51
|
Halasz G, van Batenburg MF, Perusse J, Hua S, Lu XJ, White KP, Bussemaker HJ. Detecting transcriptionally active regions using genomic tiling arrays. Genome Biol 2007; 7:R59. [PMID: 16859498 PMCID: PMC1779562 DOI: 10.1186/gb-2006-7-7-r59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 01/05/2006] [Accepted: 07/05/2006] [Indexed: 11/10/2022] Open
Abstract
We have developed a method for interpreting genomic tiling array data, implemented as the program TranscriptionDetector. Probed loci expressed above background are identified by combining replicates in a way that makes minimal assumptions about the data. We performed medium-resolution Anopheles gambiae tiling array experiments and found extensive transcription of both coding and non-coding regions. Our method also showed improved detection of transcriptional units when applied to high-density tiling array data for ten human chromosomes.
Collapse
Affiliation(s)
- Gabor Halasz
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY, 10027 USA
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, 630 w. 168Street, New York, NY, 10032 USA
| | - Marinus F van Batenburg
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY, 10027 USA
- Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Joelle Perusse
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, PO Box 208005, New Haven, CT, 06520-8005, USA
| | - Sujun Hua
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, PO Box 208005, New Haven, CT, 06520-8005, USA
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY, 10027 USA
| | - Kevin P White
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, PO Box 208005, New Haven, CT, 06520-8005, USA
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, PO Box 208106, New Haven, CT, 06250-8106, USA
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY, 10027 USA
- Center for Computational Biology and Bioinformatics, Columbia University, 1130 St. Nicholas Avenue, New York, NY, USA
| |
Collapse
|
52
|
Abstract
RNase MRP RNA is the RNA subunit of the RNase mitochondrial RNA processing (MRP) enzyme complex that is involved in multiple cellular RNA processing events. Mutations on RNase MRP RNA gene (RMRP) cause a recessively inherited developmental disorder, cartilage-hair hypoplasia (CHH). The relationship of the genotype (RMRP mutation), RNA processing deficiency of the RNase MRP complex, and the phenotype of CHH and other skeletal dysplasias is yet to be explored.
Collapse
Affiliation(s)
- Allison N Martin
- Department of Biochemistry and Molecular Biology, and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
53
|
Yang L, Altman S. A noncoding RNA in Saccharomyces cerevisiae is an RNase P substrate. RNA (NEW YORK, N.Y.) 2007; 13:682-90. [PMID: 17379814 PMCID: PMC1852816 DOI: 10.1261/rna.460607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ribonuclease P (RNase P) is involved in regulation of noncoding RNA (ncRNA) expression in Saccharomyces cerevisiae. A hidden-in-reading-frame antisense-1 (HRA1) RNA in S. cerevisiae, which belongs to a class of ncRNAs located in the antisense strand to verified protein coding regions, was cloned for further use in RNase P assays. Escherichia coli RNase P assays in vitro of HRA1 RNA show two cleavage sites, one major and one minor in terms of rates. The same result was observed with a partially purified S. cerevisiae RNase P activity, both at 30 degrees C and 37 degrees C. These latter cells are normally grown at 30 degrees C. Predictions of the secondary structure of HRA1 RNA in silico show the cleavage sites are canonical RNase P recognition sites. A relatively small amount of endogenous HRA1 RNA was identified by RT-PCR in yeast cells. The endogenous HRA1 RNA is increased in amount in strains that are deficient in RNase P activity. A deletion of 10 nucleotides in the HRA1 gene that does not overlap with the gene coding for a protein (DRS2) in the sense strand shows no defective growth in galactose or glucose. These data indicate that HRA1 RNA is a substrate for RNase P and does not appear as a direct consequence of separate regulatory effects of the enzyme on ncRNAs.
