51
|
Kim MK, Kang TH, Kim J, Kim H, Yun HD. Evidence Showing Duplication and Recombination of cel Genes in Tandem from Hyperthermophilic Thermotoga sp. Appl Biochem Biotechnol 2012; 168:1834-48. [DOI: 10.1007/s12010-012-9901-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/10/2012] [Indexed: 12/01/2022]
|
52
|
Molecular characterization of an α-N-acetylgalactosaminidase from Clonorchis sinensis. Parasitol Res 2012; 111:2149-56. [PMID: 22926676 DOI: 10.1007/s00436-012-3063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
Abstract
The α-N-acetylgalactosaminidase (α-NAGAL) is an exoglycosidase that selectively cleaves terminal α-linked N-acetylgalactosamines from a variety of sugar chains. A complementary DNA (cDNA) clone encoding a novel Clonorchis sinensis α-NAGAL (Cs-α-NAGAL) was identified in the expressed sequence tags database of the adult C. sinensis liver fluke. The complete coding sequence was 1,308 bp long and encoded a 436-residue protein. The selected glycosidase was manually curated as α-NAGAL (EC 3.2.1.49) based on a composite bioinformatics analysis including a search for orthologues, comparative structure modeling, and the generation of a phylogenetic tree. One orthologue of Cs-α-NAGAL was the Rattus norvegicus α-NAGAL (accession number: NP_001012120) that does not exist in C. sinensis. Cs-α-NAGAL belongs to the GH27 family and the GH-D clan. A phylogenetic analysis revealed that the GH27 family of Cs-α-NAGAL was distinct from GH31 and GH36 within the GH-D clan. The putative 3D structure of Cs-α-NAGAL was built using SWISS-MODEL with a Gallus gallus α-NAGAL template (PDB code 1ktb chain A); this model demonstrated the superimposition of a TIM barrel fold (α/β) structure and substrate binding pocket. Cs-α-NAGAL transcripts were detected in the adult worm and egg cDNA libraries of C. sinensis but not in the metacercaria. Recombinant Cs-α-NAGAL (rCs-α-NAGAL) was expressed in Escherichia coli, and the purified rCs-α-NAGAL was recognized specifically by the C. sinensis-infected human sera. This is the first report of an α-NAGAL protein in the Trematode class, suggesting that it is a potential diagnostic or vaccine candidate with strong antigenicity.
Collapse
|
53
|
Carstensen L, Sperl JM, Bocola M, List F, Schmid FX, Sterner R. Conservation of the Folding Mechanism between Designed Primordial (βα)8-Barrel Proteins and Their Modern Descendant. J Am Chem Soc 2012; 134:12786-91. [DOI: 10.1021/ja304951v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linn Carstensen
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Josef M. Sperl
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Marco Bocola
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Felix List
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Franz X. Schmid
- Laboratorium für Biochemie
und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Reinhard Sterner
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
54
|
Blaber M, Lee J. Designing proteins from simple motifs: opportunities in Top-Down Symmetric Deconstruction. Curr Opin Struct Biol 2012; 22:442-50. [PMID: 22726756 DOI: 10.1016/j.sbi.2012.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 11/15/2022]
Abstract
The purpose of this review is to describe the development of 'top-down' approaches to protein design. It will be argued that a diverse number of studies over the past decade, involving many investigators, and focused upon elucidating the role of symmetry in protein evolution and design, are converging into a novel top-down approach to protein design. Top-down design methodologies have successfully produced comparatively simple polypeptide 'building blocks' (typically comprising 40-60 amino acids) useful in generating complex protein architecture, and have produced compelling data in support of macro-evolutionary pathways of protein structure. Furthermore, a distillation of the experimental approaches utilized in such studies suggests the potential for method formalism, one that may accelerate future success in this field.
Collapse
Affiliation(s)
- Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, United States.
| | | |
Collapse
|
55
|
Eisenbeis S, Proffitt W, Coles M, Truffault V, Shanmugaratnam S, Meiler J, Höcker B. Potential of fragment recombination for rational design of proteins. J Am Chem Soc 2012; 134:4019-22. [PMID: 22329686 DOI: 10.1021/ja211657k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is hypothesized that protein domains evolved from smaller intrinsically stable subunits via combinatorial assembly. Illegitimate recombination of fragments that encode protein subunits could have quickly led to diversification of protein folds and their functionality. This evolutionary concept presents an attractive strategy to protein engineering, e.g., to create new scaffolds for enzyme design. We previously combined structurally similar parts from two ancient protein folds, the (βα)(8)-barrel and the flavodoxin-like fold. The resulting "hopeful monster" differed significantly from the intended (βα)(8)-barrel fold by an extra β-strand in the core. In this study, we ask what modifications are necessary to form the intended structure and what potential this approach has for the rational design of functional proteins. Guided by computational design, we optimized the interface between the fragments with five targeted mutations yielding a stable, monomeric protein whose predicted structure was verified experimentally. We further tested binding of a phosphorylated compound and detected that some affinity was already present due to an intact phosphate-binding site provided by one fragment. The affinity could be improved quickly to the level of natural proteins by introducing two additional mutations. The study illustrates the potential of recombining protein fragments with unique properties to design new and functional proteins, offering both a possible pathway of protein evolution and a protocol to rapidly engineer proteins for new applications.
