51
|
Zhou YM, Liu XC, Li YQ, Wang P, Han RM, Zhang JP, Skibsted LH. Synergy between plant phenols and carotenoids in stabilizing lipid-bilayer membranes of giant unilamellar vesicles against oxidative destruction. SOFT MATTER 2020; 16:1792-1800. [PMID: 31970380 DOI: 10.1039/c9sm01415b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have investigated the synergism between plant phenols and carotenoids in protecting the phosphatidylcholine (PC) membranes of giant unilamellar vesicles (GUVs) from oxidative destruction, for which chlorophyll-a (Chl-a) was used as a lipophilic photosensitizer. The effect was examined for seven different combinations of β-carotene (β-CAR) and plant phenols. The light-induced change in GUV morphology was monitored via conventional optical microscopy, and quantified by a dimensionless image-entropy parameter, ΔE. The ΔE-t time evolution profiles exhibiting successive lag phase, budding phase and ending phase could be accounted for by a Boltzmann model function. The length of the lag phase (LP in s) for the combination of syringic acid and β-CAR was more than seven fold longer than for β-CAR alone, and those for other different combinations followed the order: salicylic acid < vanillic acid < syringic acid > rutin > caffeic acid > quercetin > catechin, indicating that moderately reducing phenols appeared to be the most efficient membrane co-stabilizers. The same order held for the residual contents of β-CAR in membranes after light-induced oxidative degradation as determined by resonance Raman spectroscopy. The dependence of LP on the reducing power of phenols coincided with the Marcus theory plot for the rate of electron transfer from phenols to the radical cation β-CAR˙+ as a primary oxidative product, suggesting that the plant phenol regeneration of β-CAR plays an important role in stabilizing the GUV membranes, as further supported by the involvement of CAR˙+ and the distinct shortening of its lifetime as shown by transient absorption spectroscopy.
Collapse
Affiliation(s)
- Yi-Ming Zhou
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | | | | | | | | | | | | |
Collapse
|
52
|
Ambruş VE, Busuioc S, Wagner AJ, Paillusson F, Kusumaatmaja H. Multicomponent flow on curved surfaces: A vielbein lattice Boltzmann approach. Phys Rev E 2019; 100:063306. [PMID: 31962535 DOI: 10.1103/physreve.100.063306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 11/07/2022]
Abstract
We develop and implement a finite difference lattice Boltzmann scheme to study multicomponent flows on curved surfaces, coupling the continuity and Navier-Stokes equations with the Cahn-Hilliard equation to track the evolution of the binary fluid interfaces. The standard lattice Boltzmann method relies on regular Cartesian grids, which makes it generally unsuitable to study flow problems on curved surfaces. To alleviate this limitation, we use a vielbein formalism to write the Boltzmann equation on an arbitrary geometry, and solve the evolution of the fluid distribution functions using a finite difference method. Focusing on the torus geometry as an example of a curved surface, we demonstrate drift motions of fluid droplets and stripes embedded on the surface of the torus. Interestingly, they migrate in opposite directions: fluid droplets to the outer side while fluid stripes to the inner side of the torus. For the latter we demonstrate that the global minimum configuration is unique for small stripe widths, but it becomes bistable for large stripe widths. Our simulations are also in agreement with analytical predictions for the Laplace pressure of the fluid stripes, and their damped oscillatory motion as they approach equilibrium configurations, capturing the corresponding decay timescale and oscillation frequency. Finally, we simulate the coarsening dynamics of phase separating binary fluids in the hydrodynamics and diffusive regimes for tori of various shapes, and compare the results against those for a flat two-dimensional surface. Our finite difference lattice Boltzmann scheme can be extended to other surfaces and coupled to other dynamical equations, opening up a vast range of applications involving complex flows on curved geometries.
Collapse
Affiliation(s)
- Victor E Ambruş
- Department of Physics, West University of Timişoara, 300223 Timişoara, Romania
| | - Sergiu Busuioc
- Department of Physics, West University of Timişoara, 300223 Timişoara, Romania
| | - Alexander J Wagner
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Fabien Paillusson
- School of Mathematics and Physics, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Halim Kusumaatmaja
- Department of Physics, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
53
|
Mangiarotti A, Genovese DM, Naumann CA, Monti MR, Wilke N. Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183060. [DOI: 10.1016/j.bbamem.2019.183060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
|
54
|
Sut TN, Park S, Choe Y, Cho NJ. Characterizing the Supported Lipid Membrane Formation from Cholesterol-Rich Bicelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15063-15070. [PMID: 31670521 DOI: 10.1021/acs.langmuir.9b02851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Supported lipid bilayers (SLBs) are simplified model membrane systems that mimic the fundamental properties of biological cell membranes and allow the surface-sensitive tools to be used in numerous sensing applications. SLBs can be prepared by various methods including vesicle fusion, solvent-assisted lipid bilayer (SALB), and bicelle adsorption and are generally composed of phospholipids. Incorporating other biologically relevant molecules, such as cholesterol (Chol), into SLBs has been reported with the vesicle fusion and SALB methods, whereas it remains unexplored with the bicelle absorption method. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and fluorescence microscopy techniques, we explored the possibility of forming SLBs from Chol-containing bicelles and discovered that Chol-enriched SLBs can be fabricated with bicelles. We also compared the Chol-enriched SLB formation of the bicelle method to that of vesicle fusion and SALB and discussed how the differences in lipid assembly properties can cause the differences in the adsorption kinetics and final results of SLB formation. Collectively, our findings demonstrate that the vesicle fusion method is least favorable for forming Chol-enriched SLBs, whereas the SALB and bicelle methods are more favorable, highlighting the need to consider the application requirements when choosing a suitable method for the formation of Chol-enriched SLBs.
Collapse
Affiliation(s)
- Tun Naw Sut
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Soohyun Park
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Younghwan Choe
- Department of Chemistry , Columbia University , 3000 Broadway , New York 10027 , United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| |
Collapse
|
55
|
Raguz M, Kumar SN, Zareba M, Ilic N, Mainali L, Subczynski WK. Confocal Microscopy Confirmed that in Phosphatidylcholine Giant Unilamellar Vesicles with very High Cholesterol Content Pure Cholesterol Bilayer Domains Form. Cell Biochem Biophys 2019; 77:309-317. [PMID: 31625023 DOI: 10.1007/s12013-019-00889-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022]
Abstract
The cholesterol (Chol) content in the fiber cell plasma membranes of the eye lens is extremely high, exceeding the solubility threshold in the lenses of old humans. This high Chol content forms pure Chol bilayer domains (CBDs) and Chol crystals in model membranes and membranes formed from the total lipid extracts from human lenses. CBDs have been detected using electron paramagnetic resonance (EPR) spin-labeling approaches. Here, we confirm the presence of CBDs in giant unilamellar vesicles prepared using the electroformation method from Chol/1-palmitoyl-2-oleoylphosphocholine and Chol/distearoylphosphatidylcholine mixtures. Confocal microscopy experiments using phospholipid (PL) analog (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-5,5'-disulfonic acid) and cholesterol analog fluorescent probes (23-(dipyrrometheneboron difluoride)-24-norcholesterol) were performed, allowing us to make three major conclusions: (1) In all membranes with a Chol/PL mixing ratio (expressed as a molar ratio) >2, pure CBDs were formed within the bulk PL bilayer saturated with Chol. (2) CBDs were present as the pure Chol bilayer and not as separate patches of Chol monolayers in each leaflet of the PL bilayer. (3) CBDs, presented as single large domains, were always located at the top of giant unilamellar vesicles, independent of the change in sample orientation (right-side-up/upside-down). Results obtained with confocal microscopy and fluorescent Chol and PL analogs, combined with those obtained using EPR and spin-labeled Chol and PL analogs, contribute to the understanding of the organization of lipids in the fiber cell plasma membranes of the human eye lens.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia. .,Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Suresh N Kumar
- Department of Pathology, CRI Imaging Core, Translational and Biomedical Research Center, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Mariusz Zareba
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology, Medical College of Wisconsin Eye Institute, Milwaukee, WI, USA
| | - Nada Ilic
- Department of Physics, Faculty of Science, University of Split, Split, Croatia
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Physics, Boise State University, 1910 University Drive, Boise, Idaho, 83725, USA
| | | |
Collapse
|
56
|
Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proc Natl Acad Sci U S A 2019; 116:21274-21284. [PMID: 31575745 PMCID: PMC6800329 DOI: 10.1073/pnas.1911892116] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plasmodesmata (PD) create cytoplasmic and membrane continuities between adjacent cells to facilitate cell–cell communication and virus movement. Plant cells have evolved diverse mechanisms to regulate PD plasticity against plant pathogens, including the accumulation of the defense hormone, salicylic acid (SA). However, the mechanism of how this occurs is not well understood. Here, we uncover a mechanism by which SA triggers Remorin-dependent membrane lipid nanodomain assembly, leading to enhancement of the liquid-ordered phase. The higher-ordered lipids, which are particularly enriched at PD membrane, decreased PD membrane plasticity, and thus restricted PD opening and impeded virus spreading. Our findings address a knowledge gap in plant defense mechanisms at the membrane level that rely on SA-controlled lipid order and PD closure. Plasmodesmata (PD) are plant-specific membrane-lined channels that create cytoplasmic and membrane continuities between adjacent cells, thereby facilitating cell–cell communication and virus movement. Plant cells have evolved diverse mechanisms to regulate PD plasticity in response to numerous environmental stimuli. In particular, during defense against plant pathogens, the defense hormone, salicylic acid (SA), plays a crucial role in the regulation of PD permeability in a callose-dependent manner. Here, we uncover a mechanism by which plants restrict the spreading of virus and PD cargoes using SA signaling by increasing lipid order and closure of PD. We showed that exogenous SA application triggered the compartmentalization of lipid raft nanodomains through a modulation of the lipid raft-regulatory protein, Remorin (REM). Genetic studies, superresolution imaging, and transmission electron microscopy observation together demonstrated that Arabidopsis REM1.2 and REM1.3 are crucial for plasma membrane nanodomain assembly to control PD aperture and functionality. In addition, we also found that a 14-3-3 epsilon protein modulates REM clustering and membrane nanodomain compartmentalization through its direct interaction with REM proteins. This study unveils a molecular mechanism by which the key plant defense hormone, SA, triggers membrane lipid nanodomain reorganization, thereby regulating PD closure to impede virus spreading.
