51
|
Roberts JL, Liu G, Paglia DN, Kinter CW, Fernandes LM, Lorenzo J, Hansen MF, Arif A, Drissi H. Deletion of
Wnt5a
in osteoclasts results in bone loss through decreased bone formation. Ann N Y Acad Sci 2020; 1463:45-59. [DOI: 10.1111/nyas.14293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| | - Guanglu Liu
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| | - David N. Paglia
- Department of Orthopaedics, New Jersey Medical School Rutgers University Newark New Jersey
| | | | | | - Joseph Lorenzo
- Department of Medicine and Department of Orthopaedic Surgery University of Connecticut Health Farmington Connecticut
| | - Marc F. Hansen
- Center for Molecular Medicine University of Connecticut Health Farmington Connecticut
| | - Abul Arif
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| | - Hicham Drissi
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| |
Collapse
|
52
|
Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: Therapeutic targets for obesity and type 2 diabetes. Pharmacol Res 2019; 152:104602. [PMID: 31846761 DOI: 10.1016/j.phrs.2019.104602] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/17/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Diabesity is the combination of type 2 diabetes and obesity characterized by chronic low-grade inflammation. The Wnt signaling act as an evolutionary pathway playing crucial role in regulating cellular homeostasis and energy balance from hypothalamus to metabolic organs. Aberrant activity of certain appendages in the canonical and non-canonical Wnt system deregulates metabolism and leads to adipose tissue expansion, this key event initiates metabolic stress causing metaflammation and obesity. Metaflammation induced obesity initiates abnormal development of adipocytes mediating through the non-canonical Wnt signaling inhibition of canonical Wnt pathway to fan the flames of adipogenesis. Moreover, activation of toll like receptor (TLR)-4 signaling in metabolic stress invites immune cells to release pro-inflammatory cytokines for recruitment of macrophages in adipose tissues, further causes polarization of macrophages into M1(classically activated) and M2 (alternatively activated) subtypes. These events end with chronic low-grade inflammation which interferes with insulin signaling in metabolic tissues to develop type 2 diabetes. However, there is a dearth in understanding the exact mechanism of Wnt-TLR axis during diabesity. This review dissects the molecular facets of Wnt and TLRs that modulates cellular components during diabesity and provides current progress, challenges and alternative therapeutic strategies at preclinical and clinical level.
Collapse
|
53
|
Ljungberg JK, Kling JC, Tran TT, Blumenthal A. Functions of the WNT Signaling Network in Shaping Host Responses to Infection. Front Immunol 2019; 10:2521. [PMID: 31781093 PMCID: PMC6857519 DOI: 10.3389/fimmu.2019.02521] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
It is well-established that aberrant WNT expression and signaling is associated with developmental defects, malignant transformation and carcinogenesis. More recently, WNT ligands have emerged as integral components of host responses to infection but their functions in the context of immune responses are incompletely understood. Roles in the modulation of inflammatory cytokine production, host cell intrinsic innate defense mechanisms, as well as the bridging of innate and adaptive immunity have been described. To what degree WNT responses are defined by the nature of the invading pathogen or are specific for subsets of host cells is currently not well-understood. Here we provide an overview of WNT responses during infection with phylogenetically diverse pathogens and highlight functions of WNT ligands in the host defense against infection. Detailed understanding of how the WNT network orchestrates immune cell functions will not only improve our understanding of the fundamental principles underlying complex immune response, but also help identify therapeutic opportunities or potential risks associated with the pharmacological targeting of the WNT network, as currently pursued for novel therapeutics in cancer and bone disorders.
Collapse
Affiliation(s)
- Johanna K Ljungberg
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica C Kling
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thao Thanh Tran
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
54
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
55
|
Wnt Signaling in the Regulation of Immune Cell and Cancer Therapeutics. Cells 2019; 8:cells8111380. [PMID: 31684152 PMCID: PMC6912555 DOI: 10.3390/cells8111380] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is one of the important pathways to play a major role in various biological processes, such as embryonic stem-cell development, tissue regeneration, cell differentiation, and immune cell regulation. Recent studies suggest that Wnt signaling performs an essential function in immune cell modulation and counteracts various disorders. Nonetheless, the emerging role and mechanism of action of this signaling cascade in immune cell regulation, as well as its involvement in various cancers, remain debatable. The Wnt signaling in immune cells is very diverse, e.g., the tolerogenic role of dendritic cells, the development of natural killer cells, thymopoiesis of T cells, B-cell-driven initiation of T-cells, and macrophage actions in tissue repair, regeneration, and fibrosis. The purpose of this review is to highlight the current therapeutic targets in (and the prospects of) Wnt signaling, as well as the potential suitability of available modulators for the development of cancer immunotherapies. Although there are several Wnt inhibitors relevant to cancer, it would be worthwhile to extend this approach to immune cells.
Collapse
|
56
|
Hasan MK, Widhopf GF, Zhang S, Lam SM, Shen Z, Briggs SP, Parker BA, Kipps TJ. Wnt5a induces ROR1 to recruit cortactin to promote breast-cancer migration and metastasis. NPJ Breast Cancer 2019; 5:35. [PMID: 31667337 PMCID: PMC6814774 DOI: 10.1038/s41523-019-0131-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/20/2019] [Indexed: 01/27/2023] Open
Abstract
ROR1 is a conserved oncoembryonic surface protein expressed in breast cancer. Here we report that ROR1 associates with cortactin in primary breast-cancer cells or in MCF7 transfected to express ROR1. Wnt5a also induced ROR1-dependent tyrosine phosphorylation of cortactin (Y421), which recruited ARHGEF1 to activate RhoA and promote breast-cancer-cell migration; such effects could be inhibited by cirmtuzumab, a humanized mAb specific for ROR1. Furthermore, treatment of mice bearing breast-cancer xenograft with cirmtuzumab inhibited cortactin phosphorylation in vivo and impaired metastatic development. We established that the proline at 841 of ROR1 was required for it to recruit cortactin and ARHGEF1, activate RhoA, and enhance breast-cancer-cell migration in vitro or development of metastases in vivo. Collectively, these studies demonstrate that the interaction of ROR1 with cortactin plays an important role in breast-cancer-cell migration and metastasis.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - George F. Widhopf
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - Suping Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060 Guangdong China
| | - Sharon M. Lam
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA USA
| | - Steven P. Briggs
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA USA
| | - Barbara A. Parker
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060 Guangdong China
| |
Collapse
|
57
|
Blazquez R, Sparrer D, Wendl C, Evert M, Riemenschneider MJ, Krahn MP, Erez N, Proescholdt M, Pukrop T. The macro-metastasis/organ parenchyma interface (MMPI) - A hitherto unnoticed area. Semin Cancer Biol 2019; 60:324-333. [PMID: 31647982 DOI: 10.1016/j.semcancer.2019.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
The macro-metastasis/organ parenchyma interface (MMPI) was previously considered an inert anatomical border which sharply separates the affected organ parenchyma from the macro-metastatic tissue. Recently, infiltrative growth of macro-metastases from various primary tumors was described in the brain, liver and lung, with significant impact on survival. Strikingly, the MMPI patterns differed between entities, so that at least nine different patterns were described. The MMPI patterns could be further classified into three major groups: displacing, epithelial and diffuse infiltrating. Additionally, macro-metastases are a source of further tumor cell dissemination in the affected organ; and these intra-organ metastatic dissemination tracks starting from the MMPI also vary depending on the anatomical structures of the colonized organ and influence disease outcome. In spite of their relevance, MMPIs and organ-specific dissemination tracks are still largely overlooked by many clinicians, pathologists and/or researchers. In this review, we aim to address this important issue and enhance our current understanding of the different MMPI patterns and dissemination tracks in the brain, liver and lung.
Collapse
Affiliation(s)
- R Blazquez
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - D Sparrer
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - C Wendl
- Department of Radiology, Center of Neuroradiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - M Evert
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - M J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany
| | - M P Krahn
- Department of Internal Medicine D, University Hospital of Münster, 48149 Münster, Germany
| | - N Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - M Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - T Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
58
|
Yu W, Yang L, Li T, Zhang Y. Cadherin Signaling in Cancer: Its Functions and Role as a Therapeutic Target. Front Oncol 2019; 9:989. [PMID: 31637214 PMCID: PMC6788064 DOI: 10.3389/fonc.2019.00989] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Cadherin family includes lists of transmembrane glycoproteins which mediate calcium-dependent cell-cell adhesion. Cadherin-mediated adhesion regulates cell growth and differentiation throughout life. Through the establishment of the cadherin-catenin complex, cadherins provide normal cell-cell adhesion and maintain homeostatic tissue architecture. In the process of cell recognition and adhesion, cadherins act as vital participators. As results, the disruption of cadherin signaling has significant implications on tumor formation and progression. Altered cadherin expression plays a vital role in tumorigenesis, tumor progression, angiogenesis, and tumor immune response. Based on ongoing research into the role of cadherin signaling in malignant tumors, cadherins are now being considered as potential targets for cancer therapies. This review will demonstrate the mechanisms of cadherin involvement in tumor progression, and consider the clinical significance of cadherins as therapeutic targets.
Collapse
Affiliation(s)
- Weina Yu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Ting Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
59
|
GRP78 activates the Wnt/HOXB9 pathway to promote invasion and metastasis of hepatocellular carcinoma by chaperoning LRP6. Exp Cell Res 2019; 383:111493. [DOI: 10.1016/j.yexcr.2019.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 11/20/2022]
|
60
|
Cosin-Roger J, Ortiz-Masià MD, Barrachina MD. Macrophages as an Emerging Source of Wnt Ligands: Relevance in Mucosal Integrity. Front Immunol 2019; 10:2297. [PMID: 31608072 PMCID: PMC6769121 DOI: 10.3389/fimmu.2019.02297] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The Wnt signaling pathway is a conserved pathway involved in important cellular processes such as the control of embryonic development, cellular polarity, cellular migration, and cell proliferation. In addition to playing a central role during embryogenesis, this pathway is also an essential part of adult homeostasis. Indeed, it controls the proliferation of epithelial cells in different organs such as intestine, lung, and kidney, and guarantees the maintenance of the mucosa in physiological conditions. The origin of this molecular pathway is the binding between Wnt ligands (belonging to a family of 19 different homologous secreted glycoproteins) and their specific membrane receptors, from the Frizzled receptor family. This specific interaction triggers the activation of the signaling cascade, which in turn activates or suppresses the expression of different genes in order to change the behavior of the cell. On the other hand, alterations of this pathway have been described in pathological conditions such as inflammation, fibrosis, and cancer. In recent years, macrophages-among other cell types-have emerged as a potential source of Wnt ligands. Due to their high plasticity, macrophages, which are central to the innate immune response, are capable of adopting different phenotypes depending on their microenvironment. In the past, two different phenotypes were described: a proinflammatory phenotype-M1 macrophages-and an anti-inflammatory phenotype-M2 macrophages-and a selective expression of Wnt ligands has been associated with said phenotypes. However, nowadays it is assumed that macrophages in vivo move through a continual spectrum of functional phenotypes. In both physiological and pathological (inflammation, fibrosis and cancer) conditions, the accumulation and polarization of macrophages conditions the future of the tissue, facilitating various scenarios, such as resolution of inflammation, activation of fibrosis, and cancer development due to the modulation of the Wnt signaling pathway, in autocrine and paracrine manner. In this work, we provide an overview of studies that have explored the role of macrophages and how they act as a source of Wnt ligands and as mediators of mucosal integrity.