Collapse
Affiliation(s)
- Simone Eisenbeis
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
56
|
Saab-Rincón G, Olvera L, Olvera M, Rudiño-Piñera E, Benites E, Soberón X, Morett E. Evolutionary Walk between (β/α)8 Barrels: Catalytic Migration from Triosephosphate Isomerase to Thiamin Phosphate Synthase. J Mol Biol 2012; 416:255-70. [DOI: 10.1016/j.jmb.2011.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 11/16/2022]
|
57
|
Broom A, Doxey AC, Lobsanov YD, Berthin LG, Rose DR, Howell PL, McConkey BJ, Meiering EM. Modular evolution and the origins of symmetry: reconstruction of a three-fold symmetric globular protein. Structure 2011; 20:161-71. [PMID: 22178248 DOI: 10.1016/j.str.2011.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/09/2011] [Accepted: 10/24/2011] [Indexed: 10/14/2022]
Abstract
The high frequency of internal structural symmetry in common protein folds is presumed to reflect their evolutionary origins from the repetition and fusion of ancient peptide modules, but little is known about the primary sequence and physical determinants of this process. Unexpectedly, a sequence and structural analysis of symmetric subdomain modules within an abundant and ancient globular fold, the β-trefoil, reveals that modular evolution is not simply a relic of the ancient past, but is an ongoing and recurring mechanism for regenerating symmetry, having occurred independently in numerous existing β-trefoil proteins. We performed a computational reconstruction of a β-trefoil subdomain module and repeated it to form a newly three-fold symmetric globular protein, ThreeFoil. In addition to its near perfect structural identity between symmetric modules, ThreeFoil is highly soluble, performs multivalent carbohydrate binding, and has remarkably high thermal stability. These findings have far-reaching implications for understanding the evolution and design of proteins via subdomain modules.
Collapse
Affiliation(s)
- Aron Broom
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Fortenberry C, Bowman EA, Proffitt W, Dorr B, Combs S, Harp J, Mizoue L, Meiler J. Exploring symmetry as an avenue to the computational design of large protein domains. J Am Chem Soc 2011; 133:18026-9. [PMID: 21978247 PMCID: PMC3781211 DOI: 10.1021/ja2051217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been demonstrated previously that symmetric, homodimeric proteins are energetically favored, which explains their abundance in nature. It has been proposed that such symmetric homodimers underwent gene duplication and fusion to evolve into protein topologies that have a symmetric arrangement of secondary structure elements--"symmetric superfolds". Here, the ROSETTA protein design software was used to computationally engineer a perfectly symmetric variant of imidazole glycerol phosphate synthase and its corresponding symmetric homodimer. The new protein, termed FLR, adopts the symmetric (βα)(8) TIM-barrel superfold. The protein is soluble and monomeric and exhibits two-fold symmetry not only in the arrangement of secondary structure elements but also in sequence and at atomic detail, as verified by crystallography. When cut in half, FLR dimerizes readily to form the symmetric homodimer. The successful computational design of FLR demonstrates progress in our understanding of the underlying principles of protein stability and presents an attractive strategy for the in silico construction of larger protein domains from smaller pieces.
Collapse
Affiliation(s)
| | | | | | | | | | - Joel Harp
- Vanderbilt University, Nashville, TN
| | | | | |
Collapse
|
59
|
Ben Ali M, Ghram M, Hmani H, Khemakhem B, Haser R, Bejar S. Toward the smallest active subdomain of a TIM-barrel fold: insights from a truncated α-amylase. Biochem Biophys Res Commun 2011; 411:265-70. [PMID: 21741359 DOI: 10.1016/j.bbrc.2011.06.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/17/2011] [Indexed: 11/19/2022]
Abstract
AmyTM is a truncated mutant of the α-amylase of Bacillus stearothermophilus US100. It has been derived from the wild type amylase gene via a reading frame shift, following a tandem duplication of the mutant primer, associated to an Adenine base deletion. AmyTM was composed of 720 nucleotides encoding 240 amino acid residues out of 549 of the wild type. The AmyTM protein was devoided of the three catalytic residues but still retains catalytic activity. It is Ca-independent maltotetraose producing amylase, optimally active at pH 6 and 60°C, under monomeric or multimeric forms. AmyTM is the smallest functional truncated TIM barrel. It contains the βαβα unit as the minimal subdomain associated to an enzymatic function. The enzymatic activity can, until now, be attributed to the presence of the whole domain B, in the structure of AmyTM. This mutant revealed, for the first time, the regeneration of a catalytic site after its abolition. This fact may be considered as the restoration of a primitive active site, which was lost in the course of evolution toward more stable domains.
