51
|
Eargle J, Black AA, Sethi A, Trabuco LG, Luthey-Schulten Z. Dynamics of Recognition between tRNA and elongation factor Tu. J Mol Biol 2008; 377:1382-405. [PMID: 18336835 DOI: 10.1016/j.jmb.2008.01.073] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/08/2008] [Indexed: 11/17/2022]
Abstract
Elongation factor Tu (EF-Tu) binds to all standard aminoacyl transfer RNAs (aa-tRNAs) and transports them to the ribosome while protecting the ester linkage between the tRNA and its cognate amino acid. We use molecular dynamics simulations to investigate the dynamics of the EF-Tu.guanosine 5'-triphosphate.aa-tRNA(Cys) complex and the roles played by Mg2+ ions and modified nucleosides on the free energy of protein.RNA binding. Individual modified nucleosides have pronounced effects on the structural dynamics of tRNA and the EF-Tu.Cys-tRNA(Cys) interface. Combined energetic and evolutionary analyses identify the coevolution of residues in EF-Tu and aa-tRNAs at the binding interface. Highly conserved EF-Tu residues are responsible for both attracting aa-tRNAs as well as providing nearby nonbonded repulsive energies that help fine-tune molecular attraction at the binding interface. In addition to the 3' CCA end, highly conserved tRNA nucleotides G1, G52, G53, and U54 contribute significantly to EF-Tu binding energies. Modification of U54 to thymine affects the structure of the tRNA common loop resulting in a change in binding interface contacts. In addition, other nucleotides, conserved within certain tRNA specificities, may be responsible for tuning aa-tRNA binding to EF-Tu. The trend in EF-Tu.Cys-tRNA(Cys) binding energies observed as the result of mutating the tRNA agrees with experimental observation. We also predict variations in binding free energies upon misacylation of tRNA(Cys) with d-cysteine or O-phosphoserine and upon changing the protonation state of l-cysteine. Principal components analysis in each case reveals changes in the communication network across the protein.tRNA interface and is the basis for the entropy calculations.
Collapse
Affiliation(s)
- John Eargle
- Center for Biophysics and Computational Biology, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
52
|
Ohta A, Murakami H, Higashimura E, Suga H. Synthesis of Polyester by Means of Genetic Code Reprogramming. ACTA ACUST UNITED AC 2007; 14:1315-22. [DOI: 10.1016/j.chembiol.2007.10.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/11/2007] [Accepted: 10/22/2007] [Indexed: 11/28/2022]
|
53
|
Ling J, Yadavalli SS, Ibba M. Phenylalanyl-tRNA synthetase editing defects result in efficient mistranslation of phenylalanine codons as tyrosine. RNA (NEW YORK, N.Y.) 2007; 13:1881-6. [PMID: 17804641 PMCID: PMC2040089 DOI: 10.1261/rna.684107] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Translational quality control is monitored at several steps, including substrate selection by aminoacyl-tRNA synthetases (aaRSs), and discrimination of aminoacyl-tRNAs by elongation factor Tu (EF-Tu) and the ribosome. Phenylalanyl-tRNA synthetase (PheRS) misactivates Tyr but is able to correct the mistake using a proofreading activity named editing. Previously we found that overproduction of editing-defective PheRS resulted in Tyr incorporation at Phe-encoded positions in vivo, although the misreading efficiency could not be estimated. This raised the question as to whether or not EF-Tu and the ribosome provide further proofreading mechanisms to prevent mistranslation of Phe codons by Tyr. Here we show that, after evading editing by PheRS, Tyr-tRNA(Phe) is recognized by EF-Tu as efficiently as the cognate Phe-tRNA(Phe). Kinetic decoding studies using full-length Tyr-tRNA(Phe) and Phe-tRNA(Phe), as well as a poly(U)-directed polyTyr/polyPhe synthesis assay, indicate that the ribosome lacks discrimination between Tyr-tRNA(Phe) and Phe-tRNA(Phe). Taken together, these data suggest that PheRS editing is the major proofreading step that prevents infiltration of Tyr into Phe codons during translation.