Collapse
Affiliation(s)
| | - Mª Dolores Ortiz-Masià
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Mª Dolores Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
61
|
Hansen PJ, Tríbulo P. Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition - insights from the cow. Biol Reprod 2019; 101:526-537. [PMID: 31220231 PMCID: PMC8127039 DOI: 10.1093/biolre/ioz030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
The preimplantation embryo has a remarkable ability to execute its developmental program using regulatory information inherent within itself. Nonetheless, the uterine environment is rich in cell signaling molecules termed embryokines that act on the embryo during the morula-to-blastocyst transition, promoting blastocyst formation and programming the embryo for subsequent developmental events. Programming can not only affect developmental processes important for continuance of development in utero but also affect characteristics of the offspring during postnatal life. Given the importance of embryokines for regulation of embryonic development, it is likely that some causes of infertility involve aberrant secretion of embryokines by the uterus. Embryokines found to regulate development of the bovine embryo include insulin-like growth factor 1, colony stimulating factor 2 (CSF2), and dickkopf WNT signaling pathway inhibitor 1. Embryo responses to CSF2 exhibit sexual dimorphism, suggesting that sex-specific programming of postnatal function is caused by maternal signals acting on the embryo during the preimplantation period that regulate male embryos differently than female embryos.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Paula Tríbulo
- Instituto de Reproducción Animal Córdoba (IRAC), Zona Rural General Paz, Córdoba, Argentina
| |
Collapse
|
62
|
Malsin ES, Kim S, Lam AP, Gottardi CJ. Macrophages as a Source and Recipient of Wnt Signals. Front Immunol 2019; 10:1813. [PMID: 31417574 PMCID: PMC6685136 DOI: 10.3389/fimmu.2019.01813] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are often viewed through the lens of their core functions, but recent transcriptomic studies reveal them to be largely distinct across tissue types. While these differences appear to be shaped by their local environment, the key signals that drive these transcriptional differences remain unclear. Since Wnt signaling plays established roles in cell fate decisions, and tissue patterning during development and tissue repair after injury, we consider evidence that Wnt signals both target and are affected by macrophage functions. We propose that the Wnt gradients present in developing and adult tissues effectively shape macrophage fates and phenotypes. We also highlight evidence that macrophages, through an ability to dispatch Wnt signals, may couple tissue debridement and matrix remodeling with stem cell activation and tissue repair.
Collapse
Affiliation(s)
- Elizabeth S Malsin
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Seokjo Kim
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Anna P Lam
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Cara J Gottardi
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
63
|
Raghavan S, Mehta P, Xie Y, Lei YL, Mehta G. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J Immunother Cancer 2019; 7:190. [PMID: 31324218 PMCID: PMC6642605 DOI: 10.1186/s40425-019-0666-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Innate immune cells such as macrophages are abundantly present within malignant ascites, where they share the microenvironment with ovarian cancer stem cells (CSC). METHODS To mimic this malignant ascites microenvironment, we created a hanging-drop hetero-spheroid model to bring CSCs and macrophages in close association. Within these hetero-spheroids, CD68+ macrophages (derived from U937 or peripheral blood monocytes) make up ~ 20% of the population, while the rest are ovarian cancer cells and ovarian cancer stem cells (derived from the high grade serous ovarian cancer cell line, OVCAR3). RESULTS Our results indicate that CSCs drive the upregulation of M2 macrophage marker CD206 within hetero-spheroids, compared to bulk ovarian cancer cells, implying an inherently more immuno-suppressive program. Moreover, an increased maintenance of elevated aldehyde dehydrogenase (ALDH) activity is noted within hetero-spheroids that include pre-polarized CD206+ M2 macrophages, implying a reciprocal interaction that drives pro-tumoral activation as well as CSC self-renewal. Consistent with enriched CSCs, we also observe increased levels of pro-tumoral IL-10 and IL-6 cytokines in the CSC/M2-macrophage hetero-spheroids. CSC/M2-macrophage hetero-spheroids are also less sensitive to the chemotherapeutic agent carboplatin and are subsequently more invasive in transwell assays. Using inhibitors of WNT secretion in both CSCs and macrophages, we found that CSC-derived WNT ligands drove CD206+ M2 macrophage activation, and that, conversely, macrophage-derived WNT ligands enriched ALDH+ cells within the CSC compartment of hetero-spheroids. Upon examination of specific WNT ligand expression within the monocyte-derived macrophage system, we observed a significant elevation in gene expression for WNT5B. In CSCs co-cultured with macrophages within hetero-spheroids, increases in several WNT ligands were observed, and this increase was significantly inhibited when WNT5B was knocked down in macrophages. CONCLUSIONS Our data implies that macrophage- initiated WNT signaling could play a significant role in the maintenance of stemness, and the resulting phenotypes of chemoresistance and invasiveness. Our results indicate paracrine WNT activation during CSC/M2 macrophages interaction constitutes a positive feedback loop that likely contributes to the more aggressive phenotype, which makes the WNT pathway a potential target to reduce the CSC and M2 macrophage compartments in the tumor microenvironment.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Materials Science and Engineering, 2800 Plymouth Rd, Building 28, Room 3044W, Ann Arbor, MI, 48109, USA
| | - Pooja Mehta
- Department of Materials Science and Engineering, 2800 Plymouth Rd, Building 28, Room 3044W, Ann Arbor, MI, 48109, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Yu L Lei
- Department of Periodontics and Oral Medicine and Department of Otolaryngology Head and Neck Surgery, Ann Arbor, USA
- Rogel Cancer Center, North Campus Research Complex, University of Michigan, 2800 Plymouth Rd, Building 28, Room 3044W, Ann Arbor, MI, 48109, USA
| | - Geeta Mehta
- Department of Materials Science and Engineering, 2800 Plymouth Rd, Building 28, Room 3044W, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, 2800 Plymouth Rd, Building 28, Room 3044W, Ann Arbor, MI, 48109, USA.
- Department of Macromolecular Sciences and Engineering, 2800 Plymouth Rd, Building 28, Room 3044W, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, North Campus Research Complex, University of Michigan, 2800 Plymouth Rd, Building 28, Room 3044W, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
64
|
Abstract
Despite the clinical development of novel adjuvant and neoadjuvant chemotherapeutic drugs, metastatic breast cancer is one of the leading causes of cancer-related death among women. The present review focuses on the relevance, mechanisms, and therapeutic potential of targeting WNT5A as a future anti-metastatic treatment strategy for breast cancer patients by restoring WNT5A signaling as an innovative therapeutic option. WNT5A is an auto- and paracrine β-catenin-independent ligand that has been shown to induce tumor suppression as well as oncogenic signaling, depending upon cancer type. In breast cancer patients, WNT5A protein expression has been observed to be significantly reduced in between 45 and 75% of the cases and associated with early relapse and reduced disease-free survival. WNT5A triggers various downstream signaling pathways in breast cancer that primarily affect tumor cell migration and invasion. The accumulated in vitro results reveal that treatment of WNT5A-negative breast cancer cells with recombinant WNT5A caused different tumor-suppressive responses and in particular it impaired migration and invasion. The anti-migratory/invasive and anti-metastatic effects of reconstituting WNT5A signaling by the small WNT5A mimicking peptide Foxy5 form the basis for two successful clinical phase 1-studies aiming at determining safety and pharmacokinetics as well as defining dose-level for a subsequent phase 2-study. We conclude that re-installation of WNT5A signaling is an attractive and promising anti-metastatic therapeutic approach for future treatment of WNT5A-negative breast cancer patients.
Collapse
|
65
|
VanderVorst K, Dreyer CA, Konopelski SE, Lee H, Ho HYH, Carraway KL. Wnt/PCP Signaling Contribution to Carcinoma Collective Cell Migration and Metastasis. Cancer Res 2019; 79:1719-1729. [PMID: 30952630 DOI: 10.1158/0008-5472.can-18-2757] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 12/30/2022]
Abstract
Our understanding of the cellular mechanisms governing carcinoma invasiveness and metastasis has evolved dramatically over the last several years. The previous emphasis on the epithelial-mesenchymal transition as a driver of the migratory properties of single cells has expanded with the observation that carcinoma cells often invade and migrate collectively as adherent groups. Moreover, recent analyses suggest that circulating tumor cells within the vasculature often exist as multicellular clusters and that clusters more efficiently seed metastatic lesions than single circulating tumor cells. While these observations point to a key role for collective cell migration in carcinoma metastasis, the molecular mechanisms driving collective tumor cell migration remain to be discerned. Wnt/PCP (planar cell polarity) signaling, one of the noncanonical Wnt signaling pathways, mediates collective migratory events such as convergent extension during developmental processes. Wnt/PCP signaling components are frequently dysregulated in solid tumors, and aberrant pathway activation contributes to tumor cell migratory properties. Here we summarize key studies that address the mechanisms by which Wnt/PCP signaling mediate collective cell migration in developmental and tumor contexts. We emphasize Wnt/PCP component localization within migrating cells and discuss how component asymmetry may govern the spatiotemporal control of downstream cytoskeletal effectors to promote collective cell motility.