Collapse
Affiliation(s)
- Mamdouh Ben Ali
- Laboratoire de Métabolites et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, B.P. 1177, 3018 Sfax, Tunisia.
| | | | | | | | | | | |
Collapse
|
60
|
List F, Sterner R, Wilmanns M. Related (βα)8-barrel proteins in histidine and tryptophan biosynthesis: a paradigm to study enzyme evolution. Chembiochem 2011; 12:1487-94. [PMID: 21656890 DOI: 10.1002/cbic.201100082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Felix List
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | | | | |
Collapse
|
61
|
Fischer A, Seitz T, Lochner A, Sterner R, Merkl R, Bocola M. A fast and precise approach for computational saturation mutagenesis and its experimental validation by using an artificial (βα)8-barrel protein. Chembiochem 2011; 12:1544-50. [PMID: 21626637 DOI: 10.1002/cbic.201100051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Indexed: 11/09/2022]
Abstract
We present a computational saturation mutagenesis protocol (CoSM) that predicts the impact on stability of all possible amino acid substitutions for a given site at an internal protein interface. CoSM is an efficient algorithm that uses a combination of rotamer libraries, side-chain flips, energy minimization, and molecular dynamics equilibration. Because CoSM considers full side-chain and backbone flexibility in the local environment of the mutated position, amino acids larger than the wild-type residue are also modeled in a proper manner. To assess the performance of CoSM, the effect of point mutations on the stability of an artificial (βα)(8)-barrel protein that has been designed from identical (βα)(4)-half barrels, was studied. In this protein, position 234(N) is a previously identified stability hot-spot that is located at the interface of the two half barrels. By using CoSM, changes in protein stability were predicted for all possible single point mutations replacing wild-type Val234(N). In parallel, the stabilities of 14 representative mutants covering all amino acid classes were experimentally determined. A linear correlation of computationally and experimentally determined energy values yielded an R(2) value of 0.90, which is statistically significant. This degree of coherence is stronger than the ones we obtained for established computational methods of mutational analysis.
Collapse
Affiliation(s)
- Andre Fischer
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
62
|
Setiyaputra S, Mackay JP, Patrick WM. The structure of a truncated phosphoribosylanthranilate isomerase suggests a unified model for evolution of the (βα)8 barrel fold. J Mol Biol 2011; 408:291-303. [PMID: 21354426 DOI: 10.1016/j.jmb.2011.02.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 11/18/2022]
Abstract
The (βα)(8) barrel is one of the most common protein folds, and enzymes with this architecture display a remarkable range of catalytic activities. Many of these functions are associated with ancient metabolic pathways, and phylogenetic reconstructions suggest that the (βα)(8) barrel was one of the very first protein folds to emerge. Consequently, there is considerable interest in understanding the evolutionary processes that gave rise to this fold. In particular, much attention has been focused on the plausibility of (βα)(8) barrel evolution from homodimers of half barrels. However, we previously isolated a three-quarter-barrel-sized fragment of a (βα)(8) barrel, termed truncated phosphoribosylanthranilate isomerase (trPRAI), that is soluble and almost as thermostable as full-length N-(5'-phosphoribosyl)anthranilate isomerase (PRAI). Here, we report the NMR-derived structure of trPRAI. The subdomain is monomeric, is well ordered and adopts a native-like structure in solution. Side chains from strands β(1) (Glu3 and Lys5), β(2) (Tyr25) and β(6) (Lys122) of trPRAI repack to shield the hydrophobic core from the solvent. This result demonstrates that three-quarter barrels were viable intermediates in the evolution of the (βα)(8) barrel fold. We propose a unified model for (βα)(8) barrel evolution that combines our data, previously published work and plausible scenarios for the emergence of (initially error-prone) genetic systems. In this model, the earliest proto-cells contained diverse pools of part-barrel subdomains. Combinatorial assembly of these subdomains gave rise to many distinct lineages of (βα)(8) barrel proteins, that is, our model excludes the possibility that there was a single (βα)(8) barrel from which all present examples are descended.
Collapse
Affiliation(s)
- Surya Setiyaputra
- School of Molecular Bioscience, Darlington Campus, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
63
|
Akanuma S, Yamagishi A. Roles for the two N-terminal (β/α) modules in the folding of a (β/α)8-barrel protein as studied by fragmentation analysis. Proteins 2010; 79:221-31. [DOI: 10.1002/prot.22874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
64
|
Eisenbeis S, Höcker B. Evolutionary mechanism as a template for protein engineering. J Pept Sci 2010; 16:538-44. [DOI: 10.1002/psc.1233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
65
|
Richter M, Bosnali M, Carstensen L, Seitz T, Durchschlag H, Blanquart S, Merkl R, Sterner R. Computational and Experimental Evidence for the Evolution of a (βα)8-Barrel Protein from an Ancestral Quarter-Barrel Stabilised by Disulfide Bonds. J Mol Biol 2010; 398:763-73. [DOI: 10.1016/j.jmb.2010.03.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 11/28/2022]
|
66
|
Glasner ME, Gerlt JA, Babbitt PC. Mechanisms of protein evolution and their application to protein engineering. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2010; 75:193-239, xii-xiii. [PMID: 17124868 DOI: 10.1002/9780471224464.ch3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein engineering holds great promise for the development of new biosensors, diagnostics, therapeutics, and agents for bioremediation. Despite some remarkable successes in experimental and computational protein design, engineered proteins rarely achieve the efficiency or specificity of natural enzymes. Current protein design methods utilize evolutionary concepts, including mutation, recombination, and selection, but the inability to fully recapitulate the success of natural evolution suggests that some evolutionary principles have not been fully exploited. One aspect of protein engineering that has received little attention is how to select the most promising proteins to serve as templates, or scaffolds, for engineering. Two evolutionary concepts that could provide a rational basis for template selection are the conservation of catalytic mechanisms and functional promiscuity. Knowledge of the catalytic motifs responsible for conserved aspects of catalysis in mechanistically diverse superfamilies could be used to identify promising templates for protein engineering. Second, protein evolution often proceeds through promiscuous intermediates, suggesting that templates which are naturally promiscuous for a target reaction could enhance protein engineering strategies. This review explores these ideas and alternative hypotheses concerning protein evolution and engineering. Future research will determine if application of these principles will lead to a protein engineering methodology governed by predictable rules for designing efficient, novel catalysts.