Collapse
|
57
|
Senik SV, Psurtseva NV, Shavarda AL, Kotlova ER. Role of lipids in the thermal plasticity of basidial fungus Favolaschia manipularis. Can J Microbiol 2019; 65:870-879. [PMID: 31398296 DOI: 10.1139/cjm-2019-0284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, we examined the lipid composition of two strains of the tropical basidiomycete Favolaschia manipularis (Berk.) Teng, which differ in their adaptive potential to high (35 °C) and low (5 °C) temperatures. The results suggest that adaptation to extreme temperatures involves a change in the molecular composition of sterols, in addition to other well-known mechanisms of regulating membrane thickness and fluidity, such as changes in the lipid unsaturation and in the proportion of bilayer- and non-bilayer-forming lipids. It was demonstrated for the first time that adaptation to high temperature stress in fungi is accompanied by the accumulation of 9(11)-dehydroergosterol and ergosterol peroxide. Furthermore, increased thermal plasticity correlates with high storage lipid (triglycerides) content, accumulation of phosphatidic acid in the membrane, and an equal proportion of bilayer and non-bilayer lipids in the membrane.
Collapse
Affiliation(s)
- Svetlana V Senik
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia.,Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia
| | - Nadezhda V Psurtseva
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia.,Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia
| | - Alexey L Shavarda
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia.,Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia
| | - Ekaterina R Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia.,Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia
| |
Collapse
|
58
|
Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization. Biosci Rep 2019; 39:BSR20191024. [PMID: 31324731 PMCID: PMC6682550 DOI: 10.1042/bsr20191024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
The matrix protein M1 of the Influenza A virus (IAV) is supposed to mediate viral assembly and budding at the plasma membrane (PM) of infected cells. In order for a new viral particle to form, the PM lipid bilayer has to bend into a vesicle toward the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. In the present study, we use a combination of fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), cryo-electron tomography (cryo-ET) and scanning fluorescence correlation spectroscopy (sFCS) to investigate M1-induced membrane deformation in biophysical models of the PM. Our results indicate that M1 is indeed able to cause membrane curvature in lipid bilayers containing negatively charged lipids, in the absence of other viral components. Furthermore, we prove that protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1-M1 interactions and multimer formation are required in order to alter the bilayer three-dimensional structure, through the formation of a protein scaffold. Finally, our results suggest that, in a physiological context, M1-induced membrane deformation might be modulated by the initial bilayer curvature and the lateral organization of membrane components (i.e. the presence of lipid domains).
Collapse
|
59
|
Rivas-Marin E, Stettner S, Gottshall EY, Santana-Molina C, Helling M, Basile F, Ward NL, Devos DP. Essentiality of sterol synthesis genes in the planctomycete bacterium Gemmata obscuriglobus. Nat Commun 2019; 10:2916. [PMID: 31266954 PMCID: PMC6606645 DOI: 10.1038/s41467-019-10983-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/10/2019] [Indexed: 12/27/2022] Open
Abstract
Sterols and hopanoids are chemically and structurally related lipids mostly found in eukaryotic and bacterial cell membranes. Few bacterial species have been reported to produce sterols and this anomaly had originally been ascribed to lateral gene transfer (LGT) from eukaryotes. In addition, the functions of sterols in these bacteria are unknown and the functional overlap between sterols and hopanoids is still unclear. Gemmata obscuriglobus is a bacterium from the Planctomycetes phylum that synthesizes sterols, in contrast to its hopanoid-producing relatives. Here we show that sterols are essential for growth of G. obscuriglobus, and that sterol depletion leads to aberrant membrane structures and defects in budding cell division. This report of sterol essentiality in a prokaryotic species advances our understanding of sterol distribution and function, and provides a foundation to pursue fundamental questions in evolutionary cell biology.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, 41013, Spain
| | - Sean Stettner
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071-2000, USA
| | - Ekaterina Y Gottshall
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071-2000, USA
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, 41013, Spain
| | - Mitch Helling
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071-2000, USA
| | - Franco Basile
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071-2000, USA
| | - Naomi L Ward
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071-2000, USA.
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, 41013, Spain.
| |
Collapse
|
60
|
Bui TT, Suga K, Umakoshi H. Ergosterol-Induced Ordered Phase in Ternary Lipid Mixture Systems of Unsaturated and Saturated Phospholipid Membranes. J Phys Chem B 2019; 123:6161-6168. [DOI: 10.1021/acs.jpcb.9b03413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tham Thi Bui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
61
|
Hilgemann DW, Lin MJ, Fine M, Deisl C. On the existence of endocytosis driven by membrane phase separations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183007. [PMID: 31202864 DOI: 10.1016/j.bbamem.2019.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 01/15/2023]
Abstract
Large endocytic responses can occur rapidly in diverse cell types without dynamins, clathrin, or actin remodeling. Our experiments suggest that membrane phase separations are crucial with more ordered plasma membrane domains being internalized. Not only do these endocytic processes rely on coalescence of membrane domains, they are promoted by participation of membrane proteins in such domains, one important regulatory influence being palmitoylation. Membrane actin cytoskeleton in general resists membrane phase transitions, and its remodeling may play many roles. Besides membrane 'caging' and 'pinching' roles, typically ascribed to clathrin and dynamins, cytoskeleton remodeling may modify local membrane tension and buckling, as well as the presence and location of actin- and tension-free membrane patches. Endocytosis that depends on membrane phase separations becomes activated in metabolic stress and in response to Ca and PI3 kinase signaling. Internalized membrane traffics normally, and the secretory pathway eventually resupplies membrane to the plasmalemma or directs internalized membrane to other locations, including the extracellular space as exosomes. We describe here that endocytosis driven by membrane phase transitions is regulated by the same signaling mechanisms that regulate macropinocytosis, and it may play diverse roles in cells from nutrient assimilation to membrane recycling, cell migration, and the initiation of quiescent or hibernating cell states. Membrane ordering and phase separations have been shown to promote endocytosis in diverse cell types, including fibroblasts, myocytes, glial cells, and immune cells. We propose that clathrin/dynamin-independent endocytosis represents a continuum of related mechanisms with variable but universal dependence on membrane ordering and actin remodeling. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Donald W Hilgemann
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA.