Collapse
Affiliation(s)
- Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California
| | - Sara E Konopelski
- Department of Cell Biology and Human Anatomy, UC Davis School of Medicine, Davis, California
| | - Hyun Lee
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, UC Davis School of Medicine, Davis, California
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California.
| |
Collapse
|
66
|
Pavlidis ET, Pavlidis TE. A Review of Primary Thyroid Lymphoma: Molecular Factors, Diagnosis and Management. J INVEST SURG 2019; 32:137-142. [PMID: 29058491 DOI: 10.1080/08941939.2017.1383536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023]
Abstract
UNLABELLED Purpose/aim: To focus on current aspects of primary thyroid lymphoma (PTL), which is a rare clinical entity usually manifested by a rapidly growing mass in the neck that can cause pressure symptoms. MATERIALS AND METHODS Relevant papers in PubMed published through June 2017 were selected to track updated information about PTL with an emphasis on diagnosis and novel therapeutic management. RESULTS The most frequent cases include non-Hodgkin lymphoma derived from B-cells, mainly diffuse large B-cell lymphoma (DLBCL) followed by mucosa-associated lymphoid tissue (MALT) lymphoma or a mixed type. Other subtypes are less common. Lymphomas derived from T-cells and Hodgkin lymphomas are extremely rare. Hashimoto's autoimmune thyroiditis has been implicated as a risk factor for lymphoma. At the molecular level, the Wnt5a protein and its receptor Ror2 are involved in the course of the disease. Ultrasonography, fine needle aspiration (FNA) biopsy, and core or open biopsy combined with new diagnostic facilities contribute to an accurate diagnosis. An increased potential exists for a cure without the need for a radical surgical procedure. Modern chemoradiation therapy plus the monoclonal antibody rituximab, which acts against CD20, have limited the need for surgical interventions and provide an excellent outcome in most cases. However, some cases have resulted in treatment failure or recurrence. CONCLUSIONS A multidisciplinary approach must be used to define the management policy in each case. Future efforts by researchers are likely to be focused on the molecular level.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biopsy
- Chemoradiotherapy/methods
- Clinical Trials as Topic
- Disease-Free Survival
- Humans
- Lymphoma, B-Cell, Marginal Zone/diagnosis
- Lymphoma, B-Cell, Marginal Zone/mortality
- Lymphoma, B-Cell, Marginal Zone/therapy
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/therapy
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/prevention & control
- Patient Care Team
- Prognosis
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Rituximab/therapeutic use
- Thyroid Gland/diagnostic imaging
- Thyroid Gland/pathology
- Thyroid Neoplasms/diagnosis
- Thyroid Neoplasms/mortality
- Thyroid Neoplasms/therapy
- Thyroidectomy
- Wnt-5a Protein/metabolism
Collapse
Affiliation(s)
- Efstathios T Pavlidis
- a Second Surgical Propedeutic Department , Aristotle University of Thessaloniki, Medical School, Prof. Theodoros E Pavlidis (Department Head), Hippocration Hospital , Konstantinoupoleos 49, Thessaloniki , Greece
| | - Theodoros E Pavlidis
- a Second Surgical Propedeutic Department , Aristotle University of Thessaloniki, Medical School, Prof. Theodoros E Pavlidis (Department Head), Hippocration Hospital , Konstantinoupoleos 49, Thessaloniki , Greece
| |
Collapse
|
67
|
Monteleone E, Orecchia V, Corrieri P, Schiavone D, Avalle L, Moiso E, Savino A, Molineris I, Provero P, Poli V. SP1 and STAT3 Functionally Synergize to Induce the RhoU Small GTPase and a Subclass of Non-canonical WNT Responsive Genes Correlating with Poor Prognosis in Breast Cancer. Cancers (Basel) 2019; 11:cancers11010101. [PMID: 30654518 PMCID: PMC6356433 DOI: 10.3390/cancers11010101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is a heterogeneous disease whose clinical management is very challenging. Although specific molecular features characterize breast cancer subtypes with different prognosis, the identification of specific markers predicting disease outcome within the single subtypes still lags behind. Both the non-canonical Wingless-type MMTV Integration site (WNT) and the Signal Transducer and Activator of Transcription (STAT)3 pathways are often constitutively activated in breast tumors, and both can induce the small GTPase Ras Homolog Family Member U RhoU. Here we show that RhoU transcription can be triggered by both canonical and non-canonical WNT ligands via the activation of c-JUN N-terminal kinase (JNK) and the recruitment of the Specificity Protein 1 (SP1) transcription factor to the RhoU promoter, identifying for the first time SP1 as a JNK-dependent mediator of WNT signaling. RhoU down-regulation by silencing or treatment with JNK, SP1 or STAT3 inhibitors leads to impaired migration and invasion in basal-like MDA-MB-231 and BT-549 cells, suggesting that STAT3 and SP1 can cooperate to induce high RhoU expression and enhance breast cancer cells migration. Moreover, in vivo concomitant binding of STAT3 and SP1 defines a subclass of genes belonging to the non-canonical WNT and the Interleukin (IL)-6/STAT3 pathways and contributing to breast cancer aggressiveness, suggesting the relevance of developing novel targeted therapies combining inhibitors of the STAT3 and WNT pathways or of their downstream mediators.
Collapse
Affiliation(s)
- Emanuele Monteleone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy.
| | - Valeria Orecchia
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy.
| | - Paola Corrieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy.
| | - Davide Schiavone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy.
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy.
| | - Enrico Moiso
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy.
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy.
| | - Ivan Molineris
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy.
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy.
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
68
|
Inhibition of chemotherapy resistant breast cancer stem cells by a ROR1 specific antibody. Proc Natl Acad Sci U S A 2019; 116:1370-1377. [PMID: 30622177 PMCID: PMC6347692 DOI: 10.1073/pnas.1816262116] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We report that breast cancer cells surviving treatment with paclitaxel express relatively high levels of ROR1, which can induce activation of stem-cell signaling pathways in response to Wnt5a. A humanized anti-ROR1 drug, cirmtuzumab, can inhibit ROR1-dependent activation of such signaling and impair the capacity of post-treatment breast cancer cells to metastasize or reengraft immune-deficient mice. Breast cancers enduring treatment with chemotherapy may be enriched for cancer stem cells or tumor-initiating cells, which have an enhanced capacity for self-renewal, tumor initiation, and/or metastasis. Breast cancer cells that express the type I tyrosine kinaselike orphan receptor ROR1 also may have such features. Here we find that the expression of ROR1 increased in breast cancer cells following treatment with chemotherapy, which also enhanced expression of genes induced by the activation of Rho-GTPases, Hippo-YAP/TAZ, or B lymphoma Mo-MLV insertion region 1 homolog (BMI1). Expression of ROR1 also enhanced the capacity of breast cancer cells to invade Matrigel, form spheroids, engraft in Rag2−/−γc−/− mice, or survive treatment with paclitaxel. Treatment of mice bearing breast cancer patient-derived xenografts (PDXs) with the humanized anti-ROR1 monoclonal antibody cirmtuzumab repressed expression of genes associated with breast cancer stemness, reduced activation of Rho-GTPases, Hippo-YAP/TAZ, or BMI1, and impaired the capacity of breast cancer PDXs to metastasize or reengraft Rag2−/−γc−/− mice. Finally, treatment of PDX-bearing mice with cirmtuzumab and paclitaxel was more effective than treatment with either alone in eradicating breast cancer PDXs. These results indicate that targeting ROR1 may improve the response to chemotherapy of patients with breast cancer.
Collapse
|
69
|
Zhang L, Zhu Y, Cheng H, Zhang J, Zhu Y, Chen H, Chen L, Qi H, Ren G, Tang J, Zhong M, Hua W, Shi X, Li Q. The Increased Expression of Estrogen-Related Receptor α Correlates with Wnt5a and Poor Prognosis in Patients with Glioma. Mol Cancer Ther 2019; 18:173-184. [PMID: 30322948 DOI: 10.1158/1535-7163.mct-17-0782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/10/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022]
Abstract
Malignant glioma is an often fatal type of cancer. Elevated expression of the orphan nuclear receptor estrogen-related receptor alpha (ERRα) is an unfavorable factor for malignant progression and poor prognosis in several cancers, although the mechanism by which this receptor affects the pathophysiology of cancers remains obscure. However, few studies have been conducted in regard to the role of ERRα in glioma. In the current study, we found that elevated expression of ERRα was observed in 107 glioma cases by means of IHC. Clinically, high expression of ERRα was associated with later stages of disease progression and clinical outcome of patients with glioma. ERRα had the ability to promote cell proliferation and migration in glioma cell lines. Moreover, in a xenograft model, we also found that silencing ERRα had an inhibitory effect on the growth of glioma. Further investigation confirmed that ERRα was involved in the carcinogenesis of glioma via the regulation of the Wnt5a signal pathway in vitro and in vivo Our study was first to show the overexpression of ERRα in glioma tissues and a direct correlation between ERRα expression and clinical prognosis of glioma. Together, these data reveal that ERRα has prognostic significance in glioma, and targeting ERRα may provide a reliable therapeutic strategy for the treatment for human glioma.
Collapse
Affiliation(s)
- Liudi Zhang
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yingfeng Zhu
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuqian Zhu
- Department of Neurosurgery, Huashan Hospital North, Fudan University, Shanghai, China
| | - Haifei Chen
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Lu Chen
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Huijie Qi
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Guoqiang Ren
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jianmin Tang
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xiaojin Shi
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China.
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Qunyi Li
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China.
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
70
|
Galluzzi L, Spranger S, Fuchs E, López-Soto A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol 2019; 29:44-65. [PMID: 30220580 PMCID: PMC7001864 DOI: 10.1016/j.tcb.2018.08.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
Deregulated WNT signaling has been shown to favor malignant transformation, tumor progression, and resistance to conventional cancer therapy in a variety of preclinical and clinical settings. Accumulating evidence suggests that aberrant WNT signaling may also subvert cancer immunosurveillance, hence promoting immunoevasion and resistance to multiple immunotherapeutics, including immune checkpoint blockers. Here, we discuss the molecular and cellular mechanisms through which WNT signaling influences cancer immunosurveillance and present potential therapeutic avenues to harness currently available WNT modulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| | - Stefani Spranger
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Alejandro López-Soto
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo. Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain.
| |
Collapse
|
71
|
Lan J, Sun L, Xu F, Liu L, Hu F, Song D, Hou Z, Wu W, Luo X, Wang J, Yuan X, Hu J, Wang G. M2 Macrophage-Derived Exosomes Promote Cell Migration and Invasion in Colon Cancer. Cancer Res 2018; 79:146-158. [PMID: 30401711 DOI: 10.1158/0008-5472.can-18-0014] [Citation(s) in RCA: 462] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/03/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
Clinical and experimental evidence has shown that tumor-associated macrophages promote cancer initiation and progression. However, the macrophage-derived molecular determinants that regulate colorectal cancer metastasis have not been fully characterized. Here, we demonstrate that M2 macrophage-regulated colorectal cancer cells' migration and invasion is dependent upon M2 macrophage-derived exosomes (MDE). MDE displayed a high expression level of miR-21-5p and miR-155-5p, and MDE-mediated colorectal cancer cells' migration and invasion depended on these two miRNAs. Mechanistically, miR-21-5p and miR-155-5p were transferred to colorectal cancer cells by MDE and bound to the BRG1 coding sequence, downregulating expression of BRG1, which has been identified as a key factor promoting the colorectal cancer metastasis, yet is downregulated in metastatic colorectal cancer cells. Collectively, these findings show that M2 macrophages induce colorectal cancer cells' migration and invasion and provide significant plasticity of BRG1 expression in response to tumor microenvironments during malignant progression. This dynamic and reciprocal cross-talk between colorectal cancer cells and M2 macrophages provides a new opportunity for the treatment of metastatic colorectal cancer. SIGNIFICANCE: These findings report a functional role for miRNA-containing exosomes derived from M2 macrophages in regulating migration and invasion of colorectal cancer cells.