Collapse
Affiliation(s)
- Margaret E Glasner
- Department of Biopharmaceutical Sciences, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
67
|
Akanuma S, Matsuba T, Ueno E, Umeda N, Yamagishi A. Mimicking the evolution of a thermally stable monomeric four-helix bundle by fusion of four identical single-helix peptides. J Biochem 2009; 147:371-9. [PMID: 19889751 DOI: 10.1093/jb/mvp179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Internal symmetry is a common feature of the tertiary structures of proteins and protein domains. Probably, because the genes of homo-oligomeric proteins duplicated and fused, their evolutionary descendants are proteins with internal symmetry. To identify any advantages that cause monomeric proteins with internal symmetry to be selected evolutionarily, we characterized some of the physical properties of a recombinant protein with a sequence consisting of two tandemly fused copies of the Escherichia coli Lac repressor C-terminal alpha-helix. This polypeptide exists in solution mainly as dimer that likely maintains a four-helix bundle motif. Thermal unfolding experiments demonstrate that the protein is considerably more stable at elevated temperatures than is a homotetramer consisting of four non-covalently associated copies of a 21-residue polypeptide similar in sequence to that of the Lac repressor C-terminal alpha-helix. A tandem duplication of our helix-loop-helix polypeptide yields an even more thermally stable protein. Our results exemplify the concept that fusion of non-covalently assembled polypeptide chains leads to enhanced protein stability. Herein, we discuss how our work relates to the evolutionary selective-advantages realized when symmetrical homo-oligomers evolve into monomers. Moreover, our thermally stable single-chain four-helix bundle protein may provide a robust scaffold for development of new biomaterials.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
68
|
Shera JN, Sun XS. Effect of Peptide Sequence on Surface Properties and Self-Assembly of an Amphiphilic pH-Responsive Peptide. Biomacromolecules 2009; 10:2446-50. [DOI: 10.1021/bm900388b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeanne N. Shera
- Bio-materials & Technology Lab, Department of Grain Science & Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, Kansas 66506
| | - Xiuzhi Susan Sun
- Bio-materials & Technology Lab, Department of Grain Science & Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, Kansas 66506
| |
Collapse
|
69
|
Li H, Fast W, Benkovic SJ. Structural and functional modularity of proteins in the de novo purine biosynthetic pathway. Protein Sci 2009; 18:881-92. [PMID: 19384989 PMCID: PMC2771292 DOI: 10.1002/pro.95] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 11/08/2022]
Abstract
It is generally accepted that naturally existing functional domains can serve as building blocks for complex protein structures, and that novel functions can arise from assembly of different combinations of these functional domains. To inform our understanding of protein evolution and explore the modular nature of protein structure, two model enzymes were chosen for study, purT-encoded glycinamide ribonucleotide formyltransferase (PurT) and purK-encoded N(5)-carboxylaminoimidazole ribonucleotide synthetase (PurK). Both enzymes are found in the de novo purine biosynthetic pathway of Escherichia coli. In spite of their low sequence identity, PurT and PurK share significant similarity in terms of tertiary structure, active site organization, and reaction mechanism. Their characteristic three domain structures categorize both PurT and PurK as members of the ATP-grasp protein superfamily. In this study, we investigate the exchangeability of individual protein domains between these two enzymes and the in vivo and in vitro functional properties of the resulting hybrids. Six domain-swapped hybrids were unable to catalyze full wild-type reactions, but each hybrid protein could catalyze partial reactions. Notably, an additional loop replacement in one of the domain-swapped hybrid proteins was able to restore near wild-type PurK activity. Therefore, in this model system, domain-swapped proteins retained the ability to catalyze partial reactions, but further modifications were required to efficiently couple the reaction intermediates and achieve catalysis of the full reaction. Implications for understanding the role of domain swapping in protein evolution are discussed.
Collapse
Affiliation(s)
| | | | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University ParkPennsylvania 16802
| |
Collapse
|
70
|
Establishing wild-type levels of catalytic activity on natural and artificial (beta alpha)8-barrel protein scaffolds. Proc Natl Acad Sci U S A 2009; 106:3704-9. [PMID: 19237570 DOI: 10.1073/pnas.0810342106] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The generation of high levels of new catalytic activities on natural and artificial protein scaffolds is a major goal of enzyme engineering. Here, we used random mutagenesis and selection in vivo to establish a sugar isomerisation reaction on both a natural (beta alpha)(8)-barrel enzyme and a catalytically inert chimeric (beta alpha)(8)-barrel scaffold, which was generated by the recombination of 2 (beta alpha)(4)-half barrels. The best evolved variants show turnover numbers and substrate affinities that are similar to those of wild-type enzymes catalyzing the same reaction. The determination of the crystal structure of the most proficient variant allowed us to model the substrate sugar in the novel active site and to elucidate the mechanistic basis of the newly established activity. The results demonstrate that natural and inert artificial protein scaffolds can be converted into highly proficient enzymes in the laboratory, and provide insights into the mechanisms of enzyme evolution.
