB breakdown has not been explored. We hypothesised that modulating p75(NTR) would prevent diabetes- and proNGF-induced retinal inflammation and BRB breakdown. METHODS Diabetes was induced by streptozotocin in wild-type and p75(NTR) knockout (p75KO) mice. After 5 weeks, the expression of inflammatory mediators, ganglion cell loss and BRB breakdown were determined. Cleavage-resistant proNGF was overexpressed in rodent retinas with and without p75(NTR) short hairpin RNA or with pharmacological inhibitors. In vitro, the effects of proNGF were investigated in retinal Müller glial cell line (rMC-1) and primary Müller cells. RESULTS Deletion of p75(NTR) blunted the diabetes-induced decrease in retinal NGF expression and increases in proNGF, nuclear factor κB (NFκB), p-NFκB and TNF-α. Deletion of p75(NTR) also abrogated diabetes-induced glial fibrillary acidic protein expression, ganglion cell loss and vascular permeability. Inhibited expression or cleavage of p75(NTR) blunted proNGF-induced retinal inflammation and vascular permeability. In vitro, proNGF induced p75(NTR)-dependent production of inflammatory mediators in primary wild-type Müller and rMC-1 cultures, but not in p75KO Müller cells. CONCLUSIONS/INTERPRETATION The proNGF-p75(NTR) axis contributes to retinal inflammation and vascular dysfunction in the rodent diabetic retina. These findings underscore the importance of p75(NTR) as a novel regulator of inflammation and potential therapeutic target in diabetic retinopathy.
Collapse
Affiliation(s)
- Barbara A Mysona
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 1120 15th Street HM-1200, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Duan L, Chen BY, Sun XL, Luo ZJ, Rao ZR, Wang JJ, Chen LW. LPS-induced proNGF synthesis and release in the N9 and BV2 microglial cells: a new pathway underling microglial toxicity in neuroinflammation. PLoS One 2013; 8:e73768. [PMID: 24040063 PMCID: PMC3767823 DOI: 10.1371/journal.pone.0073768] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/23/2013] [Indexed: 01/22/2023] Open
Abstract
Purpose While aberrant activation of microglial cells was evidently involved in neuroinflammation and neurotoxicity in the neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, objective of study was to address if activated microglias deliver their effect by releasing pro-neurotrophins. Materials and methods By in vitro culture of N9 and BV2 cell lines and lipopolysaccharide (LPS) stimulation model, generation and release of proNGF, proBDNF and MMP-9 was studied in the activated microglial cells by immunocytochemistry, western blotting and bioassay methods. Results Activation of microglial cells was observed with obvious increasing iba1-immunoreactivity following LPS stimulation in cell culture. Synthesis and up-regulation of proNGF protein significantly occurred in N9 and BV2 cells 12h-48h after LPS exposure, whereas no significant changes of proBDNF and MMP9 were observed in these microglial cell lines with LPS insult. More interestingly, extracellular release or secretion of proNGF molecule was also detected in culture medium of N9 cells after LPS stimulation. Finally, bioassay using MTT, Hoechst/PI and TUNEL staining in SH-SY5Y cells further confirmed that proNGF treatment could result in apoptotic cell death but it did not significantly influence cell viability of SH-SY5Y cells. Conclusions This in vitro study revealed LPS-stimulated proNGF synthesis and release in activated N9/BV2 microglial cell lines, also suggesting that proNGF may appeal a new pathway or possible mechanism underlying microglial toxicity in the neuroinflammation and a potential target for therapeutic manipulation of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Duan
- Institute of Neurosciences, The Fourth Military Medical University, Xi’an, China
| | - Bei-Yu Chen
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiao-Long Sun
- Institute of Neurosciences, The Fourth Military Medical University, Xi’an, China
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhuo-Jing Luo
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhi-Ren Rao
- Institute of Neurosciences, The Fourth Military Medical University, Xi’an, China
| | - Jing-Jie Wang
- Department of Gastroenterology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail: (JW); (LC)
| | - Liang-Wei Chen
- Institute of Neurosciences, The Fourth Military Medical University, Xi’an, China
- * E-mail: (JW); (LC)
| |
Collapse
|
88
|
Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev Drug Discov 2013; 12:507-25. [PMID: 23977697 DOI: 10.1038/nrd4024] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotrophins and their receptors modulate multiple signalling pathways to regulate neuronal survival and to maintain axonal and dendritic networks and synaptic plasticity. Neurotrophins have potential for the treatment of neurological diseases. However, their therapeutic application has been limited owing to their poor plasma stability, restricted nervous system penetration and, importantly, the pleiotropic actions that derive from their concomitant binding to multiple receptors. One strategy to overcome these limitations is to target individual neurotrophin receptors — such as tropomyosin receptor kinase A (TRKA), TRKB, TRKC, the p75 neurotrophin receptor or sortilin — with small-molecule ligands. Such small molecules might also modulate various aspects of these signalling pathways in ways that are distinct from the programmes triggered by native neurotrophins. By departing from conventional neurotrophin signalling, these ligands might provide novel therapeutic options for a broad range of neurological indications.