Collapse
Affiliation(s)
- Jingqin Lan
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Sun
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqing Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Da Song
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenlin Hou
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelai Luo
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Immunology, Basic of Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
72
|
Au DT, Migliorini M, Strickland DK, Muratoglu SC. Macrophage LRP1 Promotes Diet-Induced Hepatic Inflammation and Metabolic Dysfunction by Modulating Wnt Signaling. Mediators Inflamm 2018; 2018:7902841. [PMID: 30524198 PMCID: PMC6247401 DOI: 10.1155/2018/7902841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/22/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatic inflammation is associated with the development of insulin resistance, which can perpetuate the disease state and may increase the risk of metabolic syndrome and diabetes. Despite recent advances, mechanisms linking hepatic inflammation and insulin resistance are still unclear. The low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is highly expressed in macrophages, adipocytes, hepatocytes, and vascular smooth muscle cells. To investigate the potential role of macrophage LRP1 in hepatic inflammation and insulin resistance, we conducted experiments using macrophage-specific LRP1-deficient mice (macLRP1-/- ) generated on a low-density lipoprotein receptor knockout (LDLR-/- ) background and fed a Western diet. LDLR-/-; macLRP1-/- mice gained less body weight and had improved glucose tolerance compared to LDLR-/- mice. Livers from LDLR-/-; macLRP1-/- mice displayed lower levels of gene expression for several inflammatory cytokines, including Ccl3, Ccl4, Ccl8, Ccr1, Ccr2, Cxcl9, and Tnf, and reduced phosphorylation of GSK3α and p38 MAPK proteins. Furthermore, LRP1-deficient peritoneal macrophages displayed altered cholesterol metabolism. Finally, circulating levels of sFRP-5, a potent anti-inflammatory adipokine that functions as a decoy receptor for Wnt5a, were elevated in LDLR-/-; macLRP1-/- mice. Surface plasmon resonance experiments revealed that sFRP-5 is a novel high affinity ligand for LRP1, revealing that LRP1 regulates levels of this inhibitor of Wnt5a-mediated signaling. Collectively, our results suggest that LRP1 expression in macrophages promotes hepatic inflammation and the development of glucose intolerance and insulin resistance by modulating Wnt signaling.
Collapse
Affiliation(s)
- Dianaly T. Au
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Selen C. Muratoglu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
73
|
Feng Y, Liang Y, Zhu X, Wang M, Gui Y, Lu Q, Gu M, Xue X, Sun X, He W, Yang J, Johnson RL, Dai C. The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. J Biol Chem 2018; 293:19290-19302. [PMID: 30333225 DOI: 10.1074/jbc.ra118.005457] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/11/2018] [Indexed: 12/24/2022] Open
Abstract
M2 macrophage polarization is known to underlie kidney fibrosis. We previously reported that most of the members of the Wnt family of signaling proteins are induced in fibrotic kidneys. Dysregulation of the signaling protein Wnt5a is associated with fibrosis, but little is known about the role of Wnt5a in regulating M2 macrophage activation that results in kidney fibrosis. Here, using murine Raw 264.7 cells and bone marrow-derived macrophages, we found that Wnt5a enhanced transforming growth factor β1 (TGFβ1)-induced macrophage M2 polarization as well as expression of the transcriptional regulators Yes-associated protein (Yap)/transcriptional coactivator with PDZ-binding motif (Taz). Verteporfin blockade of Yap/Taz inhibited both Wnt5a- and TGFβ1-induced macrophage M2 polarization. In mouse models of kidney fibrosis, shRNA-mediated knockdown of Wnt5a expression diminished kidney fibrosis, macrophage Yap/Taz expression, and M2 polarization. Moreover, genetic ablation of Taz in macrophages attenuated kidney fibrosis and macrophage M2 polarization in mice. Collectively, these results indicate that Wnt5a promotes kidney fibrosis by stimulating Yap/Taz-mediated macrophage M2 polarization.
Collapse
Affiliation(s)
- Ye Feng
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Yan Liang
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Xingwen Zhu
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Mingjie Wang
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Yuan Gui
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Qingmiao Lu
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Mengru Gu
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Xian Xue
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Xiaoli Sun
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Weichun He
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Junwei Yang
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Chunsun Dai
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| |
Collapse
|
74
|
Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis 2018; 9:793. [PMID: 30022048 PMCID: PMC6052107 DOI: 10.1038/s41419-018-0818-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022]
Abstract
Tumor-associated macrophages (TAMs) are a major component of tumor microenvironment (TME) and play pivotal roles in the progression of hepatocellular carcinoma (HCC). Wnt signaling is evolutionarily conserved and participates in liver tumorigenesis. Several studies have shown that macrophage-derived Wnt ligands can activate Wnt signaling in tumor cells. However, whether Wnt ligands secreted by tumor cells can trigger Wnt signaling in macrophages is still elusive. In this study, we first verified that canonical Wnt/β-catenin signaling was activated during monocyte-to-macrophage differentiation and in M2-polarized macrophages. Knockdown of β-catenin in M2 macrophages exhibited stronger antitumor characteristics when cocultured with Hepa1-6 HCC cells in a series of experiments. Activation of Wnt signaling promoted M2 macrophage polarization through c-Myc. Moreover, co-culturing naïve macrophages with Hepa1-6 HCC cells in which Wnt ligands secretion was blocked by knockdown of Wntless inhibited M2 polarization in vitro. Consistently, the growth of HCC tumor orthotopically inoculated with Wntless-silenced Hepa1-6 cells was impeded, and the phenotype of M2-like TAMs was abrogated due to attenuated Wnt/β-catenin signaling in TAMs, leading to subverted immunosuppressive TME. Finally, we confirmed the correlation between M2 macrophage polarization and nuclear β-catenin accumulation in CD68+ macrophages in human HCC biopsies. Taken together, our study indicates that tumor cells-derived Wnt ligands stimulate M2-like polarization of TAMs via canonical Wnt/β-catenin signaling, which results in tumor growth, migration, metastasis, and immunosuppression in HCC. To block Wnts secretion from tumor cells and/or Wnt/β-catenin signal activation in TAMs may be potential strategy for HCC therapy in future.
Collapse
|
75
|
Wnt5a-induced cell migration is associated with the aggressiveness of estrogen receptor-positive breast cancer. Oncotarget 2018; 9:20979-20992. [PMID: 29765514 PMCID: PMC5940389 DOI: 10.18632/oncotarget.24761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/26/2018] [Indexed: 11/25/2022] Open
Abstract
Elevated expression of Wnt5a is associated with malignancy, cell invasion, and metastasis. The role of Wnt5a expression in breast cancer remains elusive. We investigated the significance of Wnt5a expression in breast cancer. The relationship between Wnt5a expression and clinicopathologic factors was assessed in invasive breast cancer (n = 178) resected at Hiroshima University Hospital between January 2011 and February 2014. Wnt5a was expressed in 69 of 178 cases (39%) of invasive breast cancer and correlated strongly with estrogen receptor (ER) expression (P < 0.001). Wnt5a expression in ER-positive breast cancer correlated significantly with lymph node metastasis, nuclear grade, and lymphatic invasion. The recurrence-free survival was shorter in breast cancer patients with Wnt5a expression than in those without (P = 0.024). The migratory capacity of ER-positive breast cancer cells increased with constitutive expression of Wnt5a and decreased with Wnt5a knockdown. DNA microarray analysis identified activated leukocyte cell adhesion molecule (ALCAM) as the primary gene induced by Wnt5a. ALCAM was expressed in 69% of Wnt5a-positive but only 27% of Wnt5a-negative cancers (κ = 0.444; P < 0.001). The inhibition of ALCAM reversed the enhanced migratory effect of Wnt5a, confirming the importance of this protein in the migration of ER-positive breast cancer cells. Wnt5a expression is related to high malignancy and a poor prognosis in ER-positive breast cancer. We suspect that Wnt5a expression increases the malignancy of breast cancer by increasing the migratory capacity of cancer cells through the induction of ALCAM expression.
Collapse
|
76
|
Poh AR, Ernst M. Targeting Macrophages in Cancer: From Bench to Bedside. Front Oncol 2018; 8:49. [PMID: 29594035 PMCID: PMC5858529 DOI: 10.3389/fonc.2018.00049] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/19/2018] [Indexed: 12/29/2022] Open
Abstract
Macrophages are a major component of the tumor microenvironment and orchestrate various aspects of immunity. Within tumors, macrophages can reversibly alter their endotype in response to environmental cues, including hypoxia and stimuli derived from other immune cells, as well as the extracellular matrix. Depending on their activation status, macrophages can exert dual influences on tumorigenesis by either antagonizing the cytotoxic activity immune cells or by enhancing antitumor responses. In most solid cancers, increased infiltration with tumor-associated macrophages (TAMs) has long been associated with poor patient prognosis, highlighting their value as potential diagnostic and prognostic biomarkers in cancer. A number of macrophage-centered approaches to anticancer therapy have been investigated, and include strategies to block their tumor-promoting activities or exploit their antitumor effector functions. Integrating therapeutic strategies to target TAMs to complement conventional therapies has yielded promising results in preclinical trials and warrants further investigation to determine its translational benefit in human cancer patients. In this review, we discuss the molecular mechanisms underlying the pro-tumorigenic programming of macrophages and provide a comprehensive update of macrophage-targeted therapies for the treatment of solid cancers.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| |
Collapse
|
77
|
Shao Y, Zheng Q, Wang W, Xin N, Song X, Zhao C. Biological functions of macrophage-derived Wnt5a, and its roles in human diseases. Oncotarget 2018; 7:67674-67684. [PMID: 27608847 PMCID: PMC5341904 DOI: 10.18632/oncotarget.11874] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/27/2016] [Indexed: 12/31/2022] Open
Abstract
Wnt5a is implicated in development and tissue homeostasis by activating β-catenin-independent pathway. Excessive production of Wnt5a is related to some human diseases. Macrophage recruitment is a character of inflammation and cancer, therefore macrophage-derived Wnt5a is supposed to be a player in these conditions. Actually, macrophage-derived Wnt5a maintains macrophage immune function, stimulates pro-inflammatory cytokine release, and induces angiogenesis and lymphangiogenesis. Furthermore, macrophage-derived Wnt5a is involved in insulin resistance, atherosclerosis and cancer. These findings indicate that macrophage-derived Wnt5a may be a target in the treatment of these diseases. Notably, unlike macrophages, the exact role of macrophage-derived Wnt5a in bacterial infection remains largely unknown.