| | - Mei-Jung Lin
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA
| | - Michael Fine
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA
| | - Christine Deisl
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA
| |
Collapse
|
62
|
Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles. J Microbiol 2019; 57:498-508. [PMID: 31054137 DOI: 10.1007/s12275-019-8483-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/12/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
Outer membrane vesicles (OMVs) are nanostructures of 20-200 nm diameter deriving from the surface of several Gram-negative bacteria. OMVs are emerging as shuttles involved in several mechanisms of communication and environmental adaptation. In this work, OMVs were isolated and characterized from Novosphingobium sp. PP1Y, a Gram-negative non-pathogenic microorganism lacking LPS on the outer membrane surface and whose genome was sequenced and annotated. Scanning electron microscopy performed on samples obtained from a culture in minimal medium highlighted the presence of PP1Y cells embedded in an extracellular matrix rich in vesicular structures. OMVs were collected from the exhausted growth medium during the mid-exponential phase, and purified by ultracentrifugation on a sucrose gradient. Atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis showed that purified PP1Y OMVs had a spherical morphology with a diameter of ca. 150 nm and were homogenous in size and shape. Moreover, proteomic and fatty acid analysis of purified OMVs revealed a specific biochemical "fingerprint", suggesting interesting details concerning their biogenesis and physiological role. Moreover, these extracellular nanostructures do not appear to be cytotoxic on HaCaT cell line, thus paving the way to their future use as novel drug delivery systems.
Collapse
|
63
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
64
|
Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1112-1122. [PMID: 30904407 DOI: 10.1016/j.bbamem.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.
Collapse
|
65
|
Gu RX, Baoukina S, Tieleman DP. Cholesterol Flip-Flop in Heterogeneous Membranes. J Chem Theory Comput 2019; 15:2064-2070. [PMID: 30633868 DOI: 10.1021/acs.jctc.8b00933] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cholesterol is the most abundant molecule in the plasma membrane of mammals. Its distribution across the two membrane leaflets is critical for understanding how cells work. Cholesterol trans-bilayer motion (flip-flop) is a key process influencing its distribution in membranes. Despite extensive investigations, the rate of cholesterol flip-flop and its dependence on the lateral heterogeneity of membranes remain uncertain. In this work, we used atomistic molecular dynamics simulations to sample spontaneous cholesterol flip-flop events in a DPPC:DOPC:cholesterol mixture with heterogeneous lateral distribution of lipids. In addition to an overall flip-flop rate at the time scale of sub-milliseconds, we identified a significant impact of local environment on flip-flop rate. We discuss the atomistic details of the flip-flop events observed in our simulations.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences , University of Calgary , 2500 University Drive, N.W. , Calgary , Alberta T2N 1N4 , Canada
| | - Svetlana Baoukina
- Centre for Molecular Simulation and Department of Biological Sciences , University of Calgary , 2500 University Drive, N.W. , Calgary , Alberta T2N 1N4 , Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences , University of Calgary , 2500 University Drive, N.W. , Calgary , Alberta T2N 1N4 , Canada
| |
Collapse
|
66
|
Bornemann S, Herzog M, Winter R. Impact of Y3+-ions on the structure and phase behavior of phospholipid model membranes. Phys Chem Chem Phys 2019; 21:5730-5743. [DOI: 10.1039/c8cp07413e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trivalent yttrium-ions reveal a calcium-like membrane interaction by coordinating to the phosphate groups, resulting in a stronger lipid packing and partial dehydration of the headgroup region.
Collapse
Affiliation(s)
- Steffen Bornemann
- Physical Chemistry I – Biophysical Chemistry
- TU Dortmund University
- Faculty of Chemistry and Chemical Biology
- D-44221 Dortmund
- Germany
| | - Marius Herzog
- Physical Chemistry I – Biophysical Chemistry
- TU Dortmund University
- Faculty of Chemistry and Chemical Biology
- D-44221 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- TU Dortmund University
- Faculty of Chemistry and Chemical Biology
- D-44221 Dortmund
- Germany
| |
Collapse
|
67
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
68
|
Oh Y, Sung BJ. Facilitated and Non-Gaussian Diffusion of Cholesterol in Liquid Ordered Phase Bilayers Depends on the Flip-Flop and Spatial Arrangement of Cholesterol. J Phys Chem Lett 2018; 9:6529-6535. [PMID: 30346769 DOI: 10.1021/acs.jpclett.8b02982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The diffusion of cholesterol in biological membranes is critical to cellular processes such as the formation of cholesterol-enriched domains. The cholesterol diffusion may be complicated especially when cholesterol flip-flops and/or stays at the membrane center. Understanding the diffusion mechanism of cholesterol at a molecular level should be, therefore, a topic of interest. We perform molecular dynamics simulations up to 100 μs for lipid bilayers with various concentrations of cholesterol. We find that cholesterol diffusion in the liquid ordered phase depends on whether it is within leaflets or at the bilayer center, is non-Gaussian for several microseconds, and is enhanced significantly compared to that of lipids. Cholesterol at the bilayer center diffuses fast, while cholesterol in the hydrocarbon region with upright orientation diffuses relatively slowly. Such position-dependent dynamics of cholesterol leads to facilitated and non-Gaussian diffusion.
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Chemistry and Research Institute for Basic Science , Sogang University , Seoul 04107 , Republic of Korea
| | - Bong June Sung
- Department of Chemistry and Research Institute for Basic Science , Sogang University , Seoul 04107 , Republic of Korea
| |
Collapse
|
69
|
Pantelopulos GA, Straub JE. Regimes of Complex Lipid Bilayer Phases Induced by Cholesterol Concentration in MD Simulation. Biophys J 2018; 115:2167-2178. [PMID: 30414630 DOI: 10.1016/j.bpj.2018.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023] Open
Abstract
Cholesterol is essential to the formation of phase-separated lipid domains in membranes. Lipid domains can exist in different thermodynamic phases depending on the molecular composition and play significant roles in determining structure and function of membrane proteins. We investigate the role of cholesterol in the structure and dynamics of ternary lipid mixtures displaying phase separation using molecular dynamics simulations, employing a physiologically relevant span of cholesterol concentration. We find that cholesterol can induce formation of three regimes of phase behavior: 1) miscible liquid-disordered bulk, 2) phase-separated, domain-registered coexistence of liquid-disordered and liquid-ordered domains, and 3) phase-separated, domain-antiregistered coexistence of liquid-disordered and newly identified nanoscopic gel domains composed of cholesterol threads we name "cholesterolic gel" domains. These findings are validated and discussed in the context of current experimental knowledge, models of cholesterol spatial distributions, and models of ternary lipid-mixture phase separation.
Collapse
Affiliation(s)
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts.
| |
Collapse
|
70
|
Emami S, Su WC, Purushothaman S, Ngassam VN, Parikh AN. Permeability and Line-Tension-Dependent Response of Polyunsaturated Membranes to Osmotic Stresses. Biophys J 2018; 115:1942-1955. [PMID: 30366629 DOI: 10.1016/j.bpj.2018.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/06/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
The lipidome of plant plasma membranes-enriched in cellular phospholipids containing at least one polyunsaturated fatty acid tail and a variety of phytosterols and phytosphingolipids-is adapted to significant abiotic stresses. But how mesoscale membrane properties of these membranes such as permeability and deformability, which arise from their unique molecular compositions and corresponding lateral organization, facilitate response to global mechanical stresses is largely unknown. Here, using giant vesicles reconstituting mixtures of polyunsaturated lipids (soy phosphatidylcholine), glucosylceramide, and sitosterol common to plant membranes, we find that the membranes adopt "janus-like" domain morphologies and display anomalous solute permeabilities. The former textures the membrane with a single sterol-glucosylceramide-enriched, liquid-ordered domain separated from a liquid-disordered phase consisting primarily of soy phosphatidylcholine. When subject to osmotic downshifts, the giant unilamellar vesicles (GUVs) respond by transiently producing well-known swell-burst cycles. In each cycle, the influx of water swells the GUV, rendering the membrane tense. Subsequent rupture of the membrane through transient poration, which localizes in the liquid-disordered phase or at the domain boundaries, reduces the osmotic stress by expelling some of the excess osmolytes (and solvent) before sealing. When subject to abrupt hypertonic stress, they deform by nucleating buds at the domain phase boundaries. Remarkably, this incipient vesiculation is reversed in a statistically significant fraction of GUVs because of the interplay with solute permeation timescales, which render osmotic stresses short-lived. This, then, suggests a novel control mechanism in which an interplay of permeability and deformability regulates osmotically induced membrane deformation and limits vesiculation-induced loss of membrane material. Interestingly, recapitulation of such dynamic morphological reconfigurability-switching between budded and nonbudded morphologies-due to the interplay of membrane permeability, which temporally reverses the osmotic gradient, and domain boundaries, which select modes of deformations, might prove valuable in endowing synthetic cells with novel morphological responsiveness.
