51
|
Su L, Li H, Huang C, Zhao T, Zhang Y, Ba X, Li Z, Zhang Y, Huang B, Lu J, Zhao Y, Li X. Muscle-Specific Histone H3K36 Dimethyltransferase SET-18 Shortens Lifespan of Caenorhabditis elegans by Repressing daf-16a Expression. Cell Rep 2019. [PMID: 29514099 DOI: 10.1016/j.celrep.2018.02.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mounting evidence shows that histone methylation, a typical epigenetic mark, is crucial for gene expression regulation during aging. Decreased trimethylation of Lys 36 on histone H3 (H3K36me3) in worms and yeast is reported to shorten lifespan. The function of H3K36me2 in aging remains unclear. In this study, we identified Caenorhabditis elegans SET-18 as a histone H3K36 dimethyltransferase. SET-18 deletion extended lifespan and increased oxidative stress resistance, dependent on daf-16 activity in the insulin/IGF pathway. In set-18 mutants, transcription of daf-16 isoform a (daf-16a) was specifically upregulated. Accordingly, a decrease in H3K36me2 on daf-16a promoter was observed. Muscle-specific expression of SET-18 increased in aged worms (day 7 and day 11), attributable to elevation of global H3K36me2 and inhibition of daf-16a expression. Consequently, longevity was shortened. These findings suggested that chromatic repression mediated by tissue-specific H3K36 dimethyltransferase might be detrimental to lifespan and may have implications in human age-related diseases.
Collapse
Affiliation(s)
- Liangping Su
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Hongyuan Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Cheng Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Tingting Zhao
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yongjun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xueqing Ba
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Zhongwei Li
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yu Zhang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Baiqu Huang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Jun Lu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoxue Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
52
|
Shi J, Cai M, Si Y, Zhang J, Du S. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adipocyte infiltration in zebrafish skeletal muscle. Hum Mol Genet 2019; 27:3542-3554. [PMID: 30016436 DOI: 10.1093/hmg/ddy268] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/13/2018] [Indexed: 01/08/2023] Open
Abstract
The fusion of myoblasts into multinucleated muscle fibers is vital to skeletal muscle development, maintenance and regeneration. Genetic mutations in the Myomaker (mymk) gene cause Carey-Fineman-Ziter syndrome (CFZS) in human populations. To study the regulation of mymk gene expression and function, we generated three mymk mutant alleles in zebrafish using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology and analyzed the effects of mymk knockout on muscle development and growth. Our studies demonstrated that knockout of mymk resulted in defective myoblast fusion in zebrafish embryos and increased mortality at larval stage around 35-45 days post-fertilization. The viable homozygous mutants were smaller in size and weighed approximately one-third the weight of the wild type (WT) sibling at 3 months old. The homozygous mutants showed craniofacial deformities, resembling the facial defect observed in human populations with CFZS. Histological analysis revealed that skeletal muscles of mymk mutants contained mainly small-size fibers and substantial intramuscular adipocyte infiltration. Single fiber analysis revealed that myofibers in mymk mutant were predominantly single-nucleated fibers. However, myofibers with multiple myonuclei were observed, although the number of nuclei per fiber was much less compared with that in WT fibers. Overexpression of sonic Hedgehog inhibited mymk expression in zebrafish embryos and blocked myoblast fusion. Collectively, these studies demonstrated that mymk is essential for myoblast fusion during muscle development and growth.
Collapse
Affiliation(s)
- Jun Shi
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
- Department of Bioengineering and Environmental Science, Changsha University, Hunan 410003, China
| | - Mengxin Cai
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710062, China
| | - Yufeng Si
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Hunan 410003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
- Department of Bioengineering and Environmental Science, Changsha University, Hunan 410003, China
| |
Collapse
|
53
|
Cai M, Han L, Liu L, He F, Chu W, Zhang J, Tian Z, Du S. Defective sarcomere assembly in smyd1a and smyd1b zebrafish mutants. FASEB J 2019; 33:6209-6225. [PMID: 30817176 PMCID: PMC6463926 DOI: 10.1096/fj.201801578r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Two smyd1 paralogues, smyd1a and smyd1b, have been identified in zebrafish. Although Smyd1b function has been reported in fast muscle, its function in slow muscle and the function of Smyd1a, in general, are uncertain. In this study, we generated 2 smyd1a mutant alleles and analyzed the muscle defects in smyd1a and smyd1b single and double mutants in zebrafish. We demonstrated that knockout of smyd1a alone had no visible effect on muscle development and fish survival. This was in contrast to the smyd1b mutant, which exhibited skeletal and cardiac muscle defects, leading to early embryonic lethality. The smyd1a and smyd1b double mutants, however, showed a stronger muscle defect compared with smyd1a or smyd1b mutation alone, namely, the complete disruption of sarcomere organization in slow and fast muscles. Immunostaining revealed that smyd1a; smyd1b double mutations had no effect on myosin gene expression but resulted in a dramatic reduction of myosin protein levels in muscle cells of zebrafish embryos. This was accompanied by the up-regulation of hsp40 and hsp90-α1 gene expression. Together, our studies indicate that both Smyd1a and Smyd1b partake in slow and fast muscle development although Smyd1b plays a dominant role compared with Smyd1a.-Cai, M., Han, L., Liu, L., He, F., Chu, W., Zhang, J., Tian, Z., Du, S. Defective sarcomere assembly in smyd1a and smyd1b zebrafish mutants.
Collapse
Affiliation(s)
- Mengxin Cai
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Lichen Han
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lusha Liu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng He
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- School of Fisheries, Ocean University of China, Qingdao, China
| | - Wuying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
54
|
Amplification of SMYD3 promotes tumorigenicity and intrahepatic metastasis of hepatocellular carcinoma via upregulation of CDK2 and MMP2. Oncogene 2019; 38:4948-4961. [PMID: 30842588 DOI: 10.1038/s41388-019-0766-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/04/2019] [Accepted: 01/23/2019] [Indexed: 12/13/2022]
Abstract
SMYD3, a member that belongs to the SET and MYND-domain (SMYD) family, has also been proven to largely participate in gene transcription regulation and progression of several human cancers as a histone lysine methyltransferase. However, the role and significance of SMYD3 in both the clinic and progression of hepatocellular carcinoma (HCC) remain unclear. Herein, we find that SMYD3 is increased in cirrhotic livers, and strikingly upregulated in hepatocellular carcinoma (HCC) tissues and cell lines. Subsequent analyses suggest that high expression level of SMYD3 significantly correlates with the malignant characteristics of HCC, and predicts poor prognosis in patients. Our results show that overexpression of SMYD3 increases, while silencing of SMYD3 inhibits, cell proliferation, invasiveness and tumorigenicity both in vitro and in vivo. SMYD3 also promotes intrahepatic metastasis of HCC cells. For the mechanisms, we identify that SMYD3 bound to CDK2 and MMP2 promoter and increased H3K4me3 modification at the corresponding promoters to promote gene transcription. Importantly, pharmacological targeting of SMYD3 with BCI-121 inhibitor effectively repressed the tumorigenicity of HCC cells. Finally, our results show that gene locus amplification is a cause for SMYD3 overexpression in HCC. These findings not only uncover that SMYD3 overexpression promotes the tumorigenicity and intrahepatic metastasis of HCC cell via upregulation of CDK2 and MMP2, but also suggest SMYD3 could be a practical prognosis marker or therapeutic target against the disease.
Collapse
|
55
|
Si Y, Wen H, Du S. Genetic Mutations in jamb, jamc, and myomaker Revealed Different Roles on Myoblast Fusion and Muscle Growth. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:111-123. [PMID: 30467785 PMCID: PMC6467518 DOI: 10.1007/s10126-018-9865-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/15/2018] [Indexed: 05/08/2023]
Abstract
Myoblast fusion is a vital step for skeletal muscle development, growth, and regeneration. Loss of Jamb, Jamc, or Myomaker (Mymk) function impaired myoblast fusion in zebrafish embryos. In addition, mymk mutation hampered fish muscle growth. However, the effect of Jamb and Jamc deficiency on fish muscle growth is not clear. Moreover, whether jamb;jamc and jamb;mymk double mutations have stronger effects on myoblast fusion and muscle growth remains to be investigated. Here, we characterized the muscle development and growth in jamb, jamc, and mymk single and double mutants in zebrafish. We found that although myoblast fusion was compromised in jamb and jamc single or jamb;jamc double mutants, these mutant fish showed no defect in muscle cell fusion during muscle growth. The mutant fish were able to grow into adults that were indistinguishable from the wild-type sibling. In contrast, the jamb;mymk double mutants exhibited a stronger muscle phenotype compared to the jamb and jamc single and double mutants. The jamb;mymk double mutant showed reduced growth and partial lethality, similar to a mymk single mutant. Single fiber analysis of adult skeletal myofibers revealed that jamb, jamc, or jamb;jamc mutants contained mainly multinucleated myofibers, whereas jamb;mymk double mutants contained mostly mononucleated fibers. Significant intramuscular adipocyte infiltration was found in skeletal muscles of the jamb;mymk mutant. Collectively, these studies demonstrate that although Jamb, Jamc, and Mymk are all involved in myoblast fusion during early myogenesis, they have distinct roles in myoblast fusion during muscle growth. While Mymk is essential for myoblast fusion during both muscle development and growth, Jamb and Jamc are dispensable for myoblast fusion during muscle growth.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cell Communication
- Cell Differentiation
- Cell Fusion
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental
- Junctional Adhesion Molecule B/deficiency
- Junctional Adhesion Molecule B/genetics
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Muscle Development/genetics
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/deficiency
- Muscle Proteins/genetics
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Mutation
- Myoblasts/cytology
- Myoblasts/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Yufeng Si
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 701 East Pratt Street, Baltimore, MD, 21202, USA
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 701 East Pratt Street, Baltimore, MD, 21202, USA.
| |
Collapse
|
56
|
Jiao S, Tan X, Sui Y, You F. Muscle fibre type composition in the lateral muscle of olive flounder Paralichthys olivaceus. Acta Histochem 2019; 121:1-6. [PMID: 30318347 DOI: 10.1016/j.acthis.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 01/08/2023]
Abstract
In this paper, a combined-method study has been made on the lateral muscle of the teleost olive flounder Paralichthys olivaceus in just-hatched and adult stages. In just-hatched stage, both slow and fast muscle fibres were detected: (1) in situ hybridization analysis indicated that slow and fast myosin heavy chain genes were specifically expressed in the superficial and deep part of the myotomal muscle, respectively; (2) immunohistochemistry analysis showed that fibres in the deep part reacted with anti-fast myosin antibody F310; (3) western blot analysis detected a weak expression of slow myosin and a strong expression of fast myosin. In adult stage, the slow and fast muscle fibres had their own distribution characteristics: (1) hematoxylin/eosin staining showed the histological characteristics of the muscle fibre composition; (2) histochemical observations showed that the deep muscle fibres, and some fibres near the epidermis, contain alkali-stable myofibrillar ATPase activity; (3) immunohistochemistry analysis indicated that all the deep muscle fibres reacted with F310 antibody and some fibres in the superficial layer of muscle also reacted with F310; (4) western blot analysis showed that fast myosin was expressed both in the blended muscles (the mix of superficial and deep muscles) and deep muscles, while slow myosin was mainly expressed in the blended muscles. These findings suggested that both slow and fast muscle fibres existed in the musculature of the olive flounder in just-hatched and adult stages. Notably, the adult fast fibres also exist in the superficial layer of the muscle.