Collapse
Affiliation(s)
- Jiqiang Ling
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
54
|
Ohuchi M, Murakami H, Suga H. The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus. Curr Opin Chem Biol 2007; 11:537-42. [PMID: 17884697 DOI: 10.1016/j.cbpa.2007.08.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 08/05/2007] [Accepted: 08/06/2007] [Indexed: 11/17/2022]
Abstract
Flexizymes are de novo ribozymes capable of charging a wide variety of non-natural amino acids on tRNAs. The flexizyme system enables reprogramming of the genetic code by reassigning the codons that are generally assigned to natural amino acids to non-natural residues, and thus mRNA-directed synthesis of non-natural polypeptides can be achieved. In this review, we comprehensively summarize the history of the flexizyme system and its subsequent development into a practical tool. Furthermore, applications to the synthesis of novel biopolymers via genetic code reprogramming and perspectives for future applications are described.
Collapse
Affiliation(s)
- Masaki Ohuchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | |
Collapse
|
55
|
Hausmann CD, Prætorius-Ibba M, Ibba M. An aminoacyl-tRNA synthetase:elongation factor complex for substrate channeling in archaeal translation. Nucleic Acids Res 2007; 35:6094-102. [PMID: 17766929 PMCID: PMC2094089 DOI: 10.1093/nar/gkm534] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Translation requires the specific attachment of amino acids to tRNAs by aminoacyl-tRNA synthetases (aaRSs) and the subsequent delivery of aminoacyl-tRNAs to the ribosome by elongation factor 1 alpha (EF-1α). Interactions between EF-1α and various aaRSs have been described in eukaryotes, but the role of these complexes remains unclear. To investigate possible interactions between EF-1α and other cellular components, a yeast two-hybrid screen was performed for the archaeon Methanothermobacter thermautotrophicus. EF-1α was found to form a stable complex with leucyl-tRNA synthetase (LeuRS; KD = 0.7 μM). Complex formation had little effect on EF-1α activity, but increased the kcat for Leu-tRNALeu synthesis ∼8-fold. In addition, EF-1α co-purified with the archaeal multi-synthetase complex (MSC) comprised of LeuRS, LysRS and ProRS, suggesting the existence of a larger aaRS:EF-1α complex in archaea. These interactions between EF-1α and the archaeal MSC contribute to translational fidelity both by enhancing the aminoacylation efficiencies of the three aaRSs in the complex and by coupling two stages of translation: aminoacylation of cognate tRNAs and their subsequent channeling to the ribosome.
Collapse
Affiliation(s)
- Corinne D. Hausmann
- Department of Microbiology, Department of Molecular Genetics, Ohio State Biochemistry Program, and Ohio State RNA Group, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | - Mette Prætorius-Ibba
- Department of Microbiology, Department of Molecular Genetics, Ohio State Biochemistry Program, and Ohio State RNA Group, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | - Michael Ibba
- Department of Microbiology, Department of Molecular Genetics, Ohio State Biochemistry Program, and Ohio State RNA Group, The Ohio State University, Columbus, Ohio 43210-1292, USA
- *To whom correspondence should be addressed. +1 614 292 2120+1 614 292 8120
| |
Collapse
|
56
|
Vasil'eva IA, Moor NA. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition. BIOCHEMISTRY (MOSCOW) 2007; 72:247-63. [PMID: 17447878 DOI: 10.1134/s0006297907030029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes results of numerous (mainly functional) studies that have been accumulated over recent years on the problem of tRNA recognition by aminoacyl-tRNA synthetases. Development and employment of approaches that use synthetic mutant and chimeric tRNAs have demonstrated general principles underlying highly specific interaction in different systems. The specificity of interaction is determined by a certain number of nucleotides and structural elements of tRNA (constituting the set of recognition elements or specificity determinants), which are characteristic of each pair. Crystallographic structures available for many systems provide the details of the molecular basis of selective interaction. Diversity and identity of biochemical functions of the recognition elements make substantial contribution to the specificity of such interactions.