Collapse
|
71
|
Höcker B, Lochner A, Seitz T, Claren J, Sterner R. High-Resolution Crystal Structure of an Artificial (βα)8-Barrel Protein Designed from Identical Half-Barrels. Biochemistry 2009; 48:1145-7. [DOI: 10.1021/bi802125b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Birte Höcker
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany, and Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Adriane Lochner
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany, and Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Tobias Seitz
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany, and Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jörg Claren
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany, and Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Reinhard Sterner
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany, and Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
72
|
Experimental Evidence for the Existence of a Stable Half-Barrel Subdomain in the (β/α)8-Barrel Fold. J Mol Biol 2008; 382:458-66. [DOI: 10.1016/j.jmb.2008.07.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 11/16/2022]
|
73
|
A beta alpha-barrel built by the combination of fragments from different folds. Proc Natl Acad Sci U S A 2008; 105:9942-7. [PMID: 18632584 DOI: 10.1073/pnas.0802202105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Combinatorial assembly of protein domains plays an important role in the evolution of proteins. There is also evidence that protein domains have come together from stable subdomains. This concept of modular assembly could be used to construct new well folded proteins from stable protein fragments. Here, we report the construction of a chimeric protein from parts of a (betaalpha)(8)-barrel enzyme from histidine biosynthesis pathway (HisF) and a protein of the (betaalpha)(5)-flavodoxin-like fold (CheY) from Thermotoga maritima that share a high structural similarity. We expected this construct to fold into a full (betaalpha)(8)-barrel. Our results show that the chimeric protein is a stable monomer that unfolds with high cooperativity. Its three-dimensional structure, which was solved to 3.1 A resolution by x-ray crystallography, confirms a barrel-like fold in which the overall structures of the parent proteins are highly conserved. The structure further reveals a ninth strand in the barrel, which is formed by residues from the HisF C terminus and an attached tag. This strand invades between beta-strand 1 and 2 of the CheY part closing a gap in the structure that might be due to a suboptimal fit between the fragments. Thus, by a combination of parts from two different folds and a small arbitrary fragment, we created a well folded and stable protein.
Collapse
|
74
|
Abstract
beta-Propellers are toroidal folds, in which repeated, four-stranded beta-meanders are arranged in a circular and slightly tilted fashion, like the blades of a propeller. They are found in all domains of life, with a strong preponderance among eukaryotes. Propellers show considerable sequence diversity and are classified into six separate structural groups by the SCOP and CATH databases. Despite this diversity, they often show similarities across groups, not only in structure but also in sequence, raising the possibility of a common origin. In agreement with this hypothesis, most propellers group together in a cluster map of all-beta folds generated by sequence similarity, because of numerous pairwise matches, many of which are individually nonsignificant. In total, 45 of 60 propellers in the SCOP25 database, covering four SCOP folds, are clustered in this group and analysis with sensitive sequence comparison methods shows that they are similar at a level indicative of homology. Two mechanisms appear to contribute to the evolution of beta-propellers: amplification from single blades and subsequent functional differentiation. The observation of propellers with nearly identical blades in genomic sequences show that these mechanisms are still operating today.
Collapse
Affiliation(s)
- Indronil Chaudhuri
- Department for Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| | | | | |
Collapse
|
75
|
Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008; 40:553-624. [PMID: 18949601 PMCID: PMC2663408 DOI: 10.1080/03602530802431439] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aldo-keto reductase (AKR) superfamily comprises enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism, and detoxification. Substrates of AKRs include glucose, steroids, glycosylation end-products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (beta/alpha)(8) barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics.
Collapse
Affiliation(s)
- Oleg A Barski
- Division of Cardiology, Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | |
Collapse
|
76
|
Seitz T, Bocola M, Claren J, Sterner R. Stabilisation of a (betaalpha)8-barrel protein designed from identical half barrels. J Mol Biol 2007; 372:114-29. [PMID: 17631894 DOI: 10.1016/j.jmb.2007.06.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/05/2007] [Accepted: 06/13/2007] [Indexed: 11/26/2022]
Abstract
It has been suggested that the common (betaalpha)(8)-barrel enzyme fold has evolved by the duplication and fusion of identical (betaalpha)(4)-half barrels, followed by the optimisation of their interface. In our attempts to reconstruct these events in vitro we have previously linked in tandem two copies of the C-terminal half barrel HisF-C of imidazole glycerol phosphate synthase from Thermotoga maritima and subsequently reconstituted in the fusion construct HisF-CC a salt bridge cluster present in wild-type HisF. The resulting recombinant protein HisF-C*C, which was produced in an insoluble form and unfolded with low cooperativity at moderate urea concentrations has now been stabilised and solubilised by a combination of random mutagenesis and selection in vivo. For this purpose, Escherichia coli cells were transformed with a plasmid-based gene library encoding HisF-C*C variants fused to chloramphenicol acetyltransferase (CAT). Stable and soluble variants were identified by the survival of host cells on solid medium containing high concentrations of the antibiotic. The selected HisF-C*C proteins, which were characterised in vitro in the absence of CAT, contained eight different amino acid substitutions. One of the exchanges (Y143C) stabilised HisF-C*C by the formation of an intermolecular disulfide bond. Three of the substitutions (G245R, V248M, L250Q) were located in the long loop connecting the two HisF-C copies, whose subsequent truncation from 13 to 5 residues yielded the stabilised variant HisF-C*C Delta. From the remaining substitutions, Y143H and V234M were most beneficial, and molecular dynamics simulations suggest that they strengthen the interactions between the half barrels by establishing a hydrogen-bonding network and an extensive hydrophobic cluster, respectively. By combining the loop deletion of HisF-C*C Delta with the Y143H and V234M substitutions, the variant HisF-C**C was generated. Recombinant HisF-C**C is produced in soluble form, forms a pure monomer with its tryptophan residues shielded from solvent and unfolds with similar cooperativity as HisF. Our results show that, starting from two identical and fused half barrels, few amino acid exchanges are sufficient to generate a highly stable and compact (betaalpha)(8)-barrel protein with wild-type like structural properties.