Collapse
Affiliation(s)
- Li Yang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
54
|
Uhler JP, Hertel C, Svejstrup JQ. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc Natl Acad Sci U S A 2007; 104:8011-6. [PMID: 17470801 PMCID: PMC1859995 DOI: 10.1073/pnas.0702431104] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Noncoding, or intergenic, transcription by RNA polymerase II (RNAPII) is remarkably widespread in eukaryotic organisms, but the effects of such transcription remain poorly understood. Here we show that noncoding transcription plays a role in activation, but not repression, of the Saccharomyces cerevisiae PHO5 gene. Histone eviction from the PHO5 promoter during activation occurs with normal kinetics even in the absence of the PHO5 TATA box, showing that transcription of the gene itself is not required for promoter remodeling. Nevertheless, we find that mutations that impair transcript elongation by RNAPII affect the kinetics of histone eviction from the PHO5 promoter. Most dramatically, inactivation of RNAPII itself abolishes eviction completely. Under repressing conditions, an approximately 2.4-kb noncoding exosome-degraded transcript is detected that originates near the PHO5 termination site and is transcribed in the antisense direction. Abrogation of this transcript delays chromatin remodeling and subsequent RNAPII recruitment to PHO5 upon activation. We propose that noncoding transcription through positioned nucleosomes can enhance chromatin plasticity so that chromatin remodeling and activation of traversed genes occur in a timely manner.
Collapse
Affiliation(s)
- Jay P. Uhler
- *Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, United Kingdom; and
| | - Christina Hertel
- Institut für Physiologische Chemie, Universität München, Schillerstrasse 44, 80336 Munich, Germany
| | - Jesper Q. Svejstrup
- *Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, United Kingdom; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
55
|
Royce TE, Rozowsky JS, Gerstein MB. Assessing the need for sequence-based normalization in tiling microarray experiments. Bioinformatics 2007; 23:988-97. [PMID: 17387113 DOI: 10.1093/bioinformatics/btm052] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
MOTIVATION Increases in microarray feature density allow the construction of so-called tiling microarrays. These arrays, or sets of arrays, contain probes targeting regions of sequenced genomes at regular genomic intervals. The unbiased nature of this approach allows for the identification of novel transcribed sequences, the localization of transcription factor binding sites (ChIP-chip), and high resolution comparative genomic hybridization, among other uses. These applications are quickly growing in popularity as tiling microarrays become more affordable. To reach maximum utility, the tiling microarray platform needs be developed to the point that 1 nt resolutions are achieved and that we have confidence in individual measurements taken at this fine of resolution. Any biases in tiling array signals must be systematically removed to achieve this goal. RESULTS Towards this end, we investigated the importance of probe sequence composition on the efficacy of tiling microarrays for identifying novel transcription and transcription factor binding sites. We found that intensities are highly sequence dependent and can greatly influence results. We developed three metrics for assessing this sequence dependence and use them in evaluating existing sequence-based normalizations from the tiling microarray literature. In addition, we applied three new techniques for addressing this problem; one method, adapted from similar work on GeneChip brand microarrays, is based on modeling array signal as a linear function of probe sequence, the second method extends this approach by iterative weighting and re-fitting of the model, and the third technique extrapolates the popular quantile normalization algorithm for between-array normalization to probe sequence space. These three methods perform favorably to existing strategies, based on the metrics defined here. AVAILABILITY http://tiling.gersteinlab.org/sequence_effects/
Collapse
Affiliation(s)
- Thomas E Royce
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
56
|
Hongay CF, Grisafi PL, Galitski T, Fink GR. Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 2006; 127:735-45. [PMID: 17110333 DOI: 10.1016/j.cell.2006.09.038] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/25/2006] [Accepted: 09/14/2006] [Indexed: 10/23/2022]
Abstract
Entry into meiosis is a key developmental decision. We show here that meiotic entry in Saccharomyces cerevisiae is controlled by antisense-mediated regulation of IME4, a gene required for initiating meiosis. In MAT a/alpha diploids the antisense IME4 transcript is repressed by binding of the a1/alpha2 heterodimer at a conserved site located downstream of the IME4 coding sequence. MAT a/alpha diploids that produce IME4 antisense transcript have diminished sense transcription and fail to initiate meiosis. Haploids that produce the sense transcript have diminished antisense transcription and manifest several diploid phenotypes. Our data are consistent with transcription interference as a regulatory mechanism at the IME4 locus that determines cell fate.