Collapse
Affiliation(s)
- Yue Shao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Na Xin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xiaowen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
78
|
WNT5A induces castration-resistant prostate cancer via CCL2 and tumour-infiltrating macrophages. Br J Cancer 2018; 118:670-678. [PMID: 29381686 PMCID: PMC5846063 DOI: 10.1038/bjc.2017.451] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Although the standard treatment for the patients with recurrent and metastatic prostate cancer (CaP) is androgen deprivation therapy, castration-resistant prostate cancer (CRPC) eventually emerges. Our previous report indicated that bone morphogenetic protein 6 (BMP6) induced CRPC via tumour-infiltrating macrophages. In a separate line of study, we have observed that the WNT5A/BMP6 loop in CaP bone metastasis mediates resistance to androgen deprivation in tissue culture. Simultaneously, we have reported that BMP6 induced castration resistance in CaP cells via tumour-infiltrating macrophages. Therefore, our present study aims to investigate the mechanism of WNT5A and its interaction with macrophages on CRPC. METHODS Doxycycline inducible WNT5A overexpression prostate cancer cell line was used for detailed mechanical study. RESULTS WNT5A was associated with increased expression of chemokine ligand 2 (CCL2) in the human CaP cell line, LNCaP. Mechanistically, this induction of CCL2 by WNT5A is likely to be mediated via the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling pathway. Our in vivo experiments demonstrated that the overexpression of WNT5A in LNCaP cells promoted castration resistance. Conversely, this resistance was inhibited with the removal of macrophages via clodronate liposomes. When patient-derived CaP LuCaP xenografts were analysed, high levels of WNT5A were correlated with increased levels of CCL2 and BMP6. In addition, higher levels of CCL2 and BMP6 were more commonly observed in intra-femoral transplanted tumours as compared to subcutaneous-transplanted tumours in the patient-derived PCSD1 bone-niche model. CONCLUSIONS These findings collectively suggest that WNT5A may be a key gene that induces CRPC in the bone niche by recruiting and regulating macrophages through CCL2 and BMP6, respectively.
Collapse
|
79
|
Rao Q, Liu XH, Zhou HB, Ma HH, Lu ZF, Zhou XJ. Expression Analysis of Wnt-5a in Renal Epithelial Neoplasms: Distinguishing Renal Oncocytoma from a Wide Spectrum of Renal Cell Carcinomas. TUMORI JOURNAL 2018; 96:304-9. [DOI: 10.1177/030089161009600219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective To study the expression of a novel marker, Wnt-5a, in renal epithelial neoplasms and determine its clinicopathological significance. Methods Immunohistochemical analysis of Wnt-5a was carried out in normal human kidney samples as well as in 123 primary renal epithelial neoplasms including 37 clear cell renal cell carcinomas (RCCs), 24 papillary RCCs (15 type 1 and 9 type 2), 25 chromophobe RCCs, 11 Xp11 translocation carcinomas, 6 mucinous tubular and spindle cell carcinomas, and 20 oncocytomas. Results Wnt-5a was expressed in 18.9% (7/37) of clear cell RCCs, 12.5% (3/24) of papillary RCCs, 16% (4/25) of chromophobe RCCs, 18.2% (2/11) of Xp11 translocation carcinomas, 0% (0/6) of mucinous tubular and spindle cell carcinomas, and 100% (20/20) of oncocytomas. There was a significant difference in Wnt-5a immunohistochemistry between renal oncocytoma and the other subtypes of RCC (P <0.01). Conclusions Our results indicate that Wnt-5a is a potentially useful immunohistochemical marker for the complex differential diagnosis between oncocytoma and other subtypes of RCC and also suggest that Wnt-5a may be a tumor suppressor gene in RCC.
Collapse
Affiliation(s)
- Qiu Rao
- Department of Pathology, Clinical School of Medical College of Nanjing University - Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Xiao-hong Liu
- Department of Pathology, Clinical School of Medical College of Nanjing University - Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Hang-bo Zhou
- Department of Pathology, Clinical School of Medical College of Nanjing University - Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Heng-hui Ma
- Department of Pathology, Clinical School of Medical College of Nanjing University - Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Zhen-feng Lu
- Department of Pathology, Clinical School of Medical College of Nanjing University - Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Xiao-jun Zhou
- Department of Pathology, Clinical School of Medical College of Nanjing University - Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
80
|
Pradel LP, Franke A, Ries CH. Effects of IL-10 and Th
2 cytokines on human Mφ phenotype and response to CSF1R inhibitor. J Leukoc Biol 2018; 103:545-558. [DOI: 10.1002/jlb.5ma0717-282r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/30/2017] [Accepted: 10/22/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Leon P. Pradel
- Discovery Oncology; Roche Innovation Center Munich; Penzberg Germany
- Natural Sciences Faculty; Paris Lodron University Salzburg; Salzburg Austria
| | - Andreas Franke
- Large Molecule Research; Roche Innovation Center Munich; Penzberg Germany
| | - Carola H. Ries
- Discovery Oncology; Roche Innovation Center Munich; Penzberg Germany
| |
Collapse
|
81
|
Han B, Zhou B, Qu Y, Gao B, Xu Y, Chung S, Tanaka H, Yang W, Giuliano AE, Cui X. FOXC1-induced non-canonical WNT5A-MMP7 signaling regulates invasiveness in triple-negative breast cancer. Oncogene 2017; 37:1399-1408. [PMID: 29249801 PMCID: PMC5844802 DOI: 10.1038/s41388-017-0021-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) has high rates of local recurrence and distant metastasis, partially due to its high invasiveness. The Forkhead box C1 (FOXC1) transcription factor has been shown to be specifically overexpressed in TNBC and associated with poor clinical outcome. How TNBC’s high invasiveness is driven by FOXC1 and its downstream targets remains poorly understood. In the present study, pathway-specific PCR array assays revealed that WNT5A and matrix metalloproteinase-7 (MMP7) were upregulated by FOXC1 in TNBC cells. Interestingly, WNT5A mediates the upregulation of MMP7 by FOXC1 and the WNT5A-MMP7 axis is essential for FOXC1-induced invasiveness of TNBC cells in vitro. Xenograft models showed that the lung extravasation and metastasis of FOXC1-overexpressing TNBC cells were attenuated by knocking out WNT5A, but could be restored by MMP7 overexpression. Mechanistically, FOXC1 can bind directly to the WNT5A promoter region to activate its expression. Engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP), coupled with mass spectrometry, identified FOXC1-interacting proteins including a group of heterogeneous nuclear ribonucleoproteins involved in WNT5A transcription induction. Finally, we found that WNT5A activates NF-κB signaling to induce MMP7 expression. Collectively, these data demonstrate a FOXC1-elicited non-canonical WNT5A signaling mechanism comprising NF-κB and MMP7 that is essential for TNBC cell invasiveness, thereby providing implications toward developing an effective therapy for TNBC.
Collapse
Affiliation(s)
- Bingchen Han
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ying Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bowen Gao
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yali Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Stacey Chung
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hisashi Tanaka
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
82
|
Hossein G, Arabzadeh S, Salehi-Dulabi Z, Dehghani-Ghobadi Z, Heidarian Y, Talebi-Juybari M. Wnt5A regulates the expression of ROR2 tyrosine kinase receptor in ovarian cancer cells. Biochem Cell Biol 2017; 95:609-615. [PMID: 28538104 DOI: 10.1139/bcb-2016-0216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Wnt5A and receptor tyrosine kinase-like orphan receptor 2 (ROR2) proteins both regulate developmental processes, cell movement, and cell polarity. The purpose of this study was to evaluate a possible regulatory role of Wnt5A on ROR2 expression in human ovarian cancer cell lines. Moreover, the expression of Wnt5A and ROR2 mRNA and protein levels were assessed in human epithelial serous ovarian cancer (HSOC) specimens. ROR2 was strongly decreased in cells treated with siRNA against Wnt5A compared with scramble-treated or lipofectamine-treated cells (P < 0.001). There was 34% decreased cell invasion (P < 0.01) in Wnt5A knock-down cells compared with lipofectamine-treated and scramble-treated cells; however, cell invasion remained unchanged upon addition of anti-ROR2 antibody to the culture media of these cells. In contrast, addition of anti-ROR2 antibody to the culture media for lipofectamine-treated and scramble-treated cells led to 32% decreased cell invasion (P < 0.01). Normal ovarian specimens were negative, and variable immunostaining was observed in HSOC for Wnt5A and ROR2 immunostaining. Furthermore, there was a positive correlation between Wnt5A and ROR2 expression in high-grade SOC samples at the mRNA level (P < 0.05; r = 0.38). This is the first report to show the regulatory role of Wnt5A on ROR2 expression in ovarian cancer.
Collapse
Affiliation(s)
- Ghamartaj Hossein
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Somayeh Arabzadeh
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Salehi-Dulabi
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Yassaman Heidarian
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Talebi-Juybari
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
83
|
VanderVorst K, Hatakeyama J, Berg A, Lee H, Carraway KL. Cellular and molecular mechanisms underlying planar cell polarity pathway contributions to cancer malignancy. Semin Cell Dev Biol 2017; 81:78-87. [PMID: 29107170 DOI: 10.1016/j.semcdb.2017.09.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 07/20/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022]
Abstract
While the mutational activation of oncogenes drives tumor initiation and growth by promoting cellular transformation and proliferation, increasing evidence suggests that the subsequent re-engagement of largely dormant developmental pathways contributes to cellular phenotypes associated with the malignancy of solid tumors. Genetic studies from a variety of model organisms have defined many of the components that maintain epithelial planar cell polarity (PCP), or cellular polarity in the axis orthogonal to the apical-basal axis. These same components comprise an arm of non-canonical Wnt signaling that mediates cell motility events such as convergent extension movements essential to proper development. In this review, we summarize the increasing evidence that the Wnt/PCP signaling pathway plays active roles in promoting the proliferative and migratory properties of tumor cells, emphasizing the importance of subcellular localization of PCP components and protein-protein interactions in regulating cellullar properties associated with malignancy. Specifically, we discuss the increased expression of Wnt/PCP pathway components in cancer and the functional consequences of aberrant pathway activation, focusing on Wnt ligands, Frizzled (Fzd) receptors, the tetraspanin-like proteins Vangl1 and Vangl2, and the Prickle1 (Pk1) scaffold protein. In addition, we discuss negative regulation of the Wnt/PCP pathway, with particular emphasis on the Nrdp1 E3 ubiquitin ligase. We hypothesize that engagement of the Wnt/PCP pathway after tumor initiation drives malignancy by promoting cellular proliferation and invasiveness, and that the ability of Wnt/PCP signaling to supplant oncogene addiction may contribute to tumor resistance to oncogenic pathway-directed therapeutic agents.