Collapse
Affiliation(s)
- Tobias Seitz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
77
|
Janecek S, Svensson B, MacGregor EA. A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31. FEBS Lett 2007; 581:1261-8. [PMID: 17349635 DOI: 10.1016/j.febslet.2007.02.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/02/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Although both the alpha-amylase super-family, i.e. the glycoside hydrolase (GH) clan GH-H (the GH families 13, 70 and 77), and family GH31 share some characteristics, their different catalytic machinery prevents classification of GH31 in clan GH-H. A significant but remote evolutionary relatedness is, however, proposed for clan GH-H with GH31. A sequence alignment, based on the idea that residues equivalent in the primordial catalytic GH-H/GH31 (beta/alpha)(8)-barrel may not be found in the present-day GH-H and GH31 structures at strictly equivalent positions, shows remote sequence homologies covering beta3, beta4, beta7 and beta8 of the GH-H and GH31 (beta/alpha)(8)-barrels. Structure comparison of GH13 alpha-amylase and GH31 alpha-xylosidase guided alignment of GH-H and GH31 members for construction of evolutionary trees. The closest sequence relationship displayed by GH31 is to GH77 of clan GH-H.
Collapse
Affiliation(s)
- Stefan Janecek
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia.
| | | | | |
Collapse
|
78
|
Gu Z, Zitzewitz JA, Matthews CR. Mapping the structure of folding cores in TIM barrel proteins by hydrogen exchange mass spectrometry: the roles of motif and sequence for the indole-3-glycerol phosphate synthase from Sulfolobus solfataricus. J Mol Biol 2007; 368:582-94. [PMID: 17359995 PMCID: PMC2040069 DOI: 10.1016/j.jmb.2007.02.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 11/22/2022]
Abstract
To test the roles of motif and amino acid sequence in the folding mechanisms of TIM barrel proteins, hydrogen-deuterium exchange was used to explore the structure of the stable folding intermediates for the of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus (sIGPS). Previous studies of the urea denaturation of sIGPS revealed the presence of an intermediate that is highly populated at approximately 4.5 M urea and contains approximately 50% of the secondary structure of the native (N) state. Kinetic studies showed that this apparent equilibrium intermediate is actually comprised of two thermodynamically distinct species, I(a) and I(b). To probe the location of the secondary structure in this pair of stable on-pathway intermediates, the equilibrium unfolding process of sIGPS was monitored by hydrogen-deuterium exchange mass spectrometry. The intact protein and pepsin-digested fragments were studied at various concentrations of urea by electrospray and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, respectively. Intact sIGPS strongly protects at least 54 amide protons from hydrogen-deuterium exchange in the intermediate states, demonstrating the presence of stable folded cores. When the protection patterns and the exchange mechanisms for the peptides are considered with the proposed folding mechanism, the results can be interpreted to define the structural boundaries of I(a) and I(b). Comparison of these results with previous hydrogen-deuterium exchange studies on another TIM barrel protein of low sequence identify, alpha-tryptophan synthase (alphaTS), indicates that the thermodynamic states corresponding to the folding intermediates are better conserved than their structures. Although the TIM barrel motif appears to define the basic features of the folding free energy surface, the structures of the partially folded states that appear during the folding reaction depend on the amino acid sequence. Markedly, the good correlation between the hydrogen-deuterium exchange patterns of sIGPS and alphaTS with the locations of hydrophobic clusters defined by isoleucine, leucine, and valine residues suggests that branch aliphatic side-chains play a critical role in defining the structures of the equilibrium intermediates.