Collapse
Affiliation(s)
- Cintia F Hongay
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
57
|
Barbara KE, Haley TM, Willis KA, Santangelo GM. The transcription factor Gcr1 stimulates cell growth by participating in nutrient-responsive gene expression on a global level. Mol Genet Genomics 2006; 277:171-88. [PMID: 17124610 DOI: 10.1007/s00438-006-0182-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 10/06/2006] [Indexed: 12/21/2022]
Abstract
Transcriptomic reprogramming is critical to the coordination between growth and cell cycle progression in response to changing extracellular conditions. In Saccharomyces cerevisiae, the transcription factor Gcr1 contributes to this coordination by supporting maximum expression of G1 cyclins in addition to regulating both glucose-induced and glucose-repressed genes. We report here the comprehensive genome-wide expression profiling of gcr1Delta cells. Our data show that reduced expression of ribosomal protein genes in gcr1Delta cells is detectable both 20 min after glucose addition and in steady-state cultures of raffinose-grown cells, showing that this defect is not the result of slow growth or growth on a repressing sugar. However, the large cell phenotype of the gcr1Delta mutant occurs only in the presence of repressing sugars. GCR1 deletion also results in aberrant derepression of numerous glucose repressed loci; glucose-grown gcr1Delta cells actively respire, demonstrating that this global alteration in transcription corresponds to significant changes at the physiological level. These data offer an insight into the coordination of growth and cell division by providing an integrated view of the transcriptomic, phenotypic, and metabolic consequences of GCR1 deletion.
Collapse
Affiliation(s)
- Kellie E Barbara
- Mississippi Functional Genomics Network, The University of Southern Mississippi, 118 College Dr., Hattiesburg, MS, USA
| | | | | | | |
Collapse
|
58
|
Arigo JT, Eyler DE, Carroll KL, Corden JL. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 2006; 23:841-51. [PMID: 16973436 DOI: 10.1016/j.molcel.2006.07.024] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/24/2006] [Accepted: 07/26/2006] [Indexed: 11/20/2022]
Abstract
Studies of yeast transcription have revealed the widespread distribution of intergenic RNA polymerase II transcripts. These cryptic unstable transcripts (CUTs) are rapidly degraded by the nuclear exosome. Yeast RNA binding proteins Nrd1 and Nab3 direct termination of sn/snoRNAs and recently have also been implicated in premature transcription termination of the NRD1 gene. In this paper, we show that Nrd1 and Nab3 are required for transcription termination of CUTs. In nrd1 and nab3 mutants, we observe 3'-extended transcripts originating from CUT promoters but failing to terminate through the Nrd1- and Nab3-directed pathway. Nrd1 and Nab3 colocalize to regions of the genome expressing antisense CUTs, and these transcripts require yeast nuclear exosome and TRAMP components for degradation. Dissection of a CUT terminator reveals a minimal element sufficient for Nrd1- and Nab3-directed termination. These results suggest that transcription termination of CUTs directed by Nrd1 and Nab3 is a prerequisite for rapid degradation by the nuclear exosome.
Collapse
Affiliation(s)
- John T Arigo
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
59
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
60
|
Abstract
The widespread occurrence of noncoding (nc) RNAs--unannotated eukaryotic transcripts with reduced protein coding potential--suggests that they are functionally important. Study of ncRNAs is increasing our understanding of the organization and regulation of genomes.
Collapse
|
61
|
Huber W, Toedling J, Steinmetz LM. Transcript mapping with high-density oligonucleotide tiling arrays. ACTA ACUST UNITED AC 2006; 22:1963-70. [PMID: 16787969 DOI: 10.1093/bioinformatics/btl289] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION High-density DNA tiling microarrays are a powerful tool for the characterization of complete transcriptomes. The two major analytical challenges are the segmentation of the hybridization signal along genomic coordinates to accurately determine transcript boundaries and the adjustment of the sequence-dependent response of the oligonucleotide probes to achieve quantitative comparability of the signal between different probes. RESULTS We describe a dynamic programming algorithm for finding a globally optimal fit of a piecewise constant expression profile along genomic coordinates. We developed a probe-specific background correction and scaling method that employs empirical probe response parameters determined from reference hybridizations with no need for paired mismatch probes. This combined analysis approach allows the accurate determination of dynamical changes in transcription architectures from hybridization data and will help to study the biological significance of complex transcriptional phenomena in eukaryotic genomes. AVAILABILITY R package tilingArray at http://www.bioconductor.org.
Collapse
Affiliation(s)
- Wolfgang Huber
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK.
| | | | | |
Collapse
|