Collapse
Affiliation(s)
- Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, United States
| | - Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, United States
| | - Anastasia Berg
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, United States
| | - Hyun Lee
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, United States.
| |
Collapse
|
84
|
Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol 2017; 19:1274-1285. [PMID: 28892080 DOI: 10.1038/ncb3613] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 08/14/2017] [Indexed: 12/14/2022]
Abstract
Metastatic cancer is a systemic disease, and metastasis determinants might elicit completely different effects in various target organs. Here we show that tumour-secreted DKK1 is a serological marker of breast cancer metastasis organotropism and inhibits lung metastasis. DKK1 suppresses PTGS2-induced macrophage and neutrophil recruitment in lung metastases by antagonizing cancer cell non-canonical WNT/PCP-RAC1-JNK signalling. In the lungs, DKK1 also inhibits WNT/Ca2+-CaMKII-NF-κB signalling and suppresses LTBP1-mediated TGF-β secretion of cancer cells. In contrast, DKK1 promotes breast-to-bone metastasis by regulating canonical WNT signalling of osteoblasts. Importantly, targeting canonical WNT may not be beneficial to treatment of metastatic cancer, while combinatory therapy against JNK and TGF-β signalling effectively prevents metastasis to both the lungs and bone. Thus, DKK1 represents a class of Janus-faced molecules with dichotomous roles in organotropic metastasis, and our data provide a rationale for new anti-metastasis approaches.
Collapse
|
85
|
Self-organization process in newborn skin organoid formation inspires strategy to restore hair regeneration of adult cells. Proc Natl Acad Sci U S A 2017; 114:E7101-E7110. [PMID: 28798065 DOI: 10.1073/pnas.1700475114] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Organoids made from dissociated progenitor cells undergo tissue-like organization. This in vitro self-organization process is not identical to embryonic organ formation, but it achieves a similar phenotype in vivo. This implies genetic codes do not specify morphology directly; instead, complex tissue architectures may be achieved through several intermediate layers of cross talk between genetic information and biophysical processes. Here we use newborn and adult skin organoids for analyses. Dissociated cells from newborn mouse skin form hair primordia-bearing organoids that grow hairs robustly in vivo after transplantation to nude mice. Detailed time-lapse imaging of 3D cultures revealed unexpected morphological transitions between six distinct phases: dissociated cells, cell aggregates, polarized cysts, cyst coalescence, planar skin, and hair-bearing skin. Transcriptome profiling reveals the sequential expression of adhesion molecules, growth factors, Wnts, and matrix metalloproteinases (MMPs). Functional perturbations at different times discern their roles in regulating the switch from one phase to another. In contrast, adult cells form small aggregates, but then development stalls in vitro. Comparative transcriptome analyses suggest suppressing epidermal differentiation in adult cells is critical. These results inspire a strategy that can restore morphological transitions and rescue the hair-forming ability of adult organoids: (i) continuous PKC inhibition and (ii) timely supply of growth factors (IGF, VEGF), Wnts, and MMPs. This comprehensive study demonstrates that alternating molecular events and physical processes are in action during organoid morphogenesis and that the self-organizing processes can be restored via environmental reprogramming. This tissue-level phase transition could drive self-organization behavior in organoid morphogenies beyond the skin.
Collapse
|
86
|
Menck K, Bleckmann A, Wachter A, Hennies B, Ries L, Schulz M, Balkenhol M, Pukrop T, Schatlo B, Rost U, Wenzel D, Klemm F, Binder C. Characterisation of tumour-derived microvesicles in cancer patients' blood and correlation with clinical outcome. J Extracell Vesicles 2017; 6:1340745. [PMID: 28804596 PMCID: PMC5533131 DOI: 10.1080/20013078.2017.1340745] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/31/2017] [Indexed: 12/14/2022] Open
Abstract
To evaluate whether tumour-derived microvesicles (T-MV), originating from the plasma membrane, represent suitable cancer biomarkers, we isolated MV from peripheral blood samples of cancer patients with locally advanced and/or metastatic solid tumours (n = 330, including 79 head & neck cancers, 74 lung cancers, 41 breast cancers, 28 colorectal cancers and 108 with other cancer forms) and controls (n = 103). Whole MV preparations were characterised using flow cytometry. While MV carrying the tumour-associated proteins MUC1, EGFR and EpCAM were found to be enhanced in a tumour-subtype-specific way in patients' blood, expression of the matrix metalloproteinase inducer EMMPRIN was increased independent of tumour type. Higher levels of EMMPRIN+-MV correlated significantly with poor overall survival, whereas the other markers were prognostic only in specific tumour subgroups. By combining all four tumour-associated antigens, cancer patients were separated from healthy controls with an AUC of up to 0.85. Ex vivo, whole MV preparations from cancer patients, in contrast to those of controls, induced a tumour-supporting phenotype in macrophages and increased tumour cell invasion, which was dependent on the highly glycosylated isoform of EMMPRIN. In conclusion, the detection of T-MV in whole blood, even in minor amounts, is feasible with standard techniques, proves functionally relevant and correlates with clinical outcome.
Collapse
Affiliation(s)
- Kerstin Menck
- Department of Haematology/Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Annalen Bleckmann
- Department of Haematology/Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany.,Department of Medical Statistics, University Medical Centre Göttingen, Göttingen, Germany
| | - Astrid Wachter
- Department of Medical Statistics, University Medical Centre Göttingen, Göttingen, Germany
| | - Bianca Hennies
- Department of Haematology/Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Lena Ries
- Department of Haematology/Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Matthias Schulz
- Department of Haematology/Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Marko Balkenhol
- Comprehensive Cancer Centre, University Medical Centre Göttingen, Göttingen, Germany
| | - Tobias Pukrop
- Department of Haematology/Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Bawarjan Schatlo
- Department of Neurosurgery, University Medical Centre Göttingen, Göttingen, Germany
| | - Ulrike Rost
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Dirk Wenzel
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Florian Klemm
- Department of Haematology/Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Claudia Binder
- Department of Haematology/Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
87
|
Mu J, Hui T, Shao B, Li L, Du Z, Lu L, Ye L, Li S, Li Q, Xiao Q, Qiu Z, Zhang Y, Fan J, Ren G, Tao Q, Xiang T. Dickkopf-related protein 2 induces G0/G1 arrest and apoptosis through suppressing Wnt/β-catenin signaling and is frequently methylated in breast cancer. Oncotarget 2017; 8:39443-39459. [PMID: 28467796 PMCID: PMC5503624 DOI: 10.18632/oncotarget.17055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/20/2017] [Indexed: 12/05/2022] Open
Abstract
Dickkopf-related protein 2 (DKK2) is one of the antagonists of Wnt/β-catenin signaling, with its downregulation reported in multiple cancers. However, how DKK2 contributes to breast tumorigenesis remains unclear. We examined its expression and promoter methylation in 10 breast tumor cell lines, 98 primary tumors, and 21 normal breast tissues. Compared with normal tissues, DKK2 was frequently silenced in breast cell lines (7/8). DKK2 promoter methylation was detected in 77.8% of cell lines and 86.7% of breast tumors; while rarely detected in normal breast tissues (19%), indicating common DKK2 methylation in breast cancer. Ectopic expression of DKK2 changed breast tumor cell morphology, inhibited cell proliferation and colony formation by inducing G0/G1 cell cycle arrest and apoptosis, and suppressed tumor cell migration by reversing epithelial-mesenchymal transition (EMT) and downregulating stem cell markers. Moreover, restored expression of DKK2 in MCF7 cells disrupted the microtube formation of human umbilical vein endothelial cells on Matrigel®. In vivo, the growth of MDA-MB-231 cells in nude mice was markedly decreased after stable expression of DKK2. DKK2 suppressed canonical Wnt/β-catenin signaling by inhibiting β-catenin activity with decreased active β-catenin protein. Thus, our findings demonstrate that DKK2 functions as a tumor suppressor through inhibiting cell proliferation and inducing apoptosis via regulating Wnt signaling during breast tumorigenesis.
Collapse
Affiliation(s)
- Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianli Hui
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bianfei Shao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Zhenfang Du
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Li Lu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Lin Ye
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuman Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianqian Li
- Chinese Medicine Hospital of Linyi City, Shandong, China
| | - Qian Xiao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Qiu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangxia Fan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
88
|
Dong X, Liao W, Zhang L, Tu X, Hu J, Chen T, Dai X, Xiong Y, Liang W, Ding C, Liu R, Dai J, Wang O, Lu L, Lu X. RSPO2 suppresses colorectal cancer metastasis by counteracting the Wnt5a/Fzd7-driven noncanonical Wnt pathway. Cancer Lett 2017; 402:153-165. [PMID: 28600110 DOI: 10.1016/j.canlet.2017.05.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 01/01/2023]
Abstract
R-spondins play critical roles in development, stem cell survival, and tumorigenicity by modulating Wnt/β-catenin signaling; however, the role of R-spondins in noncanonical Wnt signaling regulation remains largely unknown. We demonstrate here that R-spondin 2 (RSPO2) has an inhibitory effect on colorectal cancer (CRC) cell migration, invasion, and metastasis. Reduced RSPO2 expression was associated with tumor metastasis and poor survival in CRC patients. The metastasis-suppressive activity of RSPO2 was independent of the Wnt/β-catenin signaling pathway but dependent on the Fzd7-mediated noncanonical Wnt signaling pathway. The physical interaction of RSPO2 and Fzd7 increased the degradation of cell surface Fzd7 via ZNRF3-mediated ubiquitination, which led to the suppression of the downstream PKC/ERK signaling cascade. In late-stage metastatic cancer, Wnt5a promoted CRC cell migration by preventing degradation of Fzd7, and RSPO2 antagonized Wnt5a-driven noncanonical Wnt signaling activation and tumor cell migration by blocking the binding of Wnt5a to the Fzd7 receptor. Our study reveals a novel RSPO2/Wnt5a-competing noncanonical Wnt signaling mechanism that regulates cellular migration and invasion, and our data suggest that secreted RSPO2 protein could serve as a potential therapy for Wnt5a/Fzd7-driven aggressive CRC tumors.