Collapse
Affiliation(s)
- Zhenyu Gu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
79
|
Payandeh J, Pai EF. Enzyme-Driven Speciation: Crystallizing Archaea via Lipid Capture. J Mol Evol 2007; 64:364-74. [PMID: 17253090 DOI: 10.1007/s00239-006-0141-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 11/19/2006] [Indexed: 10/23/2022]
Abstract
As the origin(s) of life on Earth remains an open question, detailed characteristics about the "last universal ancestor" (LUA) continue to be obscured. Here we provide arguments that strengthen the bacterial-like nature of the LUA. Our view attempts to recreate the evolution of archaeal lipids, the major components of the distinctive membrane that encapsulates these ancient prokaryotes. We show that (S)- 3-O-geranylgeranylglyceryl phosphate synthase (GGGPS), a TIM-barrel protein that performs the committed step in archaeal lipid synthesis, likely evolved from the duplication and fusion of a (betaalpha)4 half-barrel ancestor. By comparison to the well-characterized HisA and HisF TIM-barrel proteins, we propose a time line for the invention of this diagnostic archaeal biosynthetic pathway. After excluding the possibility of horizontal gene transfer, we conclude that the evolutionary history of GGGPS mirrors the emergence of Archaea from the LUA. We illustrate aspects of this "lipid capture" model that support its likelihood in recreating key evolutionary events and, as our hypothesis is built on a single initiating event, we suggest that the appearance of GGGPS represents an example of enzyme-driven speciation.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
80
|
Yadid I, Tawfik DS. Reconstruction of Functional β-Propeller Lectins via Homo-oligomeric Assembly of Shorter Fragments. J Mol Biol 2007; 365:10-7. [PMID: 17054983 DOI: 10.1016/j.jmb.2006.09.055] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/13/2006] [Accepted: 09/19/2006] [Indexed: 11/15/2022]
Abstract
The modular nature of protein folds suggests that present day proteins evolved via duplication and recombination of smaller functional elements. However, the reconstruction of these putative evolutionary pathways after many millions of years of evolutionary drift has thus far proven difficult, with all attempts to date failing to produce a functional protein. Tachylecin-2 is a monomeric 236 amino acid, five-bladed beta-propeller with five sugar-binding sites. This protein was isolated from a horseshoe crab that emerged ca 500 million years ago. The modular, yet ancient, nature of Tachylectin-2 makes it an excellent model for exploring the evolution of proteins from smaller subunits. To this end, we generated genetically diverse libraries by incremental truncation of the Tachylectin-2 gene and screened them for functional lectins. A number of approximately 100 amino acid residue segments were isolated with the ability to assemble into active homo-pentamers. The topology of most of these segments follows a "hidden" module that differs from the modules observed in wild-type Tachylectin-2, yet their biophysical properties and sugar binding activities resemble the wild-type's. Since the pentamer's molecular mass is twofold higher than the wild-type (approximately 500 amino acid residues), the structure of these oligomeric forms is likely to also differ. Our laboratory evolution experiments highlight the versatility and modularity of the beta-propeller fold, while substantiating the hypothesis that proteins with high internal symmetry, such as beta-propellers, evolved from short, functional gene segments that, at later stages, duplicated, fused, and rearranged, to yield the folds we recognise today.
Collapse
Affiliation(s)
- Itamar Yadid
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
81
|
Abstract
DNA synthesis has become one of the technological bases of a new concept in biology: synthetic biology. The vision of synthetic biology is a systematic, hierarchical design of artificial, biology-inspired systems using robust, standardized, and well-characterized building blocks. The design concept and examples from four fields of application (genetic circuits, protein design, platform technologies, and pathway engineering) are discussed, which demonstrate the usefulness and the promises of synthetic biology. The vision of synthetic biology is to develop complex systems by simplified solutions using available material and knowledge. Synthetic biology also opens a door toward new biomaterials that do not occur in nature.
Collapse
Affiliation(s)
- Jürgen Pleiss
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
82
|
Payandeh J, Fujihashi M, Gillon W, Pai EF. The crystal structure of (S)-3-O-geranylgeranylglyceryl phosphate synthase reveals an ancient fold for an ancient enzyme. J Biol Chem 2005; 281:6070-8. [PMID: 16377641 DOI: 10.1074/jbc.m509377200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report crystal structures of the citrate and sn-glycerol-1-phosphate (G1P) complexes of (S)-3-O-geranylgeranylglyceryl phosphate synthase from Archaeoglobus fulgidus (AfGGGPS) at 1.55 and 2.0 A resolution, respectively. AfGGGPS is an enzyme that performs the committed step in archaeal lipid biosynthesis, and it presents the first triose phosphate isomerase (TIM)-barrel structure with a prenyltransferase function. Our studies provide insight into the catalytic mechanism of AfGGGPS and demonstrate how it selects for the sn-G1P isomer. The replacement of "Helix 3" by a "strand" in AfGGGPS, a novel modification to the canonical TIM-barrel fold, suggests a model of enzyme adaptation that involves a "greasy slide" and a "swinging door." We propose functions for the homologous PcrB proteins, which are conserved in a subset of pathogenic bacteria, as either prenyltransferases or being involved in lipoteichoic acid biosynthesis. Sequence and structural comparisons lead us to postulate an early evolutionary history for AfGGGPS, which may highlight its role in the emergence of Archaea.
Collapse
Affiliation(s)
- Jian Payandeh
- Departmentsof Medical Biophysics, University of Toronto, Division of Cancer Genomics & Proteomics, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada
| | | | | | | |
Collapse
|
83
|
Sterner R, Höcker B. Catalytic Versatility, Stability, and Evolution of the (βα)8-Barrel Enzyme Fold. Chem Rev 2005; 105:4038-55. [PMID: 16277370 DOI: 10.1021/cr030191z] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Reinhard Sterner
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany.