Collapse
|
89
|
The proform of glia cell line-derived neurotrophic factor: a potentially biologically active protein. Mol Neurobiol 2013; 49:234-50. [PMID: 23934644 DOI: 10.1007/s12035-013-8515-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/10/2013] [Indexed: 12/24/2022]
Abstract
Growing evidences have revealed that the proforms of several neurotrophins including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT3), by binding to p75 neurotrophin receptor and sortilin, could induce neuronal apoptosis and are implicated in the pathogenesis of various neurodegenerative diseases. The glial cell line-derived neurotrophic factor (GDNF), one of the most potent useful neurotrophic factors for the treatment of Parkinson's disease (PD), is firstly synthesized as the proform (proGDNF) like other neurotrophin NGF, BDNF, and NT3. However, little is known about proGDNF expression and secretion under physiological as well as pathological states in vivo or in vitro. In this study, we investigated the expression profile and dynamic changes of proGDNF in brains of aging and PD animal models, with the interesting finding that proGDNF was a predominant form of GDNF with molecular weight of about 36 kDa by reducing and nonreducing immunoblots in adult brains and was unregulated in the aging, lipopolysaccharide (LPS), and 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) insult. We further provided direct evidence that accompanied activation of primary astrocytes as well as C6 cell line induced by LPS stimulation, proGDNF was increasingly synthesized and released as the uncleaved form in cell culture. Taken together, our results strongly suggest that proGDNF may be a biologically active protein and has specific effects on the cells close to its secreting site, and a potentially important role of proGDNF signaling in the brains, in the glia-neuronal interaction or in the pathogenesis of PD, should merit further investigation.
Collapse
|
90
|
Xia Y, Chen BY, Sun XL, Duan L, Gao GD, Wang JJ, Yung KKL, Chen LW. Presence of proNGF-sortilin signaling complex in nigral dopamine neurons and its variation in relation to aging, lactacystin and 6-OHDA insults. Int J Mol Sci 2013; 14:14085-104. [PMID: 23880857 PMCID: PMC3742233 DOI: 10.3390/ijms140714085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022] Open
Abstract
Growing evidence has shown that proNGF-p75NTR-sortilin signaling might be a crucial factor in neurodegeneration, but it remains unclear if it may function in nigral neurons under aging and disease. The purpose of this study is to examine and quantify proNGF and sortilin expression in the substantia nigra and dynamic changes of aging in lactacystin and 6-hydroxydopamine (6-OHDA) rat models of Parkinson’s disease using immunofluorescence, electronic microscopy, western blot and FLIVO staining methods. The expression of proNGF and sortilin was abundantly and selectively identified in tyrosine hydroxylase (TH)-containing dopamine neurons in the substantia nigra. These proNGF/TH, sortilin/TH-positive neurons were densely distributed in the ventral tier, while they were less distributed in the dorsal tier, where calbindin-D28K-containing neurons were numerously located. A correlated decrease of proNGF, sortilin and TH was also detected during animal aging process. While increase of proNGF, sortilin and cleaved (active) caspase-3 expression was found in the lactacystin model, dynamic proNGF and sortilin changes along with dopamine neuronal loss were demonstrated in the substantia nigra of both the lactacystin and 6-OHDA models. This study has thus revealed the presence of the proNGF-sortilin signaling complex in nigral dopamine neurons and its response to aging, lactacystin and 6-OHDA insults, suggesting that it might contribute to neuronal apoptosis or neurodegeneration during pathogenesis and disease progression of Parkinson’s disease; the underlying mechanism and key signaling pathways involved warrant further investigation.
Collapse
Affiliation(s)
- Yi Xia
- Institute of Neurosciences, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (Y.X.); (X.-L.S.); (L.D.)