Collapse
Affiliation(s)
- Shiva Emami
- Departments of Biomedical Engineering, University of California, Davis, California; Chemical Engineering, University of California, Davis, California
| | - Wan-Chih Su
- Chemistry, University of California, Davis, California
| | - Sowmya Purushothaman
- Departments of Biomedical Engineering, University of California, Davis, California
| | - Viviane N Ngassam
- Departments of Biomedical Engineering, University of California, Davis, California
| | - Atul N Parikh
- Departments of Biomedical Engineering, University of California, Davis, California; Chemistry, University of California, Davis, California; Chemical Engineering, University of California, Davis, California; Materials Science & Engineering, University of California, Davis, California.
| |
Collapse
|
71
|
The lipid mediator lysophosphatidic acid induces folding of disordered peptides with basic amphipathic character into rare conformations. Sci Rep 2018; 8:14499. [PMID: 30266943 PMCID: PMC6162328 DOI: 10.1038/s41598-018-32786-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Membrane-active, basic amphipathic peptides represent a class of biomolecules with diverse functions. Sequentially close protein segments also show similar behaviour in several ways. Here we investigated the effect of the lipid mediator lysophosphatidic acid (LPA) on the conformation of structurally disordered peptides including extracellular antimicrobial peptides (AMPs), and calmodulin-binding motifs derived from cytosolic and membrane target proteins. The interaction with associated LPA resulted in gain of ordered secondary structure elements, which for most cases were previously uncharacteristic of the particular peptide. Results revealed mechanism of the LPA-peptide interactions with regulation of the lipid on peptide conformation and oligomerization in a concentration-dependent manner involving (1) relocation of tryptophan residues into the lipid cluster, (2) multiple contacts between the binding partners dictated by complex driving forces, (3) multiple peptide binding to LPA associates with an affinity in the low micromolar range, and (4) selectivity for LPA compared with structurally related lipids. In line with recent findings showing endogenous molecules inducing structural changes in AMPs, we propose that accumulation of LPA in signalling or pathological processes might modulate host-defense activity or trigger certain processes by direct interaction with cationic amphipathic peptide sequences.
Collapse
|
72
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
73
|
Entropic forces drive clustering and spatial localization of influenza A M2 during viral budding. Proc Natl Acad Sci U S A 2018; 115:E8595-E8603. [PMID: 30150411 DOI: 10.1073/pnas.1805443115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influenza A matrix 2 (M2) transmembrane protein facilitates virion release from the infected host cell. In particular, M2 plays a role in the induction of membrane curvature and/or in the scission process whereby the envelope is cut upon virion release. Here we show using coarse-grained computer simulations that various M2 assembly geometries emerge due to an entropic driving force, resulting in compact clusters or linearly extended aggregates as a direct consequence of the lateral membrane stresses. Conditions under which these protein assemblies will cause the lipid membrane to curve are explored, and we predict that a critical cluster size is required for this to happen. We go on to demonstrate that under the stress conditions taking place in the cellular membrane as it undergoes large-scale membrane remodeling, the M2 protein will, in principle, be able to both contribute to curvature induction and sense curvature to line up in manifolds where local membrane line tension is high. M2 is found to exhibit linactant behavior in liquid-disordered-liquid-ordered phase-separated lipid mixtures and to be excluded from the liquid-ordered phase, in near-quantitative agreement with experimental observations. Our findings support a role for M2 in membrane remodeling during influenza viral budding both as an inducer and a sensor of membrane curvature, and they suggest a mechanism by which localization of M2 can occur as the virion assembles and releases from the host cell, independent of how the membrane curvature is produced.
Collapse
|
74
|
Montis C, Till U, Vicendo P, Roux C, Mingotaud AF, Violleau F, Demazeau M, Berti D, Lonetti B. Extended photo-induced endosome-like structures in giant vesicles promoted by block-copolymer nanocarriers. NANOSCALE 2018; 10:15442-15446. [PMID: 30091780 DOI: 10.1039/c8nr04355h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Upon irradiation, the photosensitizer pheophorbide-a causes dramatic morphological transitions in giant unilamellar lipid vesicles. This endocytosis-like process occurs only when the photoactive species are encapsulated in a copolymer nanocarrier and strictly depends on the chemical nature of the copolymer. Altogether, these results open up new perspectives in the field of photo-chemical internalization mediated by nanoassemblies.
Collapse
Affiliation(s)
- C Montis
- Department of Chemistry "Ugo Schiff", University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino Firenze, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Steck TL, Lange Y. Transverse distribution of plasma membrane bilayer cholesterol: Picking sides. Traffic 2018; 19:750-760. [PMID: 29896788 DOI: 10.1111/tra.12586] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022]
Abstract
The transverse asymmetry (sidedness) of phospholipids in plasma membrane bilayers is well characterized, distinctive, actively maintained and functionally important. In contrast, numerous studies using a variety of techniques have concluded that plasma membrane bilayer cholesterol is either mostly in the outer leaflet or the inner leaflet or is fairly evenly distributed. Sterols might simply partition according to their differing affinities for the asymmetrically disposed phospholipids, but some studies have proposed that it is actively transported to the outer leaflet. Other work suggests that the sterol is enriched in the inner leaflet, driven by either positive interactions with the phosphatidylethanolamine on that side or by its exclusion from the outer leaflet by the long chain sphingomyelin molecules therein. This uncertainty raises three questions: is plasma membrane cholesterol sidedness fixed in a given cell or cell type; is it generally the same among mammalian species; and does it serve specific physiological functions? This review grapples with these issues.
Collapse
Affiliation(s)
- Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
76
|
Sampayo RG, Toscani AM, Rubashkin MG, Thi K, Masullo LA, Violi IL, Lakins JN, Cáceres A, Hines WC, Coluccio Leskow F, Stefani FD, Chialvo DR, Bissell MJ, Weaver VM, Simian M. Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells. J Cell Biol 2018; 217:2777-2798. [PMID: 29980625 PMCID: PMC6080927 DOI: 10.1083/jcb.201703037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with β1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with β1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling.
Collapse
Affiliation(s)
- Rocío G Sampayo
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigación, Buenos Aires, Argentina .,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Ciudad Universitaria, Buenos Aires, Argentina.,Universidad Nacional de San Martín, Instituto de Nanosistemas, Campus Miguelete, San Martín, Argentina
| | - Andrés M Toscani
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, IQUIBICEN UBA-CONICET y Universidad Nacional de Luján, Departamento de Ciencias Básicas, Buenos Aires, Argentina
| | - Matthew G Rubashkin
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Kate Thi
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Luciano A Masullo
- Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ianina L Violi
- Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Jonathon N Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Alfredo Cáceres
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
| | - William C Hines
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Federico Coluccio Leskow
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, IQUIBICEN UBA-CONICET y Universidad Nacional de Luján, Departamento de Ciencias Básicas, Buenos Aires, Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dante R Chialvo
- Center for Complex Systems and Brain Sciences, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Tecnológicas, San Martín, Argentina
| | - Mina J Bissell
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Marina Simian
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigación, Buenos Aires, Argentina .,Universidad Nacional de San Martín, Instituto de Nanosistemas, Campus Miguelete, San Martín, Argentina
| |
Collapse
|
77
|
Dasgupta R, Miettinen MS, Fricke N, Lipowsky R, Dimova R. The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. Proc Natl Acad Sci U S A 2018; 115:5756-5761. [PMID: 29760097 PMCID: PMC5984512 DOI: 10.1073/pnas.1722320115] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ganglioside GM1 is present in neuronal membranes at elevated concentrations with an asymmetric spatial distribution. It is known to generate curvature and can be expected to strongly influence the neuron morphology. To elucidate these effects, we prepared giant vesicles with GM1 predominantly present in one leaflet of the membrane, mimicking the asymmetric GM1 distribution in neuronal membranes. Based on pulling inward and outward tubes, we developed a technique that allowed the direct measurement of the membrane spontaneous curvature. Using vesicle electroporation and fluorescence intensity analysis, we were able to quantify the GM1 asymmetry across the membrane and to subsequently estimate the local curvature generated by the molecule in the bilayer. Molecular-dynamics simulations confirm the experimentally determined dependence of the membrane spontaneous curvature as a function of GM1 asymmetry. GM1 plays a crucial role in connection with receptor proteins. Our results on curvature generation of GM1 point to an additional important role of this ganglioside, namely in shaping neuronal membranes.