Collapse
|
57
|
Loss of SMYD1 Results in Perinatal Lethality via Selective Defects within Myotonic Muscle Descendants. Diseases 2018; 7:diseases7010001. [PMID: 30577454 PMCID: PMC6473627 DOI: 10.3390/diseases7010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
SET and MYND Domain 1 (SMYD1) is a cardiac and skeletal muscle-specific, histone methyl transferase that is critical for both embryonic and adult heart development and function in both mice and men. We report here that skeletal muscle-specific, myogenin (myoG)-Cre-mediated conditional knockout (CKO) of Smyd1 results in perinatal death. As early as embryonic day 12.5, Smyd1 CKOs exhibit multiple skeletal muscle defects in proliferation, morphology, and gene expression. However, all myotonic descendants are not afflicted equally. Trunk muscles are virtually ablated with excessive accumulation of brown adipose tissue (BAT), forelimb muscles are disorganized and improperly differentiated, but other muscles, such as the masseter, are normal. While expression of major myogenic regulators went unscathed, adaptive and innate immune transcription factors critical for BAT development/physiology were downregulated. Whereas classical mitochondrial BAT accumulation went unscathed following loss of SMYD1, key transcription factors, including PRDM16, UCP-1, and CIDE-a that control skeletal muscle vs. adipose fate, were downregulated. Finally, in rare adults that survive perinatal lethality, SMYD1 controls specification of some, but not all, skeletal muscle fiber-types.
Collapse
|
58
|
Wu S, Huang Y, Li S, Wen H, Zhang M, Li J, Li Y, Shao C, He F. DNA methylation levels and expression patterns of Smyd1a and Smyd1b genes during Metamorphosis of the Japanese Flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2018; 223:16-22. [DOI: 10.1016/j.cbpb.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 11/26/2022]
|
59
|
Xiao D, Wang H, Hao L, Guo X, Ma X, Qian Y, Chen H, Ma J, Zhang J, Sheng W, Shou W, Huang G, Ma D. The roles of SMYD4 in epigenetic regulation of cardiac development in zebrafish. PLoS Genet 2018; 14:e1007578. [PMID: 30110327 PMCID: PMC6110521 DOI: 10.1371/journal.pgen.1007578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/27/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
SMYD4 belongs to a family of lysine methyltransferases. We analyzed the role of smyd4 in zebrafish development by generating a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated severe cardiac malformations, including defects in left-right patterning and looping and hypoplastic ventricles, suggesting that smyd4 was critical for heart development. Importantly, we identified two rare SMYD4 genetic variants in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was pathogenic. Our data suggested that smyd4 functions as a histone methyltransferase and, by interacting with HDAC1, also serves as a potential modulator for histone acetylation. Transcriptome and bioinformatics analyses of smyd4L544Efs*1 and wild-type developing hearts suggested that smyd4 is a key epigenetic regulator involved in regulating endoplasmic reticulum-mediated protein processing and several important metabolic pathways in developing zebrafish hearts. SMYD4 belongs to a SET and MYND domain-containing lysine methyltransferase. In zebrafish, smyd4 is ubiquitously expressed in early embryos and becomes enriched in the developing heart at 48 hours post-fertilization (hpf). We generated a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated a strong defect in cardiomyocyte proliferation, which led to a severe cardiac malformation, including left-right looping defects and hypoplastic ventricles. More importantly, two rare genetic variants of SMYD4 were enriched in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was highly pathogenic. Using mass spectrometric analysis, SMYD4 was shown to specifically interact with histone deacetylase 1 (HDAC1) via its MYND domain. Altered di- and tri-methylation of histone 3 lysine 4 (H3K4me2 and H3K4me3) and acetylation of histone 3 in smyd4L544Efs*1 mutants suggested that smyd4 plays an important role in epigenetic regulation. Transcriptome and pathway analyses demonstrated that the expression levels of 3,856 genes were significantly altered, which included cardiac contractile genes, key signaling pathways in cardiac development, the endoplasmic reticulum-mediated protein processing pathway, and several important metabolic pathways. Taken together, our data suggests that smyd4 is a key epigenetic regulator of cardiac development.
Collapse
Affiliation(s)
- Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijun Wang
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Lili Hao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiao Guo
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Hongbo Chen
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Jing Ma
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Weinian Shou
- Cardiovascular Developmental Biology Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States of America
- * E-mail: (WS); (GH); (DM)
| | - Guoying Huang
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (WS); (GH); (DM)
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (WS); (GH); (DM)
| |
Collapse
|
60
|
Yahalom V, Pillar N, Zhao Y, Modan S, Fang M, Yosephi L, Asher O, Shinar E, Celniker G, Resnik-Wolf H, Brantz Y, Hauschner H, Rosenberg N, Cheng L, Shomron N, Pras E. SMYD1 is the underlying gene for the AnWj-negative blood group phenotype. Eur J Haematol 2018; 101:496-501. [PMID: 29956848 DOI: 10.1111/ejh.13133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND AnWj is a high-incidence blood group antigen associated with three clinical disorders: lymphoid malignancies, immunologic disorders, and autoimmune hemolytic anemia. The aim of this study was to determine the genetic basis of an inherited AnWj-negative phenotype. METHODS We identified a consanguineous family with two AnWj-negative siblings and 4 additional AnWj-negative individuals without known familial relationship to the index family. We performed exome sequencing in search for rare homozygous variants shared by the two AnWj-negative siblings of the index family and searched for these variants in the four non-related AnWj-negative individuals. RESULTS Exome sequencing revealed seven candidate genes that showed complete segregation in the index family and for which the two AnWj-negative siblings were homozygous. However, the four additional non-related AnWj-negative subjects were homozygous for only one of these variants, rs114851602 (R320Q) in the SMYD1 gene. Considering the frequency of the minor allele, the chance of randomly finding 4 consecutive such individuals is 2.56 × 10-18 . CONCLUSION We present genetic and statistical evidence that the R320Q substitution in SMYD1 underlies an inherited form of the AnWj-negative blood group phenotype. The mechanism by which the mutation leads to this phenotype remains to be determined.
Collapse
Affiliation(s)
- Vered Yahalom
- Magen David Adom (MDA) National Blood Services, Tel Hashomer, Ramat Gan, Israel
| | - Nir Pillar
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yingying Zhao
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Shirley Modan
- Magen David Adom (MDA) National Blood Services, Tel Hashomer, Ramat Gan, Israel
| | - Mingyan Fang
- BGI-Shenzhen, Shenzhen, China.,The Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lydia Yosephi
- Magen David Adom (MDA) National Blood Services, Tel Hashomer, Ramat Gan, Israel
| | - Orna Asher
- Magen David Adom (MDA) National Blood Services, Tel Hashomer, Ramat Gan, Israel
| | - Eilat Shinar
- Magen David Adom (MDA) National Blood Services, Tel Hashomer, Ramat Gan, Israel
| | - Gershon Celniker
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Haike Resnik-Wolf
- The Danek Gertner Institute of Human Genetics, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yael Brantz
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Danek Gertner Institute of Human Genetics, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Hagit Hauschner
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Nurit Rosenberg
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Le Cheng
- BGI-Shenzhen, Shenzhen, China.,The Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Elon Pras
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Danek Gertner Institute of Human Genetics, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
61
|
Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc Natl Acad Sci U S A 2018; 115:E7871-E7880. [PMID: 30061404 DOI: 10.1073/pnas.1800680115] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Smyd1, a muscle-specific histone methyltransferase, has established roles in skeletal and cardiac muscle development, but its role in the adult heart remains poorly understood. Our prior work demonstrated that cardiac-specific deletion of Smyd1 in adult mice (Smyd1-KO) leads to hypertrophy and heart failure. Here we show that down-regulation of mitochondrial energetics is an early event in these Smyd1-KO mice preceding the onset of structural abnormalities. This early impairment of mitochondrial energetics in Smyd1-KO mice is associated with a significant reduction in gene and protein expression of PGC-1α, PPARα, and RXRα, the master regulators of cardiac energetics. The effect of Smyd1 on PGC-1α was recapitulated in primary cultured rat ventricular myocytes, in which acute siRNA-mediated silencing of Smyd1 resulted in a greater than twofold decrease in PGC-1α expression without affecting that of PPARα or RXRα. In addition, enrichment of histone H3 lysine 4 trimethylation (a mark of gene activation) at the PGC-1α locus was markedly reduced in Smyd1-KO mice, and Smyd1-induced transcriptional activation of PGC-1α was confirmed by luciferase reporter assays. Functional confirmation of Smyd1's involvement showed an increase in mitochondrial respiration capacity induced by overexpression of Smyd1, which was abolished by siRNA-mediated PGC-1α knockdown. Conversely, overexpression of PGC-1α rescued transcript expression and mitochondrial respiration caused by silencing Smyd1 in cardiomyocytes. These findings provide functional evidence for a role of Smyd1, or any member of the Smyd family, in regulating cardiac energetics in the adult heart, which is mediated, at least in part, via modulating PGC-1α.