Collapse
Affiliation(s)
- I A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
57
|
Sanderson LE, Uhlenbeck OC. The 51-63 base pair of tRNA confers specificity for binding by EF-Tu. RNA (NEW YORK, N.Y.) 2007; 13:835-40. [PMID: 17449728 PMCID: PMC1869040 DOI: 10.1261/rna.485307] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Elongation factor Tu (EF-Tu) exhibits significant specificity for the different elongator tRNA bodies in order to offset its variable affinity to the esterified amino acid. Three X-ray cocrystal structures reveal that while most of the contacts with the protein involve the phosphodiester backbone of tRNA, a single hydrogen bond is observed between the Glu390 and the amino group of a guanine in the 51-63 base pair in the T-stem of tRNA. Here we show that the Glu390Ala mutation of Thermus thermophilus EF-Tu selectively destabilizes binding of those tRNAs containing a guanine at either position 51 or 63 and that mutagenesis of the 51-63 base pair in several tRNAs modulates their binding affinities to EF-Tu. A comparison of Escherichia coli tRNA sequences suggests that this specificity mechanism is conserved across the bacterial domain. While this contact is an important specificity determinant, it is clear that others remain to be identified.
Collapse
Affiliation(s)
- Lee E Sanderson
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
58
|
Zheng S, Ponder MA, Shih JYJ, Tiedje JM, Thomashow MF, Lubman DM. A proteomic analysis of Psychrobacter articus 273-4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 2007; 28:467-88. [PMID: 17177241 DOI: 10.1002/elps.200600173] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Psychrobacter 273-4 was isolated from a 20,000-40,000-year-old Siberian permafrost core, which is characterized by low temperature, low water activity, and high salinity. To explore how 273-4 survives in the permafrost environment, proteins in four 273-4 samples cultured at 4 and 22 degrees C in media with and without 5% sodium chloride were profiled and comparatively studied using 2-D HPLC and MS. The method used herein involved fractionation via a pH gradient using chromatofocusing followed by nonporous silica (NPS) RP-HPLC and on-line electrospray mass mapping. It was observed that 33 proteins were involved in the adaptation to low temperature in the cells grown in the nonsaline media while there were only 14 proteins involved in the saline media. There were 45 proteins observed differentially expressed in response to salt at 22 degrees C while there were 22 proteins at 4 degrees C. In addition, 5% NaCl and 4 degrees C showed a combination effect on protein expression. A total of 56 proteins involved in the adaptation to low temperature and salt were identified using MS and database searching. The differentially expressed proteins were classified into different functional categories where the response of the regulation system to stress appears to be very elaborate. The evidence shows that the adaptation of 273-4 is based primarily on the control of translation and transcription, the synthesis of proteins (chaperones) to facilitate RNA and protein folding, and the regulation of metabolic pathways.