Collapse
Affiliation(s)
- Raktim Dasgupta
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Markus S Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nico Fricke
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
78
|
Sych T, Mély Y, Römer W. Lipid self-assembly and lectin-induced reorganization of the plasma membrane. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170117. [PMID: 29632269 PMCID: PMC5904303 DOI: 10.1098/rstb.2017.0117] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2018] [Indexed: 01/10/2023] Open
Abstract
The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Taras Sych
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
79
|
Ma D, Keten S. Stable micelles based on a mixture of coiled-coils: the role of different oligomeric states. NANOSCALE 2018; 10:7589-7596. [PMID: 29637959 DOI: 10.1039/c7nr09695j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Homomeric micelles with tunable size, shape and stability have been extensively studied for biomedical applications such as drug carriers. However, designing the local valency and self-assembled morphology of nanophase-separated multicomponent micelles with varied ligand binding possibilities remains challenging. Here, we present micelles self-assembled from amphiphilic peptide-PEG-lipid hybrid conjugates, where the peptides can be either a 3-helix or 4-helix coiled-coil. We demonstrate that the micelle size and sphericity can be controlled based on the coiled-coil oligomeric state. Using theory and coarse-grained dissipative particle dynamics (DPD) simulations in an explicit solvent simulation, we studied the distribution of 3-helix and 4-helix conjugates within the mixed micelles and observed self-organization into nanodomains within the mixed micelle. We discovered that the phase separation behavior is dictated by the geometry mismatch in the alkyl chain length from different coiled-coil oligomeric states. Our analyses of the self-assembly tendency and drug delivery potency of mixed micelles with controlled multivalency provide important insights into the assembly and formation of nanophase-separated micelles.
Collapse
Affiliation(s)
- Dan Ma
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
80
|
Konno Y, Yoshimura A, Naito N, Aramaki K. Cholesterol-Induced Formation of Liquid Ordered Phase-Like Structures in Non-Phospholipid Systems. J Oleo Sci 2018; 67:419-426. [PMID: 29607888 DOI: 10.5650/jos.ess17069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The formation of liquid ordered (Lo) phase-like structures in stearyltrimethylammonium chloride/cholesterol/1,3-butanediol/water and hepta(oxyethylen) octadecyl ether/cholesterol/1,3-butanediol/water systems was investigated. Differential scanning calorimetry and X-ray scattering measurements confirmed that Lo phase-like structures were formed in both surfactant/cholesterol systems, similar to the lysophospholipid/cholesterol system. It was revealed that the concentration of cholesterol at which only Lo phase-like structures are formed increases in the order stearyltrimethylammonium chloride < lysophospholipid < hepta(oxyethylen) octadecyl ether. In addition, for both surfactants, the interlayer spacing, d, was larger for Lo phase-like structures than for α-gel structures. These results suggest that the ionicity and structure of the hydrophilic group of each surfactant play important roles.
Collapse
Affiliation(s)
| | - Akio Yoshimura
- Graduate School of Environment and Information Sciences, Yokohama National University
| | - Noboru Naito
- Research & Development Division, KOSÉ Corporation
| | - Kenji Aramaki
- Graduate School of Environment and Information Sciences, Yokohama National University
| |
Collapse
|
81
|
Liu XC, Du HH, Fu LM, Han RM, Wang P, Ai XC, Zhang JP, Skibsted LH. Integrity of Membrane Structures in Giant Unilamellar Vesicles as Assay for Antioxidants and Prooxidants. Anal Chem 2018; 90:2126-2133. [PMID: 29298041 DOI: 10.1021/acs.analchem.7b04383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have attempted to evaluate, on the basis of optical microscopy for a single giant unilamellar vesicle (GUV), the potency of antioxidants in protecting GUV membranes from oxidative destruction. Photosensitized membrane budding of GUVs prepared from soybean phosphatidylcholine with chlorophyll a (Chl a) and β-carotene (β-Car) as photosensitizer and protector, respectively, were followed by microscopic imaging. A dimensionless entropy parameter, ΔE, as derived from the time-resolved microscopic images, was employed to describe the evolution of morphological variation of GUVs. As an indication of membrane instability, the budding process showed three successive temporal regimes as a common feature: a lag phase prior to the initiation of budding characterized by LP (in s), a budding phase when ΔE increased with a rate of kΔE (in s-1), and an ending phase with morphology stabilized at a constant ΔEend (dimensionless). We show that the phase-associated parameters can be objectively obtained by fitting the ΔE-t kinetics curves to a Boltzmann function and that all of the parameters are rather sensitive to β-Car concentration. As for the efficacy of these parameters in quantifying the protection potency of β-Car, kΔE is shown to be most sensitive for β-Car in a concentration regime of biological significance of <1 × 10-7 M, whereas LP and ΔEend are more sensitive for β-Car concentrations exceeding 1 × 10-7 M. Furthermore, based on the results of GUV imaging and fluorescence and Raman spectroscopies, we have revealed for different phases the mechanistic interplay among 1O2* diffusion, PC-OOH accumulation, Chl a and/or β-Car consumption, and the morphological variation. The developed assay should be valuable for characterizing the potency of antioxidants or prooxidants in the protection or destruction of the membrane integrity of GUVs.
Collapse
Affiliation(s)
- Xiao-Chen Liu
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Hui-Hui Du
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Rui-Min Han
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Peng Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Xi-Cheng Ai
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Leif H Skibsted
- Department of Food Science, University of Copenhagen , Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
82
|
Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci 2018; 11:10. [PMID: 29410613 PMCID: PMC5787076 DOI: 10.3389/fnmol.2018.00010] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS.
Collapse
Affiliation(s)
- Timothy J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
83
|
Yamauchi Y, Rogers MA. Sterol Metabolism and Transport in Atherosclerosis and Cancer. Front Endocrinol (Lausanne) 2018; 9:509. [PMID: 30283400 PMCID: PMC6157400 DOI: 10.3389/fendo.2018.00509] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023] Open
Abstract
Cholesterol is a vital lipid molecule for mammalian cells, regulating fluidity of biological membranes, and serving as an essential constituent of lipid rafts. Mammalian cells acquire cholesterol from extracellular lipoproteins and from de novo synthesis. Cholesterol biosynthesis generates various precursor sterols. Cholesterol undergoes metabolic conversion into oxygenated sterols (oxysterols), bile acids, and steroid hormones. Cholesterol intermediates and metabolites have diverse and important cellular functions. A network of molecular machineries including transcription factors, protein modifiers, sterol transporters/carriers, and sterol sensors regulate sterol homeostasis in mammalian cells and tissues. Dysfunction in metabolism and transport of cholesterol, sterol intermediates, and oxysterols occurs in various pathophysiological settings such as atherosclerosis, cancers, and neurodegenerative diseases. Here we review the cholesterol, intermediate sterol, and oxysterol regulatory mechanisms and intracellular transport machineries, and discuss the roles of sterols and sterol metabolism in human diseases.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- *Correspondence: Yoshio Yamauchi
| | - Maximillian A. Rogers
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
84
|
Hallmarks of Reversible Separation of Living, Unperturbed Cell Membranes into Two Liquid Phases. Biophys J 2018; 113:2425-2432. [PMID: 29211996 DOI: 10.1016/j.bpj.2017.09.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 01/04/2023] Open
Abstract
Controversy has long surrounded the question of whether spontaneous lateral demixing of membranes into coexisting liquid phases can organize proteins and lipids on micron scales within unperturbed, living cells. A clear answer hinges on observation of hallmarks of a reversible phase transition. Here, by directly imaging micron-scale membrane domains of yeast vacuoles both in vivo and cell free, we demonstrate that the domains arise through a phase separation mechanism. The domains are large, have smooth boundaries, and can merge quickly, consistent with fluid phases. Moreover, the domains disappear above a distinct miscibility transition temperature (Tmix) and reappear below Tmix, over multiple heating and cooling cycles. Hence, large-scale membrane organization in living cells under physiologically relevant conditions can be controlled by tuning a single thermodynamic parameter.