Collapse
|
62
|
Cai M, Si Y, Zhang J, Tian Z, Du S. Zebrafish Embryonic Slow Muscle Is a Rapid System for Genetic Analysis of Sarcomere Organization by CRISPR/Cas9, but Not NgAgo. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:168-181. [PMID: 29374849 DOI: 10.1007/s10126-018-9794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Zebrafish embryonic slow muscle cells, with their superficial localization and clear sarcomere organization, provide a useful model system for genetic analysis of muscle cell differentiation and sarcomere assembly. To develop a quick assay for testing CRISPR-mediated gene editing in slow muscles of zebrafish embryos, we targeted a red fluorescence protein (RFP) reporter gene specifically expressed in slow muscles of myomesin-3-RFP (Myom3-RFP) zebrafish embryos. We demonstrated that microinjection of RFP-sgRNA with Cas9 protein or Cas9 mRNA resulted in a mosaic pattern in loss of RFP expression in slow muscle fibers of the injected zebrafish embryos. To uncover gene functions in sarcomere organization, we targeted two endogenous genes, slow myosin heavy chain-1 (smyhc1) and heat shock protein 90 α1 (hsp90α1), which are specifically expressed in zebrafish muscle cells. We demonstrated that injection of Cas9 protein or mRNA with respective sgRNAs targeted to smyhc1 or hsp90a1 resulted in a mosaic pattern of myosin thick filament disruption in slow myofibers of the injected zebrafish embryos. Moreover, Myom3-RFP expression and M-line localization were also abolished in these defective myofibers. Given that zebrafish embryonic slow muscles are a rapid in vivo system for testing genome editing and uncovering gene functions in muscle cell differentiation, we investigated whether microinjection of Natronobacterium gregoryi Argonaute (NgAgo) system could induce genetic mutations and muscle defects in zebrafish embryos. Single-strand guide DNAs targeted to RFP, Smyhc1, or Hsp90α1 were injected with NgAgo mRNA into Myom3-RFP zebrafish embryos. Myom3-RFP expression was analyzed in the injected embryos. The results showed that, in contrast to the CRISPR/Cas9 system, injection of the NgAgo-gDNA system did not affect Myom3-RFP expression and sarcomere organization in myofibers of the injected embryos. Sequence analysis failed to detect genetic mutations at the target genes. Together, our studies demonstrate that zebrafish embryonic slow muscle is a rapid model for testing gene editing technologies in vivo and uncovering gene functions in muscle cell differentiation.
Collapse
Affiliation(s)
- Mengxin Cai
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710062, China
| | - Yufeng Si
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Hunan, 250014, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710062, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA.
- Department of Bioengineering and Environmental Science, Changsha University, Hunan, 250014, China.
| |
Collapse
|
63
|
Jiang F, Liu Q, Wang Y, Zhang J, Wang H, Song T, Yang M, Wang X, Kang L. Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects. Gigascience 2018; 6:1-16. [PMID: 28444351 PMCID: PMC5459927 DOI: 10.1093/gigascience/gix031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/19/2017] [Indexed: 02/07/2023] Open
Abstract
The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain–containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution.
Collapse
Affiliation(s)
- Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanli Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jie Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Huimin Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Tianqi Song
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Meiling Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
64
|
Smyd2 is a Myc-regulated gene critical for MLL-AF9 induced leukemogenesis. Oncotarget 2018; 7:66398-66415. [PMID: 27655694 PMCID: PMC5341809 DOI: 10.18632/oncotarget.12012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022] Open
Abstract
The Smyd2 protein (Set- and Mynd domain containing protein 2) is a methyl-transferase that can modify both histones and cytoplasmic proteins. Smyd2 is over-expressed in several cancer types and was shown to be limiting for tumor development in the pancreas. However, genetic evidence for a role of Smyd2 in other cancers or in mouse development was missing to date. Using germ line-deleted mouse strains, we now show that Smyd2 and the related protein Smyd3 are dispensable for normal development. Ablation of Smyd2 did not affect hematopoiesis, but retarded the development of leukemia promoted by MLL-AF9, a fusion oncogene associated with acute myeloid leukemia (AML) in humans. Smyd2-deleted leukemic cells showed a competitive disadvantage relative to wild-type cells, either in vitro or in vivo. The Smyd2 gene was directly activated by the oncogenic transcription factor Myc in either MLL9-AF9-induced leukemias, Myc-induced lymphomas, or fibroblasts. However, unlike leukemias, the development of lymphomas was not dependent upon Smyd2. Our data indicate that Smyd2 has a critical role downstream of Myc in AML.
Collapse
|
65
|
Vanderplanck C, Tassin A, Ansseau E, Charron S, Wauters A, Lancelot C, Vancutsem K, Laoudj-Chenivesse D, Belayew A, Coppée F. Overexpression of the double homeodomain protein DUX4c interferes with myofibrillogenesis and induces clustering of myonuclei. Skelet Muscle 2018; 8:2. [PMID: 29329560 PMCID: PMC5767009 DOI: 10.1186/s13395-017-0148-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is associated with DNA hypomethylation at the 4q35 D4Z4 repeat array. Both the causal gene DUX4 and its homolog DUX4c are induced. DUX4c is immunodetected in every myonucleus of proliferative cells, while DUX4 is present in only 1/1000 of myonuclei where it initiates a gene deregulation cascade. FSHD primary myoblasts differentiate into either atrophic or disorganized myotubes. DUX4 expression induces atrophic myotubes and associated FSHD markers. Although DUX4 silencing normalizes the FSHD atrophic myotube phenotype, this is not the case for the disorganized phenotype. DUX4c overexpression increases the proliferation rate of human TE671 rhabdomyosarcoma cells and inhibits their differentiation, suggesting a normal role during muscle differentiation. METHODS By gain- and loss-of-function experiments in primary human muscle cells, we studied the DUX4c impact on proliferation, differentiation, myotube morphology, and FSHD markers. RESULTS In primary myoblasts, DUX4c overexpression increased the staining intensity of KI67 (a proliferation marker) in adjacent cells and delayed differentiation. In differentiating cells, DUX4c overexpression led to the expression of some FSHD markers including β-catenin and to the formation of disorganized myotubes presenting large clusters of nuclei and cytoskeletal defects. These were more severe when DUX4c was expressed before the cytoskeleton reorganized and myofibrils assembled. In addition, endogenous DUX4c was detected at a higher level in FSHD myotubes presenting abnormal clusters of nuclei and cytoskeletal disorganization. We found that the disorganized FSHD myotube phenotype could be rescued by silencing of DUX4c, not DUX4. CONCLUSION Excess DUX4c could disturb cytoskeletal organization and nuclear distribution in FSHD myotubes. We suggest that DUX4c up-regulation could contribute to DUX4 toxicity in the muscle fibers by favoring the clustering of myonuclei and therefore facilitating DUX4 diffusion among them. Defining DUX4c functions in the healthy skeletal muscle should help to design new targeted FSHD therapy by DUX4 or DUX4c inhibition without suppressing DUX4c normal function.
Collapse
Affiliation(s)
- Céline Vanderplanck
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Sébastien Charron
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Céline Lancelot
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Kelly Vancutsem
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | | | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| |
Collapse
|
66
|
Tracy C, Warren JS, Szulik M, Wang L, Garcia J, Makaju A, Russell K, Miller M, Franklin S. The Smyd Family of Methyltransferases: Role in Cardiac and Skeletal Muscle Physiology and Pathology. CURRENT OPINION IN PHYSIOLOGY 2017; 1:140-152. [PMID: 29435515 DOI: 10.1016/j.cophys.2017.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein methylation plays a pivotal role in the regulation of various cellular processes including chromatin remodeling and gene expression. SET and MYND domain-containing proteins (Smyd) are a special class of lysine methyltransferases whose catalytic SET domain is split by an MYND domain. The hallmark feature of this family was thought to be the methylation of histone H3 (on lysine 4). However, several studies suggest that the role of the Smyd family is dynamic, targeting unique histone residues associated with both transcriptional activation and repression. Smyd proteins also methylate several non-histone proteins to regulate various cellular processes. Although we are only beginning to understand their specific molecular functions and role in chromatin remodeling, recent studies have advanced our understanding of this relatively uncharacterized family, highlighting their involvement in development, cell growth and differentiation and during disease in various animal models. This review summarizes our current knowledge of the structure, function and methylation targets of the Smyd family and provides a compilation of data emphasizing their prominent role in cardiac and skeletal muscle physiology and pathology.
Collapse
Affiliation(s)
- Christopher Tracy
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Junco S Warren
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Marta Szulik
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Li Wang
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - June Garcia
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Aman Makaju
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Kristi Russell
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Mickey Miller
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Sarah Franklin
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
67
|
Proteomic and microRNA Transcriptome Analysis revealed the microRNA-SmyD1 network regulation in Skeletal Muscle Fibers performance of Chinese perch. Sci Rep 2017; 7:16498. [PMID: 29184116 PMCID: PMC5705591 DOI: 10.1038/s41598-017-16718-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Fish myotomes are comprised of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. Although the expression profile properties in fast and slow muscle fibers had been investigated at the mRNA levels, a comprehensive analysis at proteomic and microRNA transcriptomic levels is limited. In the present study, we first systematically compared the proteomic and microRNA transcriptome of the slow and fast muscles of Chinese perch (Siniperca chuatsi). Total of 2102 proteins were identified in muscle tissues. Among them, 99 proteins were differentially up-regulated and 400 were down-regulated in the fast muscle compared with slow muscle. MiRNA microarrays revealed that 199 miRNAs identified in the two types of muscle fibers. Compared with the fast muscle, the 32 miRNAs was up-regulated and 27 down-regulated in the slow muscle. Specifically, expression of miR-103 and miR-144 was negatively correlated with SmyD1a and SmyD1b expression in fast and slow muscles, respectively. The luciferase reporter assay further verified that the miR-103 and miR-144 directly regulated the SmyD1a and SmyD1b expression by targeting their 3′-UTR. The constructed miRNA-SmyD1 interaction network might play an important role in controlling the development and performance of different muscle fiber types in Chinese perch.