| | | |
Collapse
|
84
|
Griswold KE, Kawarasaki Y, Ghoneim N, Benkovic SJ, Iverson BL, Georgiou G. Evolution of highly active enzymes by homology-independent recombination. Proc Natl Acad Sci U S A 2005; 102:10082-7. [PMID: 16009931 PMCID: PMC1177412 DOI: 10.1073/pnas.0504556102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The theta-class GST enzymes hGSTT1-1 (human GSTTheta-1-1) and rGSTT2-2 (rat GSTTheta-2-2) share 54.3% amino acid identity and exhibit different substrate specificities. Homology-independent techniques [incremental truncation for the creation of hybrid enzymes (ITCHY) and SCRATCHY] and low-homology techniques (recombination-dependent exponential amplification PCR) were used to create libraries of chimeric enzymes containing crossovers (C/Os) at positions not accessible by DNA family shuffling. High-throughput flow cytometric screening using the fluorogenic rGSTT2-2-specific substrate 7-amino-4-chloromethyl coumarin led to the isolation of active variants with either one or two C/Os. One of these enzymes, SCR23 (83% identity to hGSTT1-1), was encoded by a gene that exchanged helices 4 and 5 of hGSTT1-1 with the corresponding sequence from rGSTT2-2. Compared with either parent, this variant was found to have an improved k(cat) with the selection substrate and also exhibited activity for the conjugation of glutathione to ethacrynic acid, a compound that is not recognized by either parental enzyme. These results highlight the power of combinatorial homology-independent and low-homology recombination methods for the generation of unique, highly active enzymes and also suggest a possible means of enzyme "humanization."
Collapse
Affiliation(s)
- Karl E Griswold
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
85
|
Minshull J, Ness JE, Gustafsson C, Govindarajan S. Predicting enzyme function from protein sequence. Curr Opin Chem Biol 2005; 9:202-9. [PMID: 15811806 DOI: 10.1016/j.cbpa.2005.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There are two main reasons to try to predict an enzyme's function from its sequence. The first is to identify the components and thus the functional capabilities of an organism, the second is to create enzymes with specific properties. Genomics, expression analysis, proteomics and metabonomics are largely directed towards understanding how information flows from DNA sequence to protein functions within an organism. This review focuses on information flow in the opposite direction: the applicability of what is being learned from natural enzymes to improve methods for catalyst design.
Collapse
|
86
|
Patrick WM, Blackburn JM. In vitro selection and characterization of a stable subdomain of phosphoribosylanthranilate isomerase. FEBS J 2005; 272:3684-97. [PMID: 16008567 DOI: 10.1111/j.1742-4658.2005.04794.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The (beta(alpha))8-barrel is the most common enzyme fold and it is capable of catalyzing an enormous diversity of reactions. It follows that this scaffold should be an ideal starting point for engineering novel enzymes by directed evolution. However, experiments to date have utilized in vivo screens or selections and the compatibility of (beta(alpha))8-barrels with in vitro selection methods remains largely untested. We have investigated plasmid display as a suitable in vitro format by engineering a variant of phosphoribosylanthranilate isomerase (PRAI) that carried the FLAG epitope in active-site-forming loop 6. Trial enrichments for binding of mAb M2 (a mAb to FLAG) demonstrated that FLAG-PRAI could be identified from a 10(6)-fold excess of a FLAG-negative competitor in three rounds of in vitro selection. These results suggest PRAI as a useful scaffold for epitope and peptide grafting experiments. Further, we constructed a FLAG-PRAI loop library of approximately 10(7) clones, in which the epitope residues most critical for binding mAb M2 were randomized. Four rounds of selection for antibody binding identified and enriched for a variant in which a single nucleotide insertion produced a truncated (beta(alpha))8-barrel consisting of (beta(alpha))1-5beta6. Biophysical characterization of this clone, trPRAI, demonstrated that it was selected because of a 21-fold increase in mAb M2 affinity compared with full-length FLAG-PRAI. Remarkably, this truncated barrel was found to be soluble, structured, thermostable and monomeric, implying that it represents a genuine subdomain of PRAI and providing further evidence that such subdomains have played an important role in the evolution of the (beta(alpha))8-barrel fold.
Collapse
|
87
|
Amaro RE, Myers RS, Davisson VJ, Luthey-Schulten ZA. Structural elements in IGP synthase exclude water to optimize ammonia transfer. Biophys J 2005; 89:475-87. [PMID: 15849257 PMCID: PMC1366548 DOI: 10.1529/biophysj.104.058651] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the complex pathway of histidine biosynthesis, a key branch point linking amino acid and purine biosynthesis is catalyzed by the bifunctional enzyme imidazole glycerol phosphate (IGP) synthase. The first domain of IGP synthase, a triad glutamine amidotransferase, hydrolyzes glutamine to form glutamate and ammonia. Its activity is tightly regulated by the binding of the substrate PRFAR to its partner synthase domain. Recent crystal structures and molecular dynamics simulations strongly suggest that the synthase domain, a (beta/alpha)(8) barrel protein, mediates the insertion of ammonia and ring formation in IGP by channeling ammonia from one remote active site to the other. Here, we combine both mutagenesis experiments and computational investigations to gain insight into the transfer of ammonia and the mechanism of conduction. We discover an alternate route for the entrance of ammonia into the (beta/alpha)(8) barrel and argue that water acts as both agonist and antagonist to the enzymatic function. Our results indicate that the architecture of the two subdomains, most notably the strict conservation of key residues at the interface and within the (beta/alpha)(8) barrel, has been optimized to allow the efficient passage of ammonia, and not water, between the two remote active sites.
Collapse
Affiliation(s)
- Rommie E Amaro
- Department of Chemistry, University of Illinois, Urbana, Illinois, USA
| | | | | | | |
Collapse
|