Collapse
Affiliation(s)
- Xiaoming Dong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Li Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xi Tu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province, Zhejiang, 317000, China
| | - Jin Hu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Tianke Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaowei Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Xiong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Weicheng Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaodong Ding
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Rui Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ouchen Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
89
|
Chao J, Li P, Chao L. Kallistatin suppresses cancer development by multi-factorial actions. Crit Rev Oncol Hematol 2017; 113:71-78. [PMID: 28427524 PMCID: PMC5441310 DOI: 10.1016/j.critrevonc.2017.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 01/07/2023] Open
Abstract
Kallistatin was first identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin via its two structural elements regulates differential signaling cascades, and thus a wide spectrum of biological functions. Kallistatin's active site is essential for: inhibiting tissue kallikrein's activity; stimulating endothelial nitric oxide synthase and sirtuin 1 expression and activation; and modulating the synthesis of the microRNAs, miR-34a, miR-21 and miR-203. Kallistatin's heparin-binding site is crucial for antagonizing the signaling pathways of vascular endothelial growth factor, tumor necrosis factor-α, Wnt, transforming growth factor-β and epidermal growth factor. Circulating kallistatin levels are markedly reduced in patients with prostate and colon cancer. Kallistatin administration attenuates angiogenesis, inflammation, tumor growth and invasion in animal models and cultured cells. Therefore, tumor progression may be substantially suppressed by kallistatin's pleiotropic activities. In this review, we will discuss the role and mechanisms of kallistatin in the regulation of cancer development.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
90
|
Wu ZC, Xiong L, Wang LX, Miao XY, Liu ZR, Li DQ, Zou Q, Liu KJ, Zhao H, Yang ZL. Comparative study of ROR2 and WNT5a expression in squamous/adenosquamous carcinoma and adenocarcinoma of the gallbladder. World J Gastroenterol 2017; 23:2601-2612. [PMID: 28465645 PMCID: PMC5394524 DOI: 10.3748/wjg.v23.i14.2601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/01/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression and clinical pathological significance of ROR2 and WNT5a in gallbladder squamous/adenosquamous carcinoma (SC/ASC) and adenocarcinoma (AC). METHODS EnVision immunohistochemistry was used to stain for ROR2 and WNT5a in 46 SC/ASC patients and 80 AC patients. RESULTS Poorly differentiated AC among AC patients aged > 45 years were significantly more frequent compared with SC/ASC patients, while tumors with a maximal diameter > 3 cm in the SC/ASC group were significantly more frequent compared with the AC group. Positive ROR2 and WNT5a expression was significantly lower in SC/ASC or AC with a maximal mass diameter ≤ 3 cm, a TNM stage of I + II, no lymph node metastasis, no surrounding invasion, and radical resection than in patients with a maximal mass diameter > 3 cm, TNM stage IV, lymph node metastasis, surrounding invasion, and no resection. Positive ROR2 expression in patients with highly differentiated SC/ASC was significantly lower than in patients with poorly differentiated SC/ASC. Positive ROR2 and WNT5a expression levels in highly differentiated AC were significantly lower than in poorly differentiated AC. Kaplan-Meier survival analysis showed that differentiation degree, maximal mass diameter, TNM stage, lymph node metastasis, surrounding invasion, surgical procedure and the ROR2 and WNT5a expression levels were closely related to average survival of SC/ASC or AC. The survival of SC/ASC or AC patients with positive expression of ROR2 and WNT5a was significantly shorter than that of patients with negative expression results. Cox multivariate analysis revealed that poor differentiation, a maximal diameter of the mass ≥ 3 cm, TNM stage III or IV, lymph node metastasis, surrounding invasion, unresected surgery and positive ROR2 or WNT5a expression in the SC/ASC or AC patients were negatively correlated with the postoperative survival rate and positively correlated with mortality, which are risk factors and independent prognostic predictors. CONCLUSION SC/ASC or AC patients with positive ROR2 or WNT5a expression generally have a poor prognosis.
Collapse
|
91
|
Brown K, Yang P, Salvador D, Kulikauskas R, Ruohola-Baker H, Robitaille AM, Chien AJ, Moon RT, Sherwood V. WNT/β-catenin signaling regulates mitochondrial activity to alter the oncogenic potential of melanoma in a PTEN-dependent manner. Oncogene 2017; 36:3119-3136. [PMID: 28092677 PMCID: PMC5467017 DOI: 10.1038/onc.2016.450] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/23/2022]
Abstract
Aberrant regulation of WNT/β-catenin signaling has a crucial role in the onset and progression of cancers, where the effects are not always predictable depending on tumor context. In melanoma, for example, models of the disease predict differing effects of the WNT/β-catenin pathway on metastatic progression. Understanding the processes that underpin the highly context-dependent nature of WNT/β-catenin signaling in tumors is essential to achieve maximal therapeutic benefit from WNT inhibitory compounds. In this study, we have found that expression of the tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), alters the invasive potential of melanoma cells in response to WNT/β-catenin signaling, correlating with differing metabolic profiles. This alters the bioenergetic potential and mitochondrial activity of melanoma cells, triggered through regulation of pro-survival autophagy. Thus, WNT/β-catenin signaling is a regulator of catabolic processes in cancer cells, which varies depending on the metabolic requirements of tumors.
Collapse
Affiliation(s)
- K Brown
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - P Yang
- Department of Pharmacology, Howard Hughes Medical Institute, Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | - D Salvador
- Division of Cancer Research, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - R Kulikauskas
- Department of Pharmacology, Howard Hughes Medical Institute, Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | - H Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - A M Robitaille
- Department of Pharmacology, Howard Hughes Medical Institute, Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | - A J Chien
- Department of Pharmacology, Howard Hughes Medical Institute, Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA.,Division of Dermatology, University of Washington, Seattle, WA, USA
| | - R T Moon
- Department of Pharmacology, Howard Hughes Medical Institute, Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | - V Sherwood
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK.,Division of Cancer Research, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
92
|
Corda G, Sala G, Lattanzio R, Iezzi M, Sallese M, Fragassi G, Lamolinara A, Mirza H, Barcaroli D, Ermler S, Silva E, Yasaei H, Newbold RF, Vagnarelli P, Mottolese M, Natali PG, Perracchio L, Quist J, Grigoriadis A, Marra P, Tutt AN, Piantelli M, Iacobelli S, De Laurenzi V, Sala A. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol 2016; 241:350-361. [PMID: 27859262 PMCID: PMC5248601 DOI: 10.1002/path.4841] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 09/09/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022]
Abstract
Frizzled receptors mediate Wnt ligand signalling, which is crucially involved in regulating tissue development and differentiation, and is often deregulated in cancer. In this study, we found that the gene encoding the Wnt receptor frizzled 6 (FZD6) is frequently amplified in breast cancer, with an increased incidence in the triple‐negative breast cancer (TNBC) subtype. Ablation of FZD6 expression in mammary cancer cell lines: (1) inhibited motility and invasion; (2) induced a more symmetrical shape of organoid three‐dimensional cultures; and (3) inhibited bone and liver metastasis in vivo. Mechanistically, FZD6 signalling is required for the assembly of the fibronectin matrix, interfering with the organization of the actin cytoskeleton. Ectopic delivery of fibronectin in FZD6‐depleted, triple‐negative MDA‐MB‐231 cells rearranged the actin cytoskeleton and restored epidermal growth factor‐mediated invasion. In patients with localized, lymph node‐negative (early) breast cancer, positivity of tumour cells for FZD6 protein identified patients with reduced distant relapse‐free survival. Multivariate analysis indicated an independent prognostic significance of FZD6 expression in TNBC tumours, predicting distant, but not local, relapse. We conclude that the FZD6–fibronectin actin axis identified in our study could be exploited for drug development in highly metastatic forms of breast cancer, such as TNBC. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gabriele Corda
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Gianluca Sala
- MediaPharma srl, Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Rossano Lattanzio
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Manuela Iezzi
- Dipartimento di Medicina e Scienze dell'Invecchiamento, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Michele Sallese
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy.,Fondazione Mario Negri Sud, S. Maria Imbaro, Italy
| | - Giorgia Fragassi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy.,Fondazione Mario Negri Sud, S. Maria Imbaro, Italy
| | - Alessia Lamolinara
- Dipartimento di Medicina e Scienze dell'Invecchiamento, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Hasan Mirza
- Breast Cancer Now Unit, Research Oncology, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Daniela Barcaroli
- Dipartimento di Scienze Psicologiche, della Salute e del Territorio, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Sibylle Ermler
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Elisabete Silva
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Hemad Yasaei
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Robert F Newbold
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Paola Vagnarelli
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | | | | | | | - Jelmar Quist
- Breast Cancer Now Unit, Research Oncology, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Anita Grigoriadis
- Breast Cancer Now Unit, Research Oncology, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Pierfrancesco Marra
- Breast Cancer Now Unit, Research Oncology, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andrew N Tutt
- Breast Cancer Now Unit, Research Oncology, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Breast Cancer Now, The Institute of Cancer Research, London, UK
| | - Mauro Piantelli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Stefano Iacobelli
- MediaPharma srl, Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Vincenzo De Laurenzi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Arturo Sala
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.,Dipartimento di Scienze Psicologiche, della Salute e del Territorio, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| |
Collapse
|
93
|
Zeng R, Huang J, Zhong MZ, Li L, Yang G, Liu L, Wu Y, Yao X, Shi J, Wu Z. Multiple Roles of WNT5A in Breast Cancer. Med Sci Monit 2016; 22:5058-5067. [PMID: 28005837 PMCID: PMC5201118 DOI: 10.12659/msm.902022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors of women. Modern combinatorial therapeutic regimens can reduce patient tumor burdens to undetectable levels, yet in many cases these tumors will relapse. Understanding of breast cancer biology, developing more potent therapeutic approaches, and overcoming resistance are of great importance. WNT5A is a non-canonical signaling member of the WNT family. Its role in breast cancer still remains unclear. Most of the evidence shows that WNT5A is a suppressor in breast cancer and loss of its expression is associated with poor prognosis, while some evidence suggests the tumorigenicity of WNT5A. WNT signaling molecules are potent targets for treatment of cancer. Therefore, understanding the role of WNT5A in breast cancer may provide new ideas and methods for breast cancer treatment. We review the evidence concerning WNT5A and breast cancer involving the signaling pathways and the molecular-targeted therapy of WNT5A. Our results show that the role WNT5A plays depends on the availability of key receptors and intercellular interactions among different cell types.