Collapse
|
68
|
Wei L, Murphy BL, Wu G, Parker M, Easton J, Gilbertson RJ, Zhang J, Roussel MF. Exome sequencing analysis of murine medulloblastoma models identifies WDR11 as a potential tumor suppressor in Group 3 tumors. Oncotarget 2017; 8:64685-64697. [PMID: 29029386 PMCID: PMC5630286 DOI: 10.18632/oncotarget.19642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/09/2017] [Indexed: 01/11/2023] Open
Abstract
Mouse models of human cancers are widely used in cancer research, yet questions frequently arise regarding their faithfulness in recapitulating their human counterparts. To compare the somatic mutations of murine models with human medulloblastoma (MB), we performed whole-exome sequencing on 12 tumors representing three distinct medulloblastoma subgroups: Wnt, Sonic Hedgehog (Shh) and Group 3 (G3). In total, 64 somatic mutations were identified and validated, including 40 predicted to cause amino acid changes. After filtering and cross-species analysis with 366 human MBs from four independent studies, human orthologs for 16 of the 40 mouse genes were found to harbor non-silent mutations in human MB. Loss-of-function Kmt2d mutations detected in one mouse tumor was previously reported in 30 of 366 human MBs. In mice bearing G3 MB, one mouse succumbed to tumor burden at least 15 days earlier than other mice, raising the possibility that somatic mutations may have accelerated the tumorigenesis process. In this mouse tumor, four novel candidate genes harbored non-silent somatic mutations, Lrfn2, Smyd1, Ubn2 and Wdr11. Extended survival was found in mice harboring mouse G3 overexpressing WDR11 but not the other three genes. Genes in the KEGG WNT signaling pathway, including Ccnd1/2/3, Myc and Tcf7l1, were down-regulated in the transcriptome of G3 MB tumorspheres overexpressing WDR11, consistent with reduced tumor progression. In conclusion, we demonstrated that common spontaneous mutations were shared between human and murine models of MB suggesting similar molecular mechanisms of tumorigenesis, and identified WDR11 as a protein with tumor suppressive activity in G3 MB.
Collapse
Affiliation(s)
- Lei Wei
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brian L. Murphy
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Matthew Parker
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Genomics England, Queen Mary University of London, London, UK
| | - John Easton
- Pediatric Cancer Genome Project, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard J. Gilbertson
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Martine F. Roussel
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
69
|
Nie H, Rathbun G, Tucker H. Smyd1C Mediates CD8 T Cell Death via Regulation of Bcl2-Mediated Restriction of outer Mitochondrial Membrane Integrity. ACTA ACUST UNITED AC 2017; 2. [PMID: 29177249 PMCID: PMC5699232 DOI: 10.4172/2576-1471.1000163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The SET and Mynd domain 1 (Smyd1) locus encodes three tissue-restricted isoforms. Two previously characterized isoforms, Smyd1A and Smyd1B, are heart and skeletal muscle-restricted histone methyl transferases. Here we report that a third, non-catalytic isoform, Smyd1C, is expressed predominantly in activated CD8 T cells. While Smyd1C- deficient CD8 T cells undergo activation-induced apoptosis, neither of two classical mechanisms activation-induced cell death nor activated cell autonomous death are utilized. Instead, Smyd1C accumulates within both mitochondria and the immunological synapse where it associates with Bcl-2, FK506-Binding Protein 8/38 (FKBP38) and Calcineurin. This complex maintains Bcl-2 phosphorylation, enhanced mitochondrial localization, and restricted apoptosis of activated CD8 T cells. We suggest that CD8 T cell death is governed, in part, by Smyd1C regulation of Bcl2-mediated restriction of outer mitochondrial membrane integrity.
Collapse
Affiliation(s)
- Hui Nie
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin TX 78712, USA
| | - Gary Rathbun
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin TX 78712, USA
| | - Haley Tucker
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin TX 78712, USA
| |
Collapse
|
70
|
Yi X, Jiang X, Li X, Jiang DS. Histone lysine methylation and congenital heart disease: From bench to bedside (Review). Int J Mol Med 2017; 40:953-964. [PMID: 28902362 DOI: 10.3892/ijmm.2017.3115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2017] [Indexed: 11/05/2022] Open
Abstract
Histone post-translational modifications (PTM) as one of the key epigenetic regulatory mechanisms that plays critical role in various biological processes, including regulating chromatin structure dynamics and gene expression. Histone lysine methyltransferase contributes to the establishment and maintenance of differential histone methylation status, which can recognize histone methylated sites and build an association between these modifications and their downstream processes. Recently, it was found that abnormalities in the histone lysine methylation level or pattern may lead to the occurrence of many types of cardiovascular diseases, such as congenital heart disease (CHD). In order to provide new theoretical basis and targets for the treatment of CHD from the view of developmental biology and genetics, this review discusses and elaborates on the association between histone lysine methylation modifications and CHD.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
71
|
Keating ST, Plutzky J, El-Osta A. Epigenetic Changes in Diabetes and Cardiovascular Risk. Circ Res 2017; 118:1706-22. [PMID: 27230637 DOI: 10.1161/circresaha.116.306819] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/30/2016] [Indexed: 01/03/2023]
Abstract
Cardiovascular complications remain the leading causes of morbidity and premature mortality in patients with diabetes mellitus. Studies in humans and preclinical models demonstrate lasting gene expression changes in the vasculopathies initiated by previous exposure to high glucose concentrations and the associated overproduction of reactive oxygen species. The molecular signatures of chromatin architectures that sensitize the genome to these and other cardiometabolic risk factors of the diabetic milieu are increasingly implicated in the biological memory underlying cardiovascular complications and now widely considered as promising therapeutic targets. Atherosclerosis is a complex heterocellular disease where the contributing cell types possess distinct epigenomes shaping diverse gene expression. Although the extent that pathological chromatin changes can be manipulated in human cardiovascular disease remains to be established, the clinical applicability of epigenetic interventions will be greatly advanced by a deeper understanding of the cell type-specific roles played by writers, erasers, and readers of chromatin modifications in the diabetic vasculature. This review details a current perspective of epigenetic mechanisms of macrovascular disease in diabetes mellitus and highlights recent key descriptions of chromatinized changes associated with persistent gene expression in endothelial, smooth muscle, and circulating immune cells relevant to atherosclerosis. Furthermore, we discuss the challenges associated with pharmacological targeting of epigenetic networks to correct abnormal or deregulated gene expression as a strategy to alleviate the clinical burden of diabetic cardiovascular disease.
Collapse
Affiliation(s)
- Samuel T Keating
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.)
| | - Jorge Plutzky
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.)
| | - Assam El-Osta
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.).
| |
Collapse
|
72
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
73
|
Burggren WW, Dubansky B, Bautista NM. Cardiovascular Development in Embryonic and Larval Fishes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
74
|
Rajajeyabalachandran G, Kumar S, Murugesan T, Ekambaram S, Padmavathy R, Jegatheesan SK, Mullangi R, Rajagopal S. Therapeutical potential of deregulated lysine methyltransferase SMYD3 as a safe target for novel anticancer agents. Expert Opin Ther Targets 2016; 21:145-157. [PMID: 28019723 DOI: 10.1080/14728222.2017.1272580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION SET and MYND domain containing-3 (SMYD3) is a member of the lysine methyltransferase family of proteins, and plays an important role in the methylation of various histone and non-histone targets. Proper functioning of SMYD3 is very important for the target molecules to determine their different roles in chromatin remodeling, signal transduction and cell cycle control. Due to the abnormal expression of SMYD3 in tumors, it is projected as a prognostic marker in various solid cancers. Areas covered: Here we elaborate on the general information, structure and the pathological role of SMYD3 protein. We summarize the role of SMYD3-mediated protein interactions in oncology pathways, mutational effects and regulation of SMYD3 in specific types of cancer. The efficacy and mechanisms of action of currently available SMYD3 small molecule inhibitors are also addressed. Expert opinion: The findings analyzed herein demonstrate that aberrant levels of SMYD3 protein exert tumorigenic effects by altering the epigenetic regulation of target genes. The partial involvement of SMYD3 in some distinct pathways provides a vital opportunity in targeting cancer effectively with fewer side effects. Further, identification and co-targeting of synergistic oncogenic pathways is suggested, which could provide much more beneficial effects for the treatment of solid cancers.
Collapse
Affiliation(s)
| | - Swetha Kumar
- a Bioinformatics, Jubilant Biosys Ltd ., Bangalore , India
| | | | | | | | | | | | | |
Collapse
|
75
|
Stewart MD, Lopez S, Nagandla H, Soibam B, Benham A, Nguyen J, Valenzuela N, Wu HJ, Burns AR, Rasmussen TL, Tucker HO, Schwartz RJ. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis Model Mech 2016; 9:347-59. [PMID: 26935107 PMCID: PMC4833328 DOI: 10.1242/dmm.022491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Smyd1 gene encodes a lysine methyltransferase specifically expressed in striated muscle. Because Smyd1-null mouse embryos die from heart malformation prior to formation of skeletal muscle, we developed a Smyd1 conditional-knockout allele to determine the consequence of SMYD1 loss in mammalian skeletal muscle. Ablation of SMYD1 specifically in skeletal myocytes after myofiber differentiation using Myf6(cre) produced a non-degenerative myopathy. Mutant mice exhibited weakness, myofiber hypotrophy, prevalence of oxidative myofibers, reduction in triad numbers, regional myofibrillar disorganization/breakdown and a high percentage of myofibers with centralized nuclei. Notably, we found broad upregulation of muscle development genes in the absence of regenerating or degenerating myofibers. These data suggest that the afflicted fibers are in a continual state of repair in an attempt to restore damaged myofibrils. Disease severity was greater for males than females. Despite equivalent expression in all fiber types, loss of SMYD1 primarily affected fast-twitch muscle, illustrating fiber-type-specific functions for SMYD1. This work illustrates a crucial role for SMYD1 in skeletal muscle physiology and myofibril integrity.