Collapse
|
85
|
Kawakami LM, Yoon BK, Jackman JA, Knoll W, Weiss PS, Cho NJ. Understanding How Sterols Regulate Membrane Remodeling in Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14756-14765. [PMID: 29182278 DOI: 10.1021/acs.langmuir.7b03236] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The addition of single-chain lipid amphiphiles such as antimicrobial fatty acids and monoglycerides to confined, two-dimensional phospholipid bilayers can trigger the formation of three-dimensional membrane morphologies as a passive means to regulate stress. To date, relevant experimental studies have been conducted using pure phospholipid compositions, and extending such insights to more complex, biologically relevant lipid compositions that include phospholipids and sterols is warranted because sterols are important biological mediators of membrane stress relaxation. Herein, using the quartz crystal microbalance-dissipation (QCM-D) technique, we investigated membrane remodeling behaviors triggered by the addition of sodium dodecyl sulfate (SDS), lauric acid (LA), and glycerol monolaurate (GML) to supported lipid bilayers (SLBs) composed of phospholipid and cholesterol mixtures. The SLB platforms were prepared by the solvent-assisted lipid bilayer method in order to form cholesterol-rich SLBs with tunable cholesterol fractions (0-52 mol %). The addition of SDS or LA to fabricated SLBs induced tubule formation, and the extent of membrane remodeling was greater in SLBs with higher cholesterol fractions. In marked contrast, GML addition led to bud formation, and the extent of membrane remodeling was lower in SLBs with higher cholesterol fractions. To explain these empirical observations, we discuss how cholesterol influences the elastic (stiffness) and viscous (stress relaxation) properties of phospholipid/cholesterol lipid bilayers as well as how the membrane translocation properties of single-chain lipid amphiphiles affect the corresponding membrane morphological responses. Collectively, our findings demonstrate that single-chain lipid amphiphiles induce highly specific membrane morphological responses across both simplified and complex model membranes, and cholesterol can promote or inhibit membrane remodeling by a variety of molecular mechanisms.
Collapse
Affiliation(s)
- Lisa M Kawakami
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- BioSensor Technologies, AIT-Austrian Institute of Technology , Muthgasse 11, 1190 Vienna, Austria
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Wolfgang Knoll
- BioSensor Technologies, AIT-Austrian Institute of Technology , Muthgasse 11, 1190 Vienna, Austria
| | | | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
86
|
Kubsch B, Robinson T, Steinkühler J, Dimova R. Phase Behavior of Charged Vesicles Under Symmetric and Asymmetric Solution Conditions Monitored with Fluorescence Microscopy. J Vis Exp 2017. [PMID: 29155700 PMCID: PMC5755220 DOI: 10.3791/56034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phase-separated giant unilamellar vesicles (GUVs) exhibiting coexisting liquid-ordered and liquid-disordered domains are a common biophysical tool to investigate the lipid raft hypothesis. Numerous studies, however, neglect the impact of physiological solution conditions. On that account, the current work presents the effect of high-salinity buffer and trans-membrane solution asymmetry on liquid-liquid phase separation in charged GUVs grown from dioleylphosphatidylglycerol, egg sphingomyelin, and cholesterol. The effects were studied under isothermal and varying temperature conditions. We describe equipment and experimental strategies applicable for monitoring the stability of coexisting liquid domains in charged vesicles under symmetric and asymmetric high-salinity solution conditions. This includes an approach to prepare charged multicomponent GUVs in high-salinity buffer at high temperatures. The protocol entails the option to perform a partial exchange of the external solution by a simple dilution step while minimizing the vesicle dilution. An alternative approach is presented utilizing a microfluidic device that allows for a complete external solution exchange. The solution effects on phase separation were also studied under varying temperatures. To this end, we present the basic design and utility of an in-house built temperature control chamber. Furthermore, we reflect on the assessment of the GUV phase state, pitfalls associated with it and how to circumvent them.
Collapse
|
87
|
Werner S, Ebenhan J, Poppe M, Poppe S, Ebert H, Tschierske C, Bacia K. Effects of Lateral and Terminal Chains of X-Shaped Bolapolyphiles with Oligo(phenylene ethynylene) Cores on Self-Assembly Behavior. Part 2: Domain Formation by Self-Assembly in Lipid Bilayer Membranes. Polymers (Basel) 2017; 9:E476. [PMID: 30965779 PMCID: PMC6418688 DOI: 10.3390/polym9100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/01/2023] Open
Abstract
Supramolecular self-assembly of membrane constituents within a phospholipid bilayer creates complex functional platforms in biological cells that operate in intracellular signaling, trafficking and membrane remodeling. Synthetic polyphilic compounds of macromolecular or small size can be incorporated into artificial phospholipid bilayers. Featuring three or four moieties of different philicities, they reach beyond ordinary amphiphilicity and open up avenues to new functions and interaction concepts. Here, we have incorporated a series of X-shaped bolapolyphiles into DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayers of giant unilamellar vesicles. The bolapolyphiles consist of a rod-like oligo(phenylene ethynylene) (OPE) core, hydrophilic glycerol-based headgroups with or without oligo(ethylene oxide) expansions at both ends and two lateral alkyl chains attached near the center of the OPE core. In the absence of DPPC and water, the compounds showed thermotropic liquid-crystalline behavior with a transition between polyphilic and amphiphilic assembly (see part 1 in this issue). In DPPC membranes, various trends in the domain morphologies were observed upon structure variations, which entailed branched alkyl chains of various sizes, alkyl chain semiperfluorination and size expansion of the headgroups. Observed effects on domain morphology are interpreted in the context of the bulk behavior (part 1) and of a model that was previously developed based on spectroscopic and physicochemical data.
Collapse
Affiliation(s)
- Stefan Werner
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany.
| | - Jan Ebenhan
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany.
| | - Marco Poppe
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| | - Silvio Poppe
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| | - Helgard Ebert
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| | - Carsten Tschierske
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| | - Kirsten Bacia
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
88
|
Patalag LJ, Sibold J, Schütte OM, Steinem C, Werz DB. Gb 3 Glycosphingolipids with Fluorescent Oligoene Fatty Acids: Synthesis and Phase Behavior in Model Membranes. Chembiochem 2017; 18:2171-2178. [PMID: 28941080 DOI: 10.1002/cbic.201700414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 12/11/2022]
Abstract
Glycosphingolipids are involved in a number of physiological and pathophysiological processes, and they serve as receptors for a variety of bacterial toxins and viruses. To investigate their function in lipid membranes, fluorescently labeled glycosphingolipids are highly desirable. Herein, a synthetic route to access Gb3 glycosphingolipids with fluorescently labeled fatty acids, consisting of pentaene and hexaene moieties either at the terminus or in the middle of the acyl chain, has been developed. The fluorescent properties of the Gb3 derivatives were investigated in small unilamellar vesicles composed of a raft-like mixture. Phase-separated giant unilamellar vesicles (GUVs) allowed the quantification of the apparent partitioning coefficients of the Gb3 compounds by means of confocal fluorescence laser scanning microscopy. The determined partition coefficients demonstrate that the Gb3 derivatives are preferentially localized in the liquid-disordered (ld ) phase. To analyze whether the compounds behave like their physiological counterparts, Cy3-labeled (Cy: cyanine) Shiga toxin B subunits (STxB) were specifically bound to Gb3 -doped GUVs. However, the protein was favorably localized in the ld phase, in contrast to results reported for STxB bound to naturally occurring Gb3 , which is discussed in terms of the packing density of the lipids in the liquid-ordered (lo ) phase.