Collapse
Affiliation(s)
- Ruolan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Junhui Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Mei-Zuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Li Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Guorong Yang
- Department of Oncology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China (mainland)
| | - Li Liu
- 32th Department, Hunan Tumor Hospital, The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Yin Wu
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Xiaoyi Yao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Jing Shi
- Department of Oncology, Xiangya Hospital, Central South University,, Changsha, Hunan, China (mainland)
| | - Zhifu Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
94
|
Szebeni GJ, Vizler C, Nagy LI, Kitajka K, Puskas LG. Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets. Int J Mol Sci 2016; 17:ijms17111958. [PMID: 27886105 PMCID: PMC5133952 DOI: 10.3390/ijms17111958] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/01/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022] Open
Abstract
Since the observation of Virchow, it has long been known that the tumor microenvironment constitutes the soil for the infiltration of inflammatory cells and for the release of inflammatory mediators. Under certain circumstances, inflammation remains unresolved and promotes cancer development. Here, we review some of these indisputable experimental and clinical evidences of cancer related smouldering inflammation. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth by several mechanisms, including their inherent immunosuppressive activity, promotion of neoangiogenesis, mediation of epithelial-mesenchymal transition and alteration of cellular metabolism. The pro-tumoral functions of TAMs and MDSCs are further enhanced by their cross-talk offering a myriad of potential anti-cancer therapeutic targets. We highlight these main pro-tumoral mechanisms of myeloid cells and give a general overview of their phenotypical and functional diversity, offering examples of possible therapeutic targets. Pharmacological targeting of inflammatory cells and molecular mediators may result in therapies improving patient condition and prognosis. Here, we review experimental and clinical findings on cancer-related inflammation with a major focus on creating an inventory of current small molecule-based therapeutic interventions targeting cancer-related inflammatory cells: TAMs and MDSCs.
Collapse
Affiliation(s)
- Gabor J Szebeni
- Avidin Ltd., Also kikoto sor 11/D., H-6726 Szeged, Hungary.
- Synaptogenex Ltd., Őzsuta utca 20995/1, H-1037 Budapest, Hungary.
| | - Csaba Vizler
- Department of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvari krt. 62., H-6726 Szeged, Hungary.
| | - Lajos I Nagy
- Avidin Ltd., Also kikoto sor 11/D., H-6726 Szeged, Hungary.
| | - Klara Kitajka
- Department of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvari krt. 62., H-6726 Szeged, Hungary.
| | - Laszlo G Puskas
- Avidin Ltd., Also kikoto sor 11/D., H-6726 Szeged, Hungary.
- Department of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvari krt. 62., H-6726 Szeged, Hungary.
| |
Collapse
|
95
|
Wnt5a Increases Properties of Lung Cancer Stem Cells and Resistance to Cisplatin through Activation of Wnt5a/PKC Signaling Pathway. Stem Cells Int 2016; 2016:1690896. [PMID: 27895670 PMCID: PMC5118537 DOI: 10.1155/2016/1690896] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
The development of chemoresistance to cisplatin regimens causes a poor prognosis in patients with advanced NSCLC. The role of noncanonical Wnt signaling in the regulation of properties of lung cancer stem cells and chemoresistance was interrogated, by accessing capacities of cell proliferation, migration, invasion, and clonogenicity as well as the apoptosis in A549 cell lines and cisplatin-resistant A549 cells treated with Wnt5a conditional medium or protein kinase C (PKC) inhibitor GF109203X. Results showed that the noncanonical Wnt signaling ligand, Wnt5a, could promote the proliferation, migration, invasion, and colony formation in A549 lung adenocarcinoma cells and cisplatin-resistant A549/DDP cells and increase the fraction of ALDH-positive cell in A549/DDP cells. An exposure of cells to Wnt5a led to a significant reduction of A549/DDP cell apoptosis but not A549 cells. An addition of GF109203X could both strikingly increase the baseline apoptosis and resensitize the Wnt5a-inhibited cell apoptosis. Interestingly, an inhibition of Wnt/PKC signaling pathway could reduce properties of lung cancer stem cells, promote cell apoptosis, and resensitize cisplatin-resistant cells to cisplatin via a caspase/AIF-dependent pathway. These data thus suggested that the Wnt5a could promote lung cancer cell mobility and cisplatin-resistance through a Wnt/PKC signaling pathway and a blockage of this signaling may be an alternative therapeutic strategy for NSCLC patients with resistance to chemotherapies.
Collapse
|
96
|
Zhou B, Wang J, Zheng G, Qiu Z. Methylated urolithin A, the modified ellagitannin-derived metabolite, suppresses cell viability of DU145 human prostate cancer cells via targeting miR-21. Food Chem Toxicol 2016; 97:375-384. [PMID: 27725205 DOI: 10.1016/j.fct.2016.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/13/2016] [Accepted: 10/06/2016] [Indexed: 01/20/2023]
Abstract
Urolithins are bioactive ellagic acid-derived metabolites produced by human colonic microflora. Although previous studies have demonstrated the cytotoxicity of urolithins, the effect of urolithins on miRNAs is still unclear. In this study, the suppressing effects of methylated urolithin A (mUA) on cell viability in human prostate cancer DU145 cells was investigated. mUA induced caspase-dependent cell apoptosis, mitochondrial depolarization and down-regulation of Bcl-2/Bax ratio. The results showed that upon exposure to mUA, miR-21 expression was decreased and the expression of PTEN and Pdcd4 protein was elevated. mUA could further suppress Akt phosphorylation and increase protein expression of FOXO3a, and the effects of mUA on Akt phosphorylation and protein expression of FOXO3a were blocked by PTEN silence. Moreover, mUA suppressed the Wnt/β-catenin-mediated transcriptional activation of MMP-7 and c-Myc, and this function of mUA on MMP-7 and c-Myc was attenuated by over-expression of miR-21. In conclusion, our data suggest that mUA can suppress cell viability in DU145 cells through modulating miR-21 and its downstream series-wound targets, including PTEN, Akt and Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Jing Wang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription (Ministry of Education), Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, No. 1, West Huangjiahu Road, Wuhan 430065, People's Republic of China.
| |
Collapse
|
97
|
Wnt Signaling in Cell Motility and Invasion: Drawing Parallels between Development and Cancer. Cancers (Basel) 2016; 8:cancers8090080. [PMID: 27589803 PMCID: PMC5040982 DOI: 10.3390/cancers8090080] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
The importance of canonical and non-canonical Wnt signal transduction cascades in embryonic development and tissue homeostasis is well recognized. The aberrant activation of these pathways in the adult leads to abnormal cellular behaviors, and tumor progression is frequently a consequence. Here we discuss recent findings and analogies between Wnt signaling in developmental processes and tumor progression, with a particular focus on cell motility and matrix invasion and highlight the roles of the ARF (ADP-Ribosylation Factor) and Rho-family small GTP-binding proteins. Wnt-regulated signal transduction from cell surface receptors, signaling endosomes and/or extracellular vesicles has the potential to profoundly influence cell movement, matrix degradation and paracrine signaling in both development and disease.
Collapse
|
98
|
Wnt5a Signaling in Cancer. Cancers (Basel) 2016; 8:cancers8090079. [PMID: 27571105 PMCID: PMC5040981 DOI: 10.3390/cancers8090079] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023] Open
Abstract
Wnt5a is involved in activating several non-canonical WNT signaling pathways, through binding to different members of the Frizzled- and Ror-family receptors. Wnt5a signaling is critical for regulating normal developmental processes, including proliferation, differentiation, migration, adhesion and polarity. However, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a in regulating cancer cell invasion, metastasis, metabolism and inflammation. In this article, we review findings regarding the molecular mechanisms and roles of Wnt5a signaling in various cancer types, and highlight Wnt5a in ovarian cancer.
Collapse
|
99
|
Abstract
SIGNIFICANCE Breast cancer is a unique disease characterized by heterogeneous cell populations causing roadblocks in therapeutic medicine, owing to its complex etiology and primeval understanding of the biology behind its genesis, progression, and sustenance. Globocan statistics indicate over 1.7 million new breast cancer diagnoses in 2012, accounting for 25% of all cancer morbidities. RECENT ADVANCES Despite these dismal statistics, the introduction of molecular gene signature platforms, progressive therapeutic approaches in diagnosis, and management of breast cancer has led to more effective treatment strategies and control measures concurrent with an equally reassuring decline in the mortality rate. CRITICAL ISSUES However, an enormous body of research in this area is requisite as high mortality associated with metastatic and/or drug refractory tumors continues to present a therapeutic challenge. Despite advances in systemic chemotherapy, the median survival of patients harboring metastatic breast cancers continues to be below 2 years. FUTURE DIRECTIONS Hence, a massive effort to scrutinize and evaluate chemotherapeutics on the basis of the molecular classification of these cancers is undertaken with the objective to devise more attractive and feasible approaches to treat breast cancers and improve patients' quality of life. This review aims to summarize the current understanding of the biology of breast cancer as well as challenges faced in combating breast cancer, with special emphasis on the current battery of treatment strategies. We will also try and gain perspective from recent encounters on novel findings responsible for the progression and metastatic transformation of breast cancer cells in an endeavor to develop more targeted treatment options. Antioxid. Redox Signal. 25, 337-370.
Collapse
Affiliation(s)
- Deepika Raman
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Chuan Han Jonathan Foo
- 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore
| | - Marie-Veronique Clement
- 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,4 National University Cancer Institute , NUHS, Singapore, Singapore .,5 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
100
|
Te Boekhorst V, Friedl P. Plasticity of Cancer Cell Invasion-Mechanisms and Implications for Therapy. Adv Cancer Res 2016; 132:209-64. [PMID: 27613134 DOI: 10.1016/bs.acr.2016.07.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cell migration is a plastic and adaptive process integrating cytoskeletal dynamics, cell-extracellular matrix and cell-cell adhesion, as well as tissue remodeling. In response to molecular and physical microenvironmental cues during metastatic dissemination, cancer cells exploit a versatile repertoire of invasion and dissemination strategies, including collective and single-cell migration programs. This diversity generates molecular and physical heterogeneity of migration mechanisms and metastatic routes, and provides a basis for adaptation in response to microenvironmental and therapeutic challenge. We here summarize how cytoskeletal dynamics, protease systems, cell-matrix and cell-cell adhesion pathways control cancer cell invasion programs, and how reciprocal interaction of tumor cells with the microenvironment contributes to plasticity of invasion and dissemination strategies. We discuss the potential and future implications of predicted "antimigration" therapies that target cytoskeletal dynamics, adhesion, and protease systems to interfere with metastatic dissemination, and the options for integrating antimigration therapy into the spectrum of targeted molecular therapies.
Collapse
Affiliation(s)
- V Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - P Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Radboud University Medical Centre, Nijmegen, The Netherlands; Cancer Genomics Center (CGC.nl), Utrecht, The Netherlands.
| |
Collapse
|