Collapse
Affiliation(s)
- M David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Suhujey Lopez
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Harika Nagandla
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Benjamin Soibam
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, Houston, TX 77002, USA
| | - Ashley Benham
- Stem Cell Engineering Department, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, TX 77030, USA
| | - Jasmine Nguyen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Nicolas Valenzuela
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Harry J Wu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Tara L Rasmussen
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haley O Tucker
- Department of Molecular Biosciences, Institute for Cellular Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA Stem Cell Engineering Department, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, TX 77030, USA
| |
Collapse
|
76
|
Resetting the epigenome for heart regeneration. Semin Cell Dev Biol 2016; 58:2-13. [DOI: 10.1016/j.semcdb.2015.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022]
|
77
|
Franklin S, Kimball T, Rasmussen TL, Rosa-Garrido M, Chen H, Tran T, Miller MR, Gray R, Jiang S, Ren S, Wang Y, Tucker HO, Vondriska TM. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth. Am J Physiol Heart Circ Physiol 2016; 311:H1234-H1247. [PMID: 27663768 PMCID: PMC5130490 DOI: 10.1152/ajpheart.00235.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022]
Abstract
All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1.
Collapse
Affiliation(s)
- Sarah Franklin
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; and
| | - Todd Kimball
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Tara L Rasmussen
- Department of Molecular Genetics and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Texas
| | - Manuel Rosa-Garrido
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Haodong Chen
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Tam Tran
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Mickey R Miller
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; and
| | - Ricardo Gray
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Shanxi Jiang
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Shuxun Ren
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Yibin Wang
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Haley O Tucker
- Department of Molecular Genetics and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Texas
| | - Thomas M Vondriska
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
78
|
Rudeck S, Etard C, Khan MM, Rottbauer W, Rudolf R, Strähle U, Just S. A compact unc45b-promoter drives muscle-specific expression in zebrafish and mouse. Genesis 2016; 54:431-8. [PMID: 27295336 PMCID: PMC5113797 DOI: 10.1002/dvg.22953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 12/02/2022]
Abstract
Summary: Gene therapeutic approaches to cure genetic diseases require tools to express the rescuing gene exclusively within the affected tissues. Viruses are often chosen as gene transfer vehicles but they have limited capacity for genetic information to be carried and transduced. In addition, to avoid off‐target effects the therapeutic gene should be driven by a tissue‐specific promoter in order to ensure expression in the target organs, tissues, or cell populations. The larger the promoter, the less space will be left for the respective gene. Thus, there is a need for small but tissue‐specific promoters. Here, we describe a compact unc45b promoter fragment of 195 bp that retains the ability to drive gene expression exclusively in skeletal and cardiac muscle in zebrafish and mouse. Remarkably, the described unc45b promoter fragment not only drives muscle‐specific expression but presents heat‐shock inducibility, allowing a temporal and spatial quantity control of (trans)gene expression. Here, we demonstrate that the transgenic expression of the smyd1b gene driven by the unc45b promoter fragment is able to rescue the embryonically lethal heart and skeletal muscle defects in smyd1b‐deficient flatline mutant zebrafish. Our findings demonstrate that the described muscle‐specific unc45b promoter fragment might be a valuable tool for the development of genetic therapies in patients suffering from myopathies. genesis 54:431–438, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven Rudeck
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Christelle Etard
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Muzamil M Khan
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany.,Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, University Heidelberg, Heidelberg, Germany
| | | | - Rüdiger Rudolf
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, University Heidelberg, Heidelberg, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| |
Collapse
|
79
|
Fujii T, Tsunesumi SI, Sagara H, Munakata M, Hisaki Y, Sekiya T, Furukawa Y, Sakamoto K, Watanabe S. Smyd5 plays pivotal roles in both primitive and definitive hematopoiesis during zebrafish embryogenesis. Sci Rep 2016; 6:29157. [PMID: 27377701 PMCID: PMC4932602 DOI: 10.1038/srep29157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/15/2016] [Indexed: 12/24/2022] Open
Abstract
Methylation of histone tails plays a pivotal role in the regulation of a wide range of biological processes. SET and MYND domain-containing protein (SMYD) is a methyltransferase, five family members of which have been identified in humans. SMYD1, SMYD2, SMYD3, and SMYD4 have been found to play critical roles in carcinogenesis and/or the development of heart and skeletal muscle. However, the physiological functions of SMYD5 remain unknown. To investigate the function of Smyd5 in vivo, zebrafish were utilised as a model system. We first examined smyd5 expression patterns in developing zebrafish embryos. Smyd5 transcripts were abundantly expressed at early developmental stages and then gradually decreased. Smyd5 was expressed in all adult tissues examined. Loss-of-function analysis of Smyd5 was then performed in zebrafish embryos using smyd5 morpholino oligonucleotide (MO). Embryos injected with smyd5-MO showed normal gross morphological development, including of heart and skeletal muscle. However, increased expression of both primitive and definitive hematopoietic markers, including pu.1, mpx, l-plastin, and cmyb, were observed. These phenotypes of smyd5-MO zebrafish embryos were also observed when we introduced mutations in smyd5 gene with the CRISPR/Cas9 system. As the expression of myeloid markers was elevated in smyd5 loss-of-function zebrafish, we propose that Smyd5 plays critical roles in hematopoiesis.
Collapse
Affiliation(s)
- Tomoaki Fujii
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Tokyo 101-0062, Japan.,Department of Coloproctological Surgery, Juntendo University, Faculty of Medicine, Tokyo 113-8421, Japan.,Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shin-Ichiro Tsunesumi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Sagara
- Fine Morphological Analysis Group Medical Proteomics Laboratory Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Miyo Munakata
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Tokyo 101-0062, Japan
| | - Yoshihiro Hisaki
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Tokyo 101-0062, Japan.,Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takao Sekiya
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Tokyo 101-0062, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Juntendo University, Faculty of Medicine, Tokyo 113-8421, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
80
|
Molecular characterization and expression regulation of Smyd1a and Smyd1b in skeletal muscle of Chinese perch (Siniperca chuatsi). Comp Biochem Physiol B Biochem Mol Biol 2016; 194-195:25-31. [DOI: 10.1016/j.cbpb.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 11/22/2022]
|
81
|
Fu W, Liu N, Qiao Q, Wang M, Min J, Zhu B, Xu RM, Yang N. Structural Basis for Substrate Preference of SMYD3, a SET Domain-containing Protein Lysine Methyltransferase. J Biol Chem 2016; 291:9173-80. [PMID: 26929412 DOI: 10.1074/jbc.m115.709832] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 01/05/2023] Open
Abstract
SMYD3 is a SET domain-containing N-lysine methyltransferase associated with multiple cancers. Its reported substrates include histones (H3K4 and H4K5), vascular endothelial growth factor receptor 1 (VEGFR1 Lys(831)) and MAP3 kinase kinase (MAP3K2 Lys(260)). To reveal the structural basis for substrate preference and the catalytic mechanism of SMYD3, we have solved its co-crystal structures with VEGFR1 and MAP3K2 peptides. Our structural and biochemical analyses show that MAP3K2 serves as a robust substrate of SMYD3 because of the presence of a phenylalanine residue at the -2 position. A shallow hydrophobic pocket on SMYD3 accommodates the binding of the phenylalanine and promotes efficient catalytic activities of SMYD3. By contrast, SMYD3 displayed a weak activity toward a VEGFR1 peptide, and the location of the acceptor lysine in the folded kinase domain of VEGFR1 requires drastic conformational rearrangements for juxtaposition of the acceptor lysine with the enzymatic active site. Our results clearly revealed structural determinants for the substrate preference of SMYD3 and provided mechanistic insights into lysine methylation of MAP3K2. The knowledge should be useful for the development of SMYD3 inhibitors in the fight against MAP3K2 and Ras-driven cancer.
Collapse
Affiliation(s)
- Weiqi Fu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Nan Liu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Qiao
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Mingzhu Wang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinrong Min
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Bing Zhu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Rui-Ming Xu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Na Yang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100049, China, and
| |
Collapse
|
82
|
Coda DM, Lingua MF, Morena D, Foglizzo V, Bersani F, Ala U, Ponzetto C, Taulli R. SMYD1 and G6PD modulation are critical events for miR-206-mediated differentiation of rhabdomyosarcoma. Cell Cycle 2016; 14:1389-402. [PMID: 25644430 DOI: 10.1080/15384101.2015.1005993] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rhadomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. RMS cells resemble fetal myoblasts but are unable to complete myogenic differentiation. In previous work we showed that miR-206, which is low in RMS, when induced in RMS cells promotes the resumption of differentiation by modulating more than 700 genes. To better define the pathways involved in the conversion of RMS cells into their differentiated counterpart, we focused on 2 miR-206 effectors emerged from the microarray analysis, SMYD1 and G6PD. SMYD1, one of the most highly upregulated genes, is a H3K4 histone methyltransferase. Here we show that SMYD1 silencing does not interfere with the proliferative block or with the loss anchorage independence imposed by miR-206, but severely impairs differentiation of ERMS, ARMS, and myogenic cells. Thus SMYD1 is essential for the activation of muscle genes. Conversely, among the downregulated genes, we found G6PD, the enzyme catalyzing the rate-limiting step of the pentose phosphate shunt. In this work, we confirmed that G6PD is a direct target of miR-206. Moreover, we showed that G6PD silencing in ERMS cells impairs proliferation and soft agar growth. However, G6PD overexpression does not interfere with the pro-differentiating effect of miR-206, suggesting that G6PD downmodulation contributes to - but is not an absolute requirement for - the tumor suppressive potential of miR-206. Targeting cancer metabolism may enhance differentiation. However, therapeutic inhibition of G6PD is encumbered by side effects. As an alternative, we used DCA in combination with miR-206 to increase the flux of pyruvate into the mitochondrion by reactivating PDH. DCA enhanced the inhibition of RMS cell growth induced by miR-206, and sustained it upon miR-206 de-induction. Altogether these results link miR-206 to epigenetic and metabolic reprogramming, and suggest that it may be worth combining differentiation-inducing with metabolism-directed approaches.