- Department of Neurosurgery, Tangdou Hospital, Fourth Military Medical University, Xi’an 710038, China; E-Mail:
| | - Bei-Yu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; E-Mail:
| | - Xiao-Long Sun
- Institute of Neurosciences, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (Y.X.); (X.-L.S.); (L.D.)
| | - Li Duan
- Institute of Neurosciences, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (Y.X.); (X.-L.S.); (L.D.)
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdou Hospital, Fourth Military Medical University, Xi’an 710038, China; E-Mail:
| | - Jing-Jie Wang
- Department of Gastroenterology, Tangdou Hospital, Fourth Military Medical University, Xi’an 710038, China
- Authors to whom correspondence should be addressed; E-Mails: (J.-J.W.); (L.-W.C.); Tel.: +86-29-8477-6840 (L.-W.C.); Fax: +86-29-8324-6270 (L.-W.C.)
| | - Ken Kam-Lin Yung
- Department of Biology, Baptist University of Hong Kong, Hong Kong, China; E-Mail:
| | - Liang-Wei Chen
- Institute of Neurosciences, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (Y.X.); (X.-L.S.); (L.D.)
- Authors to whom correspondence should be addressed; E-Mails: (J.-J.W.); (L.-W.C.); Tel.: +86-29-8477-6840 (L.-W.C.); Fax: +86-29-8324-6270 (L.-W.C.)
| |
Collapse
|
91
|
Guo J, Wang J, Zhang Z, Yan J, Chen M, Pang T, Zhang L, Liao H. proNGF inhibits neurogenesis and induces glial activation in adult mouse dentate gyrus. Neurochem Res 2013; 38:1695-703. [PMID: 23709363 DOI: 10.1007/s11064-013-1071-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 01/26/2023]
Abstract
Recent studies have shown that the precursor of nerve growth factor (proNGF) is highly elevated in aging brains and in the brains of patients with Alzheimer's Disease. proNGF accumulates in hippocampus which is an important neurogenic region related to learning and memory. However, it remains unclear whether proNGF has an influence on hippocampal neurogenesis. In this study, we demonstrated that the high-affinity receptor of proNGF, p75 neurotrophic factor (p75NTR), was expressed both on cells undergoing mitosis and postmitotic mature cells in mouse hippocampus. proNGF infusion into adult mouse hippocampus significantly reduced the density of BrdU-incorporating cells and the density of BrdU/Doublecortin double positive cells in the subgranular zone of hippocampus, indicating an inhibitory effect of proNGF on hippocampal neurogenesis. proNGF infusion also induced prominent cell apoptosis and activated residential astrocyte and microglia, which might further impair the hippocampal neurogenesis. These results implied that proNGF played a pivotal role in regulating the hippocampal neurogenesis and might account for the memory deficit and cognitive impairment.
Collapse
Affiliation(s)
- Jingjing Guo
- Neurobiology Laboratory, Jiangsu Center for Drug Screening, China Pharmaceutical University, 24# Tongjiaxiang, Nanjing, 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Deinhardt K, Chao MV. Shaping neurons: Long and short range effects of mature and proBDNF signalling upon neuronal structure. Neuropharmacology 2013; 76 Pt C:603-9. [PMID: 23664813 DOI: 10.1016/j.neuropharm.2013.04.054] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/21/2023]
Abstract
Both mature BDNF and its precursor, proBDNF, play a crucial role in shaping neurons and contributing to the structural basis for neuronal connectivity. They do so in a largely opposing manner, and through differential engagement with their receptors. In this review, we will summarise the evidence that BDNF modulates neural circuit formation in vivo both within the central and peripheral nervous systems, through the control of neuronal morphology. The underlying intracellular mechanisms that translate BDNF signalling into changes of neuronal cell shape will be described. In addition, the signalling pathways that act either locally at the site of BDNF action, or over long distances to influence gene transcription will be discussed. These mechanisms begin to explain the diversity of actions that BDNF carries out on neuronal morphology. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Katrin Deinhardt
- Centre for Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, UK; Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
93
|
Tiveron C, Fasulo L, Capsoni S, Malerba F, Marinelli S, Paoletti F, Piccinin S, Scardigli R, Amato G, Brandi R, Capelli P, D'Aguanno S, Florenzano F, La Regina F, Lecci A, Manca A, Meli G, Pistillo L, Berretta N, Nisticò R, Pavone F, Cattaneo A. ProNGF\NGF imbalance triggers learning and memory deficits, neurodegeneration and spontaneous epileptic-like discharges in transgenic mice. Cell Death Differ 2013; 20:1017-30. [PMID: 23538417 DOI: 10.1038/cdd.2013.22] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 01/19/2023] Open
Abstract