Collapse
Affiliation(s)
- Lukas J Patalag
- TU Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| | - Jeremias Sibold
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Ole M Schütte
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Claudia Steinem
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Daniel B Werz
- TU Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
89
|
Mo GCH, Yip CM. Structural templating of J-aggregates: Visualizing bis(monoacylglycero)phosphate domains in live cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1687-1695. [PMID: 28844737 DOI: 10.1016/j.bbapap.2017.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Identifying the key structural and dynamical determinants that drive the association of biomolecules, whether in solution, or perhaps more importantly in a membrane environment, has critical implications for our understanding of cellular dynamics, processes, and signaling. With recent advances in high-resolution imaging techniques, from the development of new molecular labels to technical advances in imaging methodologies and platforms, researchers are now reaping the benefits of being able to directly characterize and quantify local dynamics, structures, and conformations in live cells and tissues. These capabilities are providing unique insights into association stoichiometries, interactions, and structures on sub-micron length scales. We previously examined the role of lipid headgroup chemistry and phase state in guiding the formation of pseudoisocyanine (PIC) dye J-aggregates on supported planar bilayers [Langmuir, 25, 10719]. We describe here how these same J-aggregates can report on the in situ formation of organellar membrane domains in live cells. Live cell hyperspectral confocal microscopy using GFP-conjugated GTPase markers of early (Rab5) and late (Rab7) endosomes revealed that the PIC J-aggregates were confined to domains on either the limiting membrane or intralumenal vesicles (ILV) of late endosomes, known to be enriched in the anionic lipid bis(monoacylglycero)phosphate (BMP). Correlated confocal fluorescence - atomic force microscopy performed on endosomal membrane-mimetic supported planar lipid bilayers confirmed BMP-specific templating of the PIC J-aggregates. These data provide strong evidence for the formation of BMP-rich lipid domains during multivesicular body formation and portend the application of structured dye aggregates as markers of cellular membrane domain structure, size, and formation.
Collapse
Affiliation(s)
- Gary C H Mo
- Department of Chemical Engineering and Applied Chemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada; Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher M Yip
- Department of Biochemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada; Department of Chemical Engineering and Applied Chemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada; Institute of Biomaterials and Biomedical Engineering, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada.
| |
Collapse
|
90
|
Ochando T, Mouret JR, Humbert-Goffard A, Sablayrolles JM, Farines V. Impact of initial lipid content and oxygen supply on alcoholic fermentation in champagne-like musts. Food Res Int 2017; 98:87-94. [DOI: 10.1016/j.foodres.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 02/09/2023]
|
91
|
GM1 Softens POPC Membranes and Induces the Formation of Micron-Sized Domains. Biophys J 2017; 111:1935-1945. [PMID: 27806275 PMCID: PMC5103020 DOI: 10.1016/j.bpj.2016.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 11/20/2022] Open
Abstract
The influence of the glycolipid GM1 on the physical properties of POPC membranes was studied systematically by using different methods applied to giant and large unilamellar vesicles. The charge per GM1 molecule in the membrane was estimated from electrophoretic mobility measurements. Optical microscopy and differential scanning calorimetry were employed to construct a partial phase diagram of the GM1/POPC system. At room temperature, phase separation in the membrane was detected for GM1 fractions at and above ∼5 mol %, whereby GM1-rich gel-like domains were observed by fluorescent microscopy. Fluctuation analysis, vesicle electrodeformation, and micropipette aspiration were used to assess the bending rigidity of the membrane as a function of GM1 content. In the fluid phase, GM1 was shown to strongly soften the bilayer. In the region of coexistence of fluid and gel-like domains, the micropipette aspiration technique allowed measurements of the bending rigidity of the fluid phase only, whereas electrodeformation and fluctuation analysis were affected by the presence of the gel-phase domains. The observation that GM1 decreased the bilayer bending rigidity is important for understanding the role of this ganglioside in the flexibility of neuronal membranes.
Collapse
|
92
|
Ramadurai S, Werner M, Slater NKH, Martin A, Baulin VA, Keyes TE. Dynamic studies of the interaction of a pH responsive, amphiphilic polymer with a DOPC lipid membrane. SOFT MATTER 2017; 13:3690-3700. [PMID: 28327750 DOI: 10.1039/c6sm02645a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Deeper understanding of the molecular interactions between polymeric materials and the lipid membrane is important across a range of applications from permeation for drug delivery to encapsulation for immuno-evasion. Using highly fluidic microcavity supported lipid bilayers, we studied the interactions between amphiphilic polymer PP50 and a DOPC lipid bilayer. As the PP50 polymer is pH responsive the studies were carried out at pH 6.5, 7.05 and 7.5, corresponding to fully, partly protonated (pH = pKa = 7.05) and fully ionized states of the polymer, respectively. Fluorescence correlation spectroscopy (FCS) using both labelled lipid and polymer revealed the PP50 associates with the bilayer interface across all pHs where its diffusion along the interface is impeded. Both FCS and electrochemical impedance spectroscopy (EIS) data indicate that the PP50 does not penetrate fully into the bilayer core but rather forms a layer at the bilayer aqueous interface reflected in increased resistance and decreased capacitance of the bilayer on PP50 binding. The extent of these effects and the dynamics of binding are influenced by pH, increasing with decreasing pH. These experimental trends concurred with coarse grained Monte Carlo simulations of polymer-bilayer interactions wherein a model hydrophilic polymer backbone grafted with side chains of varying hydrophobicity, to mimic the effect of varying pH, was simulated based on the bond fluctuation model with explicit solvent. Simulation results showed that with increasing hydrophobicity, the polymer penetrated deeper into the contacting bilayer leaflet of the membrane suppressing, consistent with EIS data, solvent permeation and that a full insertion of the polymer into the bilayer core is not necessary for suppression of permeability.
Collapse
|
93
|
Rissanen S, Grzybek M, Orłowski A, Róg T, Cramariuc O, Levental I, Eggeling C, Sezgin E, Vattulainen I. Phase Partitioning of GM1 and Its Bodipy-Labeled Analog Determine Their Different Binding to Cholera Toxin. Front Physiol 2017; 8:252. [PMID: 28536532 PMCID: PMC5422513 DOI: 10.3389/fphys.2017.00252] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022] Open
Abstract
Driven by interactions between lipids and proteins, biological membranes display lateral heterogeneity that manifests itself in a mosaic of liquid-ordered (Lo) or raft, and liquid-disordered (Ld) or non-raft domains with a wide range of different properties and compositions. In giant plasma membrane vesicles and giant unilamellar vesicles, specific binding of Cholera Toxin (CTxB) to GM1 glycolipids is a commonly used strategy to label raft domains or Lo membrane environments. However, these studies often use acyl-chain labeled bodipy-GM1 (bdGM1), whose headgroup accessibility and membrane order or phase partitioning may differ from those of GM1, rendering the interpretation of CTxB binding data quite problematic. To unravel the molecular basis of CTxB binding to GM1 and bdGM1, we explored the partitioning and the headgroup presentation of these gangliosides in the Lo and Ld phases using atomistic molecular dynamics simulations complemented by CTxB binding experiments. The conformation of both GM1 and bdGM1 was shown to be largely similar in the Lo and Ld phases. However, bdGM1 showed reduction in receptor availability when reconstituted into synthetic bilayer mixtures, highlighting that membrane phase partitioning of the gangliosides plays a considerable role in CTxB binding. Our results suggest that the CTxB binding is predominately modulated by the partitioning of the receptor to an appropriate membrane phase. Further, given that the Lo and Ld partitioning of bdGM1 differs from those of GM1, usage of bdGM1 for studying GM1 behavior in cells can lead to invalid interpretation of experimental data.