Collapse
Key Words
- DCA, Dichloroacetate
- DHEA, Dehydroepiandrosterone
- G6PD, Glucose 6 Phosphate Dehydrogenase
- HMT, Histone MethylTransferase
- MREs, MicroRNA Responsive Elements
- MRFs, Myogenic Regulatory Factors
- PDH, Pyruvate Dehydrogenase
- PDK, Pyruvate Dehydrogenase Kinase
- PPP, Pentose Phosphate Pathway
- RMS, Rhabdomyosarcoma
- Rhabdomyosarcoma
- SMYD1, SET and MYND domain-containing protein 1
- TCA cycle, TriCarboxylic Acid cycle
- differentiation therapy
- metabolism and cancer
- miR-206
- myomiRs, muscle-specific microRNAs
Collapse
|
83
|
Ansseau E, Eidahl JO, Lancelot C, Tassin A, Matteotti C, Yip C, Liu J, Leroy B, Hubeau C, Gerbaux C, Cloet S, Wauters A, Zorbo S, Meyer P, Pirson I, Laoudj-Chenivesse D, Wattiez R, Harper SQ, Belayew A, Coppée F. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation. PLoS One 2016; 11:e0146893. [PMID: 26816005 PMCID: PMC4729438 DOI: 10.1371/journal.pone.0146893] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022] Open
Abstract
Hundreds of double homeobox (DUX) genes map within 3.3-kb repeated elements dispersed in the human genome and encode DNA-binding proteins. Among these, we identified DUX4, a potent transcription factor that causes facioscapulohumeral muscular dystrophy (FSHD). In the present study, we performed yeast two-hybrid screens and protein co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein partners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal domain) and DUX1 (which is limited to the double homeodomain). Unexpectedly, we identified and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence and in situ Proximal Ligation Assay) the interaction of DUX4, DUX4c and DUX1 with type III intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and interact with mitochondria. These intermediate filament also contact the nuclear lamina and contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interactions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipitation, co-immunofluorescence and in situ Proximal Ligation Assay) as DUX4/4c partners several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, however their cytoplasmic translocation was reported in neuronal cells where they associated with ribonucleoparticles (RNPs). Several other validated or identified DUX4/DUX4c partners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-positive spots is in keeping with such an association. Large muscle RNPs were recently shown to exit the nucleus via a novel mechanism of nuclear envelope budding. Following DUX4 or DUX4c overexpression in muscle cell cultures, we observed their association with similar nuclear buds. In conclusion, our study demonstrated unexpected interactions of DUX4/4c with cytoplasmic proteins playing major roles during muscle differentiation. Further investigations are on-going to evaluate whether these interactions play roles during muscle regeneration as previously suggested for DUX4c.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Jocelyn O. Eidahl
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Céline Lancelot
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Christel Matteotti
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Cassandre Yip
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Jian Liu
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Baptiste Leroy
- Laboratory of Proteomic and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Céline Hubeau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Cécile Gerbaux
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Samuel Cloet
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Sabrina Zorbo
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Pierre Meyer
- Pediatric Department, CHRU Montpellier, Montpellier, France
| | - Isabelle Pirson
- I.R.I.B.H.M., Free University of Brussels, Brussels, Belgium
| | | | - Ruddy Wattiez
- Laboratory of Proteomic and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Scott Q. Harper
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- * E-mail:
| |
Collapse
|
84
|
Ye X, Qian Y, Wang Q, Yuan W, Mo X, Li Y, Jiang Z, Xu W, Deng Y, Wan Y, Fan X, Wu X, Wang Y. SMYD1, an SRF-Interacting Partner, Is Involved in Angiogenesis. PLoS One 2016; 11:e0146468. [PMID: 26799706 PMCID: PMC4723226 DOI: 10.1371/journal.pone.0146468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated that Smyd1 plays a critical role in cardiomyocyte differentiation, cardiac morphogenesis and myofibril organization. In this study, we uncovered a novel function of Smyd1 in the regulation of endothelial cells (ECs). Our data showed that Smyd1 is expressed in vascular endothelial cells, and knockdown of SMYD1 in endothelial cells impairs EC migration and tube formation. Furthermore, Co-IP and GST pull-down assays demonstrated that SMYD1 is associated with the Serum Response Factor (SRF). EMSA assays further showed that SMYD1 forms a complex with SRF and enhances SRF DNA binding activity. Our studies indicate that SMYD1 serves as an SRF-interacting protein, enhances SRF DNA binding activity, and is required for EC migration and tube formation to regulate angiogenesis.
Collapse
Affiliation(s)
- Xiangli Ye
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- College of Medicine, Hunan Normal University, Changsha, Hunan, 410013, China
| | - Yu Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qian Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wuzhou Yuan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoyang Mo
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yongqing Li
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhigang Jiang
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Wei Xu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yun Deng
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yongqi Wan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiongwei Fan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- * E-mail: (XF); (XW); (Y. Wang)
| | - Xiushan Wu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- * E-mail: (XF); (XW); (Y. Wang)
| | - Yuequn Wang
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- * E-mail: (XF); (XW); (Y. Wang)
| |
Collapse
|
85
|
Spellmon N, Sun X, Sirinupong N, Edwards B, Li C, Yang Z. Molecular Dynamics Simulation Reveals Correlated Inter-Lobe Motion in Protein Lysine Methyltransferase SMYD2. PLoS One 2015; 10:e0145758. [PMID: 26717235 PMCID: PMC4696779 DOI: 10.1371/journal.pone.0145758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/08/2015] [Indexed: 01/10/2023] Open
Abstract
SMYD proteins are an exciting field of study as they are linked to many types of cancer-related pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins opening a possible avenue for cardiac-related treatment. Previous crystal structure studies have revealed that this special class of protein lysine methyltransferases have a bilobal structure, and an open–closed motion may regulate substrate specificity. Here we use the molecular dynamics simulation to investigate the still-poorly-understood SMYD2 dynamics. Cross-correlation analysis reveals that SMYD2 exhibits a negative correlated inter-lobe motion. Principle component analysis suggests that this correlated dynamic is contributed to by a twisting motion of the C-lobe with respect to the N-lobe and a clamshell-like motion between the lobes. Dynamical network analysis defines possible allosteric paths for the correlated dynamics. There are nine communities in the dynamical network with six in the N-lobe and three in the C-lobe, and the communication between the lobes is mediated by a lobe-bridging β hairpin. This study provides insight into the dynamical nature of SMYD2 and could facilitate better understanding of SMYD2 substrate specificity.
Collapse
Affiliation(s)
- Nicholas Spellmon
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Xiaonan Sun
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Brian Edwards
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail: (ZY); (CL)
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail: (ZY); (CL)
| |
Collapse
|
86
|
Nagandla H, Lopez S, Yu W, Rasmussen TL, Tucker HO, Schwartz RJ, Stewart MD. Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1. Dev Biol 2015; 410:86-97. [PMID: 26688546 DOI: 10.1016/j.ydbio.2015.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022]
Abstract
The SMYD (SET and MYND domain) family of lysine methyltransferases harbor a unique structure in which the methyltransferase (SET) domain is intervened by a zinc finger protein-protein interaction MYND domain. SMYD proteins methylate both histone and non-histone substrates and participate in diverse biological processes including transcriptional regulation, DNA repair, proliferation and apoptosis. Smyd1 is unique among the five family members in that it is specifically expressed in striated muscles. Smyd1 is critical for development of the right ventricle in mice. In zebrafish, Smyd1 is necessary for sarcomerogenesis in fast-twitch muscles. Smyd1 is expressed in the skeletal muscle lineage throughout myogenesis and in mature myofibers, shuttling from nucleus to cytosol during myoblast differentiation. Because of this expression pattern, we hypothesized that Smyd1 plays multiple roles at different stages of myogenesis. To determine the role of Smyd1 in mammalian myogenesis, we conditionally eliminated Smyd1 from the skeletal muscle lineage at the myoblast stage using Myf5(cre). Deletion of Smyd1 impaired myoblast differentiation, resulted in fewer myofibers and decreased expression of muscle-specific genes. Muscular defects were temporally restricted to the second wave of myogenesis. Thus, in addition to the previously described functions for Smyd1 in heart development and skeletal muscle sarcomerogenesis, these results point to a novel role for Smyd1 in myoblast differentiation.
Collapse
Affiliation(s)
- Harika Nagandla
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Suhujey Lopez
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Wei Yu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Tara L Rasmussen
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA; Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA
| | - Haley O Tucker
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Stem Cell Engineering Department, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA
| | - M David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| |
Collapse
|
87
|
Etard C, Armant O, Roostalu U, Gourain V, Ferg M, Strähle U. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol 2015; 16:267. [PMID: 26631063 PMCID: PMC4668643 DOI: 10.1186/s13059-015-0825-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/05/2015] [Indexed: 01/03/2023] Open
Abstract
Background Mutations in myosin chaperones Unc45b and Hsp90aa1.1 as well as in the Unc45b-binding protein Smyd1b impair formation of myofibrils in skeletal muscle and lead to the accumulation of misfolded myosin. The concomitant transcriptional response involves up-regulation of the three genes encoding these proteins, as well as genes involved in muscle development. The transcriptional up-regulation of unc45b, hsp90aa1.1 and smyd1b is specific to zebrafish mutants with myosin folding defects, and is not triggered in other zebrafish myopathy models. Results By dissecting the promoter of unc45b, we identify a Heat shock factor 1 (Hsf1) binding element as a mediator of unc45b up-regulation in myofibers lacking myosin folding proteins. Loss-of-function of Hsf1 abolishes unc45b up-regulation in mutants with defects in myosin folding. Conclusions Taken together, our data show that skeletal muscle cells respond to defective myosin chaperones with a complex gene program and suggest that this response is mediated by Hsf1 activation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0825-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christelle Etard
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Urmas Roostalu
- Present address: Institute of Inflammation and Repair, Michael Smith Bldg, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany.
| |
Collapse
|
88
|
Prill K, Windsor Reid P, Wohlgemuth SL, Pilgrim DB. Still Heart Encodes a Structural HMT, SMYD1b, with Chaperone-Like Function during Fast Muscle Sarcomere Assembly. PLoS One 2015; 10:e0142528. [PMID: 26544721 PMCID: PMC4636364 DOI: 10.1371/journal.pone.0142528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
The vertebrate sarcomere is a complex and highly organized contractile structure whose assembly and function requires the coordination of hundreds of proteins. Proteins require proper folding and incorporation into the sarcomere by assembly factors, and they must also be maintained and replaced due to the constant physical stress of muscle contraction. Zebrafish mutants affecting muscle assembly and maintenance have proven to be an ideal tool for identification and analysis of factors necessary for these processes. The still heart mutant was identified due to motility defects and a nonfunctional heart. The cognate gene for the mutant was shown to be smyd1b and the still heart mutation results in an early nonsense codon. SMYD1 mutants show a lack of heart looping and chamber definition due to a lack of expression of heart morphogenesis factors gata4, gata5 and hand2. On a cellular level, fast muscle fibers in homozygous mutants do not form mature sarcomeres due to the lack of fast muscle myosin incorporation by SMYD1b when sarcomeres are first being assembled (19hpf), supporting SMYD1b as an assembly protein during sarcomere formation.