ProNGF, the precursor of mature nerve growth factor (NGF), is the most abundant form of NGF in the brain. ProNGF and mature NGF differ significantly in their receptor interaction properties and in their bioactivity. ProNGF increases markedly in the cortex of Alzheimer's disease (AD) brains and proNGF\NGF imbalance has been postulated to play a role in neurodegeneration. However, a direct proof for a causal link between increased proNGF and AD neurodegeneration is lacking. In order to evaluate the consequences of increased levels of proNGF in the postnatal brain, transgenic mice expressing a furin cleavage-resistant form of proNGF, under the control of the neuron-specific mouse Thy1.2 promoter, were derived and characterized. Different transgenic lines displayed a phenotypic gradient of neurodegenerative severity features. We focused the analysis on the two lines TgproNGF#3 and TgproNGF#72, which shared learning and memory impairments in behavioral tests, cholinergic deficit and increased Aβ-peptide immunoreactivity. In addition, TgproNGF#3 mice developed Aβ oligomer immunoreactivity, as well as late diffuse astrocytosis. Both TgproNGF lines also display electrophysiological alterations related to spontaneous epileptic-like events. The results provide direct evidence that alterations in the proNGF/NGF balance in the adult brain can be an upstream driver of neurodegeneration, contributing to a circular loop linking alterations of proNGF/NGF equilibrium to excitatory/inhibitory synaptic imbalance and amyloid precursor protein (APP) dysmetabolism.
Collapse
Affiliation(s)
- C Tiveron
- Neurotrophic Factors and Neurodegenerative Diseases Unit, EBRI-European Brain Research Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J Neurosci 2013; 33:397-410. [PMID: 23303920 DOI: 10.1523/jneurosci.0399-12.2013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The lack of effective therapies for spinal cord injury points to the need for identifying novel targets for therapeutic intervention. Here we report that a small molecule, LM11A-31, developed to block proNGF-p75 interaction and p75-mediated cell death crosses the blood-brain barrier efficiently when delivered orally. Administered starting 4 h postinjury, LM11A-31 promotes functional recovery without causing any toxicity or increased pain in a mouse model of spinal contusion injury. In both weight-bearing open-field tests and nonweight-bearing swim tests, LM11A-31 was effective in improving motor function and coordination. Such functional improvement correlated with a >50% increase in the number of surviving oligodendrocytes and myelinated axons. We also demonstrate that LM11A-31 indeed inhibits proNGF-p75 interaction in vivo, thereby curtailing the JNK3-mediated apoptotic cascade. These results thus highlight p75 as a novel therapeutic target for an orally delivered treatment for spinal cord injury.
Collapse
|
95
|
Abstract
Brain-derived neurotrophic factor (BDNF)--a member of a small family of secreted proteins that includes nerve growth factor, neurotrophin 3 and neurotrophin 4--has emerged as a key regulator of neural circuit development and function. The expression, secretion and actions of BDNF are directly controlled by neural activity, and secreted BDNF is capable of mediating many activity-dependent processes in the mammalian brain, including neuronal differentiation and growth, synapse formation and plasticity, and higher cognitive functions. This Review summarizes some of the recent progress in understanding the cellular and molecular mechanisms underlying neurotrophin regulation of neural circuits. The focus of the article is on BDNF, as this is the most widely expressed and studied neurotrophin in the mammalian brain.
Collapse
|
96
|
Ubhi K, Rockenstein E, Vazquez-Roque R, Mante M, Inglis C, Patrick C, Adame A, Fahnestock M, Doppler E, Novak P, Moessler H, Masliah E. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease. J Neurosci Res 2013; 91:167-77. [PMID: 23152192 DOI: 10.1002/jnr.23142] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/19/2012] [Accepted: 08/21/2012] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons.
Collapse
Affiliation(s)
- Kiren Ubhi
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0624, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Sortilin and SorLA regulate neuronal sorting of trophic and dementia-linked proteins. Mol Neurobiol 2012; 45:379-87. [PMID: 22297619 DOI: 10.1007/s12035-012-8236-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/12/2012] [Indexed: 12/24/2022]
Abstract
Sortilin and SorLA are members of the Vps10p domain receptor family, the Sortilins, which comprise five type I transmembrane receptors differentially expressed in neuronal tissues of the central and peripheral nervous system. Since the identification of sortilin in 1997, members of this receptor family are recognized as sorting receptors primarily in the trans-Golgi network, interacting with a wide range of ligands comprising other transmembrane receptors as well as soluble proteins from neurotrophic factors to enzymes targeted for lysosomes. Specifically, the involvement of sortilin in neutrophin signaling in healthy and injured neurons is increasingly recognized, as well as the impact of SorLA on the cellular processing of amyloid precursor protein, an important component in Alzheimer's disease. The current understanding of these issues as well as the recent recognition of a molecular link between sortilin and frontotemporal dementia is addressed in this present review.