Collapse
Affiliation(s)
- Sami Rissanen
- Department of Physics, Tampere University of TechnologyTampere, Finland
| | - Michal Grzybek
- Paul Langerhans Institute Dresden of the Helmholtz Centre Munich at the University Clinic Carl Gustav Carus, TU DresdenDresden, Germany.,German Center for Diabetes ResearchNeuherberg, Germany
| | - Adam Orłowski
- Department of Physics, Tampere University of TechnologyTampere, Finland.,Department of Physics and Energy, University of LimerickLimerick, Ireland
| | - Tomasz Róg
- Department of Physics, Tampere University of TechnologyTampere, Finland.,Department of Physics, University of HelsinkiHelsinki, Finland
| | - Oana Cramariuc
- Department of Physics, Tampere University of TechnologyTampere, Finland
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science CenterHouston, TX, USA
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxford, UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxford, UK
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of TechnologyTampere, Finland.,Department of Physics, University of HelsinkiHelsinki, Finland.,MEMPHYS-Center for Biomembrane Physics, University of Southern DenmarkOdense, Denmark
| |
Collapse
|
94
|
Insights into Nano- and Micron-Scale Phase Separation in Amorphous Solid Dispersions Using Fluorescence-Based Techniques in Combination with Solid State Nuclear Magnetic Resonance Spectroscopy. Pharm Res 2017; 34:1364-1377. [PMID: 28455777 DOI: 10.1007/s11095-017-2145-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE Miscibility between the drug and the polymer in an amorphous solid dispersion (ASD) is considered to be one of the most important factors impacting the solid state stability and dissolution performance of the active pharmaceutical ingredient (API). The research described herein utilizes emerging fluorescence-based methodologies to probe (im)miscibility of itraconazole (ITZ)-hydroxypropyl methylcellulose (HPMC) ASDs. METHODS The ASDs were prepared by solvent evaporation with varying evaporation rates and were characterized by steady-state fluorescence spectroscopy, confocal imaging, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (ssNMR) spectroscopy. RESULTS The size of the phase separated domains for the ITZ-HPMC ASDs was affected by the solvent evaporation rate. Smaller domains (<10 nm) were observed in spray-dried ASDs, whereas larger domains (>30 nm) were found in ASDs prepared using slower evaporation rates. Confocal imaging provided visual confirmation of phase separation along with chemical specificity, achieved by selectively staining drug-rich and polymer-rich phases. ssNMR confirmed the results of fluorescence-based techniques and provided information on the size of phase separated domains. CONCLUSIONS The fluorescence-based methodologies proved to be sensitive and rapid in detecting phase separation, even at the nanoscale, in the ITZ-HPMC ASDs. Fluorescence-based methods thus show promise for miscibility evaluation of spray-dried ASDs.
Collapse
|
95
|
Mouritsen OG, Bagatolli LA, Duelund L, Garvik O, Ipsen JH, Simonsen AC. Effects of seaweed sterols fucosterol and desmosterol on lipid membranes. Chem Phys Lipids 2017; 205:1-10. [PMID: 28365392 DOI: 10.1016/j.chemphyslip.2017.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Higher sterols are universally present in large amounts (20-30%) in the plasma membranes of all eukaryotes whereas they are universally absent in prokaryotes. It is remarkable that each kingdom of the eukaryotes has chosen, during the course of evolution, its preferred sterol: cholesterol in animals, ergosterol in fungi and yeast, phytosterols in higher plants, and e.g., fucosterol and desmosterol in algae. The question arises as to which specific properties do sterols impart to membranes and to which extent do these properties differ among the different sterols. Using a range of biophysical techniques, including calorimetry, fluorescence microscopy, vesicle-fluctuation analysis, and atomic force microscopy, we have found that fucosterol and desmosterol, found in red and brown macroalgae (seaweeds), similar to cholesterol support liquid-ordered membrane phases and induce coexistence between liquid-ordered and liquid-disordered domains in lipid bilayers. Fucosterol and desmosterol induce acyl-chain order in liquid membranes, but less effectively than cholesterol and ergosterol in the order: cholesterol>ergosterol>desmosterol>fucosterol, possibly reflecting the different molecular structure of the sterols at the hydrocarbon tail.
Collapse
Affiliation(s)
- Ole G Mouritsen
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Luis A Bagatolli
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; Yachay EP and Yachay Tech, Yachay City of Knowledge, Ecuador(1)
| | - Lars Duelund
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Olav Garvik
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - John H Ipsen
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Adam Cohen Simonsen
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
96
|
Liu Y, Meng F, Nie J, Niu J, Yu X, Lin W. Two-photon fluorescent probe for detecting cell membranal liquid-ordered phase by an aggregate fluorescence method. J Mater Chem B 2017; 5:4725-4731. [DOI: 10.1039/c7tb00979h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, we have engineered a novel two-photon fluorescent probe, TP-HVC18, which was suitable for imaging cell membranal Lo phase by an aggregate fluorescence method.
Collapse
Affiliation(s)
- Yong Liu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Shandong 250022
| | - Fangfang Meng
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Shandong 250022
| | - Jing Nie
- School of Chemical Engineering & Technology
- China University of Mining and Technology
- Xuzhou
- P. R. China
| | - Jie Niu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Shandong 250022
| | - Xiaoqiang Yu
- Center of Bio & Micro/Nano Functional Materials
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
- P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Shandong 250022
| |
Collapse
|
97
|
Raghunathan K, Wong TH, Chinnapen DJ, Lencer WI, Jobling MG, Kenworthy AK. Glycolipid Crosslinking Is Required for Cholera Toxin to Partition Into and Stabilize Ordered Domains. Biophys J 2016; 111:2547-2550. [PMID: 27914621 DOI: 10.1016/j.bpj.2016.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
Current models of lipid rafts propose that lipid domains exist as nanoscale compositional fluctuations and these fluctuations can potentially be stabilized into larger domains, consequently better compartmentalizing cellular functions. However, the mechanisms governing stabilized raft assembly and function remain unclear. Here, we test the role of glycolipid crosslinking as a raft targeting and ordering mechanism using the well-studied raft marker cholera toxin B pentamer (CTxB) that binds up to five GM1 glycosphingolipids to enter host cells. We show that when applied to cell-derived giant plasma membrane vesicles, a variant of CTxB containing only a single functional GM1 binding site exhibits significantly reduced partitioning to the ordered phase compared to wild-type CTxB with five binding sites. Moreover, monovalent CTxB does not stabilize membrane domains, unlike wild-type CTxB. These results support the long-held hypothesis that CTxB stabilizes raft domains via a lipid crosslinking mechanism and establish a role for crosslinking in the partitioning of CTxB to ordered domains.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tiffany H Wong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Daniel J Chinnapen
- Harvard Medical School and the Harvard Digestive Diseases Center, Boston, Massachusetts
| | - Wayne I Lencer
- Harvard Medical School and the Harvard Digestive Diseases Center, Boston, Massachusetts
| | - Michael G Jobling
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
98
|
Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. Chem Phys Lipids 2016; 200:42-61. [DOI: 10.1016/j.chemphyslip.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
99
|
Kulig W, Cwiklik L, Jurkiewicz P, Rog T, Vattulainen I. Cholesterol oxidation products and their biological importance. Chem Phys Lipids 2016; 199:144-160. [DOI: 10.1016/j.chemphyslip.2016.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
|
100
|
Influenza viral membrane fusion is sensitive to sterol concentration but surprisingly robust to sterol chemical identity. Sci Rep 2016; 6:29842. [PMID: 27431907 PMCID: PMC4949436 DOI: 10.1038/srep29842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
Influenza virions are enriched in cholesterol relative to the plasma membrane from which they bud. Previous work has shown that fusion between influenza virus and synthetic liposomes is sensitive to the amount of cholesterol in either the virus or the target membrane. Here, we test the chemical properties of cholesterol required to promote influenza fusion by replacing cholesterol with other sterols and assaying viral fusion kinetics. We find that influenza fusion with liposomes is surprisingly robust to sterol chemical identity, showing no significant dependence on sterol identity in target membranes for any of the sterols tested. In the viral membrane, lanosterol slowed fusion somewhat, while polar sterols produced a more pronounced slowing and inhibition of fusion. No other sterols tested showed a significant perturbation in fusion rates, including ones previously shown to alter membrane bending moduli or phase behavior. Although fusion rates depend on viral cholesterol, they thus do not require cholesterol’s ability to support liquid-liquid phase coexistence. Using electron cryo-microscopy, we further find that sterol-dependent changes to hemagglutinin spatial patterning in the viral membrane do not require liquid-liquid phase coexistence. We therefore speculate that local sterol-hemagglutinin interactions in the viral envelope may control the rate-limiting step of fusion.
Collapse
|