Collapse
Affiliation(s)
- Kendal Prill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela Windsor Reid
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Serene L. Wohlgemuth
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David B. Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
89
|
Peveling-Oberhag J, Wolters F, Döring C, Walter D, Sellmann L, Scholtysik R, Lucioni M, Schubach M, Paulli M, Biskup S, Zeuzem S, Küppers R, Hansmann ML. Whole exome sequencing of microdissected splenic marginal zone lymphoma: a study to discover novel tumor-specific mutations. BMC Cancer 2015; 15:773. [PMID: 26498442 PMCID: PMC4619476 DOI: 10.1186/s12885-015-1766-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/10/2015] [Indexed: 12/14/2022] Open
Abstract
Background Splenic marginal zone lymphoma (SMZL) is an indolent B-cell non-Hodgkin lymphoma and represents the most common primary malignancy of the spleen. Its precise molecular pathogenesis is still unknown and specific molecular markers for diagnosis or possible targets for causal therapies are lacking. Methods We performed whole exome sequencing (WES) and copy number analysis from laser-microdissected tumor cells of two primary SMZL discovery cases. Selected somatic single nucleotide variants (SNVs) were analyzed using pyrosequencing and Sanger sequencing in an independent validation cohort. Results Overall, 25 nonsynonymous somatic SNVs were identified, including known mutations in the NOTCH2 and MYD88 genes. Twenty-three of the mutations have not been associated with SMZL before. Many of these seem to be subclonal. Screening of 24 additional SMZL for mutations at the same positions found mutated in the WES approach revealed no recurrence of mutations for ZNF608 and PDE10A, whereas the MYD88 L265P missense mutation was identified in 15 % of cases. An analysis of the NOTCH2 PEST domain and the whole coding region of the transcription factor SMYD1 in eight cases identified no additional case with a NOTCH2 mutation, but two additional cases with SMYD1 alterations. Conclusions In this first WES approach from microdissected SMZL tissue we confirmed known mutations and discovered new somatic variants. Recurrence of MYD88 mutations in SMZL was validated, but NOTCH2 PEST domain mutations were relatively rare (10 % of cases). Recurrent mutations in the transcription factor SMYD1 have not been described in SMZL before and warrant further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1766-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Peveling-Oberhag
- Medizinische Klinik 1, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany.
| | - Franziska Wolters
- Medizinische Klinik 1, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany.
| | - Claudia Döring
- Senckenbergisches Institut für Pathologie, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany.
| | - Dirk Walter
- Medizinische Klinik 1, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany.
| | - Ludger Sellmann
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, Essen, Germany.
| | - René Scholtysik
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, Essen, Germany.
| | - Marco Lucioni
- Department of Human Pathology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | - Max Schubach
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany.
| | - Marco Paulli
- Department of Human Pathology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | - Saskia Biskup
- CeGaT GmbH, Paul-Ehrlich-Straße 23, Tübingen, Germany.
| | - Stefan Zeuzem
- Medizinische Klinik 1, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany.
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, Essen, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Martin-Leo Hansmann
- Senckenbergisches Institut für Pathologie, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
90
|
Liu T, Wu C, Jain MR, Nagarajan N, Yan L, Dai H, Cui C, Baykal A, Pan S, Ago T, Sadoshima J, Li H. Master redox regulator Trx1 upregulates SMYD1 & modulates lysine methylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1816-1822. [PMID: 26410624 DOI: 10.1016/j.bbapap.2015.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
Thioredoxin 1 (Trx1) is а antioxidant protein that regulates protein disulfide bond reduction, transnitrosylation, denitrosylation and other redox post-translational modifications. In order to better understand how Trx1 modulates downstream protective cellular signaling events following cardiac ischemia, we conducted an expression proteomics study of left ventricles (LVs) after thoracic aortic constriction stress treatment of transgenic mice with cardiac-specific over-expression of Trx1, an animal model that has been proven to withstand more stress than its non-transgenic littermates. Although previous redox post-translational modifications proteomics studies found that several cellular protein networks are regulated by Trx1-mediated disulfide reduction and transnitrosylation, we found that Trx1 regulates the expression of a limited number of proteins. Among the proteins found to be upregulated in this study was SET and MYND domain-containing protein 1 (SMYD1), a lysine methyltransferase highly expressed in cardiac and other muscle tissues and an important regulator of cardiac development. The observation of SMYD1 induction by Trx1 following thoracic aortic constriction stress is consistent with the retrograde fetal gene cardiac protection hypothesis. The results presented here suggest for the first time that, in addition to being a master redox regulator of protein disulfide bonds and nitrosation, Trx1 may also modulate lysine methylation, a non-redox post-translational modification, via the regulation of SMYD1 expression. Such crosstalk between redox signaling and a non-redox PTM regulation may provide novel insights into the functions of Trx1 that are independent from its immediate function as a protein reductase.
Collapse
Affiliation(s)
- Tong Liu
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Changgong Wu
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Mohit Raja Jain
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Narayani Nagarajan
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, United States
| | - Lin Yan
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Huacheng Dai
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Chuanlong Cui
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Ahmet Baykal
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Stacey Pan
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Tetsuro Ago
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, United States
| | - Junichi Sadoshima
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, United States
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States.
| |
Collapse
|
91
|
Calpena E, Palau F, Espinós C, Galindo MI. Evolutionary History of the Smyd Gene Family in Metazoans: A Framework to Identify the Orthologs of Human Smyd Genes in Drosophila and Other Animal Species. PLoS One 2015; 10:e0134106. [PMID: 26230726 PMCID: PMC4521844 DOI: 10.1371/journal.pone.0134106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023] Open
Abstract
The Smyd gene family code for proteins containing a conserved core consisting of a SET domain interrupted by a MYND zinc finger. Smyd proteins are important in epigenetic control of development and carcinogenesis, through posttranslational modifications in histones and other proteins. Previous reports indicated that the Smyd family is quite variable in metazoans, so a rigorous phylogenetic reconstruction of this complex gene family is of central importance to understand its evolutionary history and functional diversification or conservation. We have performed a phylogenetic analysis of Smyd protein sequences, and our results show that the extant metazoan Smyd genes can be classified in three main classes, Smyd3 (which includes chordate-specific Smyd1 and Smyd2 genes), Smyd4 and Smyd5. In addition, there is an arthropod-specific class, SmydA. While the evolutionary history of the Smyd3 and Smyd5 classes is relatively simple, the Smyd4 class has suffered several events of gene loss, gene duplication and lineage-specific expansions in the animal phyla included in our analysis. A more specific study of the four Smyd4 genes in Drosophila melanogaster shows that they are not redundant, since their patterns of expression are different and knock-down of individual genes can have dramatic phenotypes despite the presence of the other family members.
Collapse
Affiliation(s)
- Eduardo Calpena
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| | - Francesc Palau
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| | - Carmen Espinós
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| | - Máximo Ibo Galindo
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- * E-mail:
| |
Collapse
|
92
|
Berkholz J, Orgeur M, Stricker S, Munz B. skNAC and Smyd1 in transcriptional control. Exp Cell Res 2015; 336:182-91. [PMID: 26162853 DOI: 10.1016/j.yexcr.2015.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/26/2015] [Accepted: 06/26/2015] [Indexed: 01/08/2023]
Abstract
Skeletal and heart muscle-specific variant of the alpha subunit of nascent polypeptide associated complex (skNAC) is exclusively found in striated muscle cells. Its function, however, is largely unknown. Previous reports could demonstrate that skNAC binds to Smyd1 (SET and MYND domain containing protein 1). The facts that (a) SET domains have histone methyltransferase activity, and (b) MYND domains are known recruiters of histone deacetylases (HDACs), implicate the skNAC-Smyd1 complex in transcriptional control. To study potential target genes, we carried out cDNA microarray analysis on differentiating C2C12 myoblasts in which expression of the skNAC gene had been knocked down. We found and confirmed a series of targets, specifically genes encoding regulators of inflammation, cellular metabolism, and cell migration. Mechanistically, as shown by Western blot, ELISA, and ChIP analysis at selected promoter regions, transcriptional control by skNAC-Smyd1 appears to be exerted at least in part by affecting a series of histone modifications, specifically H3K4 di- and trimethylation and potentially also histone acetylation. Taken together, our data suggest that the skNAC-Smyd1 complex is involved in transcriptional regulation both via the control of histone methylation and histone (de)acetylation.