Collapse
|
98
|
Skeldal S, Sykes AM, Glerup S, Matusica D, Palstra N, Autio H, Boskovic Z, Madsen P, Castrén E, Nykjaer A, Coulson EJ. Mapping of the interaction site between sortilin and the p75 neurotrophin receptor reveals a regulatory role for the sortilin intracellular domain in p75 neurotrophin receptor shedding and apoptosis. J Biol Chem 2012; 287:43798-809. [PMID: 23105113 DOI: 10.1074/jbc.m112.374710] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotrophins comprise a group of neuronal growth factors that are essential for the development and maintenance of the nervous system. However, the immature pro-neurotrophins promote apoptosis by engaging in a complex with sortilin and the p75 neurotrophin receptor (p75(NTR)). To identify the interaction site between sortilin and p75(NTR), we analyzed binding between chimeric receptor constructs and truncated p75(NTR) variants by co-immunoprecipitation experiments, surface plasmon resonance analysis, and FRET. We found that complex formation between sortilin and p75(NTR) relies on contact points in the extracellular domains of the receptors. We also determined that the interaction critically depends on an extracellular juxtamembrane 23-amino acid sequence of p75(NTR). Functional studies further revealed an important regulatory function of the sortilin intracellular domain in p75(NTR)-regulated intramembrane proteolysis and apoptosis. Thus, although the intracellular domain of sortilin does not contribute to p75(NTR) binding, it does regulate the rates of p75(NTR) cleavage, which is required to mediate pro-neurotrophin-stimulated cell death.
Collapse
Affiliation(s)
- Sune Skeldal
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Siao CJ, Lorentz CU, Kermani P, Marinic T, Carter J, McGrath K, Padow VA, Mark W, Falcone DJ, Cohen-Gould L, Parrish DC, Habecker BA, Nykjaer A, Ellenson LH, Tessarollo L, Hempstead BL. ProNGF, a cytokine induced after myocardial infarction in humans, targets pericytes to promote microvascular damage and activation. ACTA ACUST UNITED AC 2012; 209:2291-305. [PMID: 23091165 PMCID: PMC3501352 DOI: 10.1084/jem.20111749] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
proNGF and p75NTR are induced following fatal myocardial infraction and are required for the development of microvascular injury. Treatment of acute cardiac ischemia focuses on reestablishment of blood flow in coronary arteries. However, impaired microvascular perfusion damages peri-infarct tissue, despite arterial patency. Identification of cytokines that induce microvascular dysfunction would provide new targets to limit microvascular damage. Pro–nerve growth factor (NGF), the precursor of NGF, is a well characterized cytokine in the brain induced by injury. ProNGF activates p75 neurotrophin receptor (p75NTR) and sortilin receptors to mediate proapoptotic responses. We describe induction of proNGF by cardiomyocytes, and p75NTR in human arterioles after fatal myocardial infarction, but not with unrelated pathologies. After mouse cardiac ischemia-reperfusion (I-R) injury, rapid up-regulation of proNGF by cardiomyocytes and p75NTR by microvascular pericytes is observed. To identify proNGF actions, we generated a mouse expressing a mutant Ngf allele with impaired processing of proNGF to mature NGF. The proNGF-expressing mouse exhibits cardiac microvascular endothelial activation, a decrease in pericyte process length, and increased vascular permeability, leading to lethal cardiomyopathy in adulthood. Deletion of p75NTR in proNGF-expressing mice rescues the phenotype, confirming the importance of p75NTR-expressing pericytes in the development of microvascular injury. Furthermore, deficiency in p75NTR limits infarct size after I-R. These studies identify novel, nonneuronal actions for proNGF and suggest that proNGF represents a new target to limit microvascular dysfunction.
Collapse
Affiliation(s)
- Chia-Jen Siao
- Division of Hematology/Medical Oncology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Lee JY, Shin JM, Yeum CE, Chae GT, Chun MH, Oh SJ. Intravitreal delivery of mesenchymal stem cells loaded onto hydrogel affects the regulatory expression of endogenous NGF and BDNF in ischemic rat retina. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0355-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|