Collapse
Affiliation(s)
- Janine Berkholz
- Charité-University Medicine Berlin, Institute of Physiology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Mickael Orgeur
- Free University of Berlin, Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry and Biochemistry, Ihnestr. 73, D-14195 Berlin, Germany; Max Planck Institute for Molecular Genetics, Development and Disease, Ihnestr. 73, D-14195 Berlin, Germany
| | - Sigmar Stricker
- Free University of Berlin, Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry and Biochemistry, Ihnestr. 73, D-14195 Berlin, Germany; Max Planck Institute for Molecular Genetics, Development and Disease, Ihnestr. 73, D-14195 Berlin, Germany
| | - Barbara Munz
- University Hospital Tubingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tubingen, Germany.
| |
Collapse
|
93
|
Zhao C, Carrillo JA, Tian F, Zan L, Updike SM, Zhao K, Zhan F, Song J. Genome-Wide H3K4me3 Analysis in Angus Cattle with Divergent Tenderness. PLoS One 2015; 10:e0115358. [PMID: 26086782 PMCID: PMC4473007 DOI: 10.1371/journal.pone.0115358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 11/22/2014] [Indexed: 11/19/2022] Open
Abstract
Tenderness is one of the most important properties of meat quality, which is influenced by genetic and environmental factors. As an intensively studied epigenetic marker, histone methylation, occurring on arginine and lysine residues, has pivotal regulatory functions on gene expression. To examine whether histone methylation involves in beef tenderness variation, we analyzed the transcriptome and H3K4me3 enrichment profiles of muscle strips obtained from the longissimus dorsi (LD) of Angus steers previously classify to the tender or tough group. We first plotted a global bovine H3K4me3 map on chromosomes and called peak-enriched regions and genes. We found that majorities of H3K4me3 on genes were occupying the first intron and intergenic regions and its maps displayed similar patterns in tender and tough groups, with high H3K4me3 enrichment surrounding the transcription start site (TSS). We also explored the relationship of H3K4me3 and gene expression. The results showed that H3K4me3 enrichment is highly positively correlated with gene expression across the whole genome. Cluster analysis results confirmed the relationship of H3K4me3 enrichment and gene expression. By using a pathway-based approach in genes with H3K4me3 enrichment in promoter regions from the tender cluster, we revealed that those genes involved in the development of different tissues-connective tissue, skeletal and muscular system and functional tissues-; while in tough group those genes engaged in cell death, lipid metabolism and small molecule biochemistry. The results from this study provide a deep insight into understanding of the mechanisms of epigenetic regulations in meat quality and beef tenderness.
Collapse
Affiliation(s)
- Chunping Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
| | - José A. Carrillo
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
| | - Fei Tian
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Scott M. Updike
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
| | - Keji Zhao
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Fei Zhan
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
- * E-mail:
| |
Collapse
|
94
|
Du SJ, Tan X, Zhang J. SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat Rec (Hoboken) 2015; 297:1650-62. [PMID: 25125178 DOI: 10.1002/ar.22972] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 11/07/2022]
Abstract
Muscle fibers are composed of myofibrils, one of the most highly ordered macromolecular assemblies in cells. Recent studies demonstrate that members of the Smyd family play critical roles in myofibril assembly of skeletal and cardiac muscle during development. The Smyd family consists of five members including Smyd1, Smyd2, Smyd3, Smyd4, and Smyd5. They share two highly conserved structural and functional domains, namely the SET and MYND domains involved in lysine methylation and protein-protein interaction, respectively. Smyd1 is specifically expressed in muscle cells under the regulation of myogenic transcriptional factors of the MyoD and Mef2 families and the serum responsive factor. Loss of function studies reveal that Smyd1 is required for cardiomyogenesis and sarcomere assembly in skeletal and cardiac muscles. Smyd2, on another hand, is dispensable for heart development in mice. However, Smyd2 appears to play a role in myofilament organization in both skeletal and cardiac muscles via Hsp90 methylation. A Drosophila Smyd4 homologue is a muscle-specific transcriptional modulator involved in the development or function of adult muscle. The molecular mechanisms by which Smyd family proteins function in muscle cells are not well understood. It has been suggested that members of the Smyd family may use multiple mechanisms to control muscle development and cell differentiation, including transcriptional regulation, epigenetic regulation via histone methylation, and methylation of proteins other than histones, such as molecular chaperone Hsp90.
Collapse
Affiliation(s)
- Shao Jun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
95
|
The sarcomeric M-region: a molecular command center for diverse cellular processes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:714197. [PMID: 25961035 PMCID: PMC4413555 DOI: 10.1155/2015/714197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/08/2015] [Indexed: 02/07/2023]
Abstract
The sarcomeric M-region anchors thick filaments and withstands the mechanical stress of contractions by deformation, thus enabling distribution of physiological forces along the length of thick filaments. While the role of the M-region in supporting myofibrillar structure and contractility is well established, its role in mediating additional cellular processes has only recently started to emerge. As such, M-region is the hub of key protein players contributing to cytoskeletal remodeling, signal transduction, mechanosensing, metabolism, and proteasomal degradation. Mutations in genes encoding M-region related proteins lead to development of severe and lethal cardiac and skeletal myopathies affecting mankind. Herein, we describe the main cellular processes taking place at the M-region, other than thick filament assembly, and discuss human myopathies associated with mutant or truncated M-region proteins.
Collapse
|
96
|
Nguyen H, Allali-Hassani A, Antonysamy S, Chang S, Chen LH, Curtis C, Emtage S, Fan L, Gheyi T, Li F, Liu S, Martin JR, Mendel D, Olsen JB, Pelletier L, Shatseva T, Wu S, Zhang FF, Arrowsmith CH, Brown PJ, Campbell RM, Garcia BA, Barsyte-Lovejoy D, Mader M, Vedadi M. LLY-507, a Cell-active, Potent, and Selective Inhibitor of Protein-lysine Methyltransferase SMYD2. J Biol Chem 2015; 290:13641-53. [PMID: 25825497 PMCID: PMC4447944 DOI: 10.1074/jbc.m114.626861] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys370 at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.
Collapse
Affiliation(s)
- Hannah Nguyen
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285,
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| | - Stephen Antonysamy
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Shawn Chang
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Lisa Hong Chen
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Carmen Curtis
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Spencer Emtage
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Li Fan
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Tarun Gheyi
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| | - Shichong Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joseph R Martin
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - David Mendel
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Jonathan B Olsen
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Laura Pelletier
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Tatiana Shatseva
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| | - Song Wu
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Feiyu Fred Zhang
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada, Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, 101 College Street, MaRS South Tower, Suite 707, Toronto, Ontario M5G 1L7, Canada, and
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| | - Robert M Campbell
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| | - Mary Mader
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
97
|
Rasmussen TL, Ma Y, Park CY, Harriss J, Pierce SA, Dekker JD, Valenzuela N, Srivastava D, Schwartz RJ, Stewart MD, Tucker HO. Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One 2015; 10:e0121765. [PMID: 25803368 PMCID: PMC4372598 DOI: 10.1371/journal.pone.0121765] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense—a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality.
Collapse
Affiliation(s)
- Tara L. Rasmussen
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Chong Yon Park
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - June Harriss
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Stephanie A. Pierce
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Joseph D. Dekker
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Nicolas Valenzuela
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Robert J. Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - M. David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail: (MDS); (HT)
| | - Haley O. Tucker
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
- * E-mail: (MDS); (HT)
| |
Collapse
|
98
|
Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 2015; 16:1406-28. [PMID: 25580534 PMCID: PMC4307310 DOI: 10.3390/ijms16011406] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domain-containing proteins (SMYD) have been found to methylate a variety of histone and non-histone targets which contribute to their various roles in cell regulation including chromatin remodeling, transcription, signal transduction, and cell cycle control. During early development, SMYD proteins are believed to act as an epigenetic regulator for myogenesis and cardiomyocyte differentiation as they are abundantly expressed in cardiac and skeletal muscle. SMYD proteins are also of therapeutic interest due to the growing list of carcinomas and cardiovascular diseases linked to SMYD overexpression or dysfunction making them a putative target for drug intervention. This review will examine the biological relevance and gather all of the current structural data of SMYD proteins.
Collapse
Affiliation(s)
- Nicholas Spellmon
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Laura Trescott
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| |
Collapse
|
99
|
Oyama K, El-Nachef D, Zhang Y, Sdek P, MacLellan WR. Epigenetic regulation of cardiac myocyte differentiation. Front Genet 2014; 5:375. [PMID: 25408700 PMCID: PMC4219506 DOI: 10.3389/fgene.2014.00375] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/07/2014] [Indexed: 12/04/2022] Open
Abstract
Cardiac myocytes (CMs) proliferate robustly during fetal life but withdraw permanently from the cell cycle soon after birth and undergo terminal differentiation. This cell cycle exit is associated with the upregulation of a host of adult cardiac-specific genes. The vast majority of adult CMs (ACMs) do not reenter cell cycle even if subjected to mitogenic stimuli. The basis for this irreversible cell cycle exit is related to the stable silencing of cell cycle genes specifically involved in the progression of G2/M transition and cytokinesis. Studies have begun to clarify the molecular basis for this stable gene repression and have identified epigenetic and chromatin structural changes in this process. In this review, we summarize the current understanding of epigenetic regulation of CM cell cycle and cardiac-specific gene expression with a focus on histone modifications and the role of retinoblastoma family members.
Collapse
Affiliation(s)
- Kyohei Oyama
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Danny El-Nachef
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Yiqiang Zhang
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Patima Sdek
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - W Robb MacLellan
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| |
Collapse
|
100
|
Smith DA, Carland CR, Guo Y, Bernstein SI. Getting folded: chaperone proteins in muscle development, maintenance and disease. Anat Rec (Hoboken) 2014; 297:1637-1649. [PMID: 25125177 PMCID: PMC4135391 DOI: 10.1002/ar.22980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 09/26/2024]
Abstract
Chaperone proteins are critical for protein folding and stability, and hence are necessary for normal cellular organization and function. Recent studies have begun to interrogate the role of this specialized class of proteins in muscle biology. During development, chaperone-mediated folding of client proteins enables their integration into nascent functional sarcomeres. In addition to assisting with muscle differentiation, chaperones play a key role in the maintenance of muscle tissues. Furthermore, disruption of the chaperone network can result in neuromuscular disease. In this review, we discuss how chaperones are involved in myofibrillogenesis, sarcomere maintenance, and muscle disorders. We also consider the possibilities of therapeutically targeting chaperones to treat muscle disease.
Collapse
Affiliation(s)
- Daniel A. Smith
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Carmen R. Carland
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Yiming Guo
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Sanford I. Bernstein
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| |
Collapse
|