Collapse
Affiliation(s)
- Suping Zheng
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
59
|
Roy H, Becker HD, Mazauric MH, Kern D. Structural elements defining elongation factor Tu mediated suppression of codon ambiguity. Nucleic Acids Res 2007; 35:3420-30. [PMID: 17478519 PMCID: PMC1904265 DOI: 10.1093/nar/gkm211] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In most prokaryotes Asn-tRNAAsn and Gln-tRNAGln are formed by amidation of aspartate and glutamate mischarged onto tRNAAsn and tRNAGln, respectively. Coexistence in the organism of mischarged Asp-tRNAAsn and Glu-tRNAGln and the homologous Asn-tRNAAsn and Gln-tRNAGln does not, however, lead to erroneous incorporation of Asp and Glu into proteins, since EF-Tu discriminates the misacylated tRNAs from the correctly charged ones. This property contrasts with the canonical function of EF-Tu, which is to non-specifically bind the homologous aa-tRNAs, as well as heterologous species formed in vitro by aminoacylation of non-cognate tRNAs. In Thermus thermophilus that forms the Asp-tRNAAsn intermediate by the indirect pathway of tRNA asparaginylation, EF-Tu must discriminate the mischarged aminoacyl-tRNAs (aa-tRNA). We show that two base pairs in the tRNA T-arm and a single residue in the amino acid binding pocket of EF-Tu promote discrimination of Asp-tRNAAsn from Asn-tRNAAsn and Asp-tRNAAsp by the protein. Our analysis suggests that these structural elements might also contribute to rejection of other mischarged aa-tRNAs formed in vivo that are not involved in peptide elongation. Additionally, these structural features might be involved in maintaining a delicate balance of weak and strong binding affinities between EF-Tu and the amino acid and tRNA moieties of other elongator aa-tRNAs.
Collapse
MESH Headings
- Base Pairing
- Codon
- Escherichia coli Proteins/metabolism
- Models, Molecular
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/metabolism
- Protein Binding
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/metabolism
- Thermus thermophilus/genetics
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
| | | | | | - Daniel Kern
- *To whom correspondence should be addressed. Tel: +33-3-8841-7092; Fax: +33-3-8860-2218;
| |
Collapse
|
60
|
Sanderson LE, Uhlenbeck OC. Directed mutagenesis identifies amino acid residues involved in elongation factor Tu binding to yeast Phe-tRNAPhe. J Mol Biol 2007; 368:119-30. [PMID: 17328911 PMCID: PMC2246379 DOI: 10.1016/j.jmb.2007.01.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/25/2007] [Accepted: 01/28/2007] [Indexed: 11/24/2022]
Abstract
The co-crystal structure of Thermus aquaticus elongation factor Tu.guanosine 5'- [beta,gamma-imido]triphosphate (EF-Tu.GDPNP) bound to yeast Phe-tRNA(Phe) reveals that EF-Tu interacts with the tRNA body primarily through contacts with the phosphodiester backbone. Twenty amino acids in the tRNA binding cleft of Thermus Thermophilus EF-Tu were each mutated to structurally conservative alternatives and the affinities of the mutant proteins to yeast Phe-tRNA(Phe) determined. Eleven of the 20 mutations reduced the binding affinity from fourfold to >100-fold, while the remaining ten had no effect. The thermodynamically important residues were spread over the entire tRNA binding interface, but were concentrated in the region which contacts the tRNA T-stem. Most of the data could be reconciled by considering the crystal structures of both free EF-Tu.GTP and the ternary complex and allowing for small (1.0 A) movements in the amino acid side-chains. Thus, despite the non-physiological crystallization conditions and crystal lattice interactions, the crystal structures reflect the biochemically relevant interaction in solution.
Collapse
|
61
|
Ling J, Roy H, Ibba M. Mechanism of tRNA-dependent editing in translational quality control. Proc Natl Acad Sci U S A 2006; 104:72-7. [PMID: 17185419 PMCID: PMC1765480 DOI: 10.1073/pnas.0606272104] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein synthesis requires the pairing of amino acids with tRNAs catalyzed by the aminoacyl-tRNA synthetases. The synthetases are highly specific, but errors in amino acid selection are occasionally made, opening the door to inaccurate translation of the genetic code. The fidelity of protein synthesis is maintained by the editing activities of synthetases, which remove noncognate amino acids from tRNAs before they are delivered to the ribosome. Although editing has been described in numerous synthetases, the reaction mechanism is unknown. To define the mechanism of editing, phenylalanyl-tRNA synthetase was used to investigate different models for hydrolysis of the noncognate product Tyr-tRNA(Phe). Deprotonation of a water molecule by the highly conserved residue betaHis-265, as proposed for threonyl-tRNA synthetase, was excluded because replacement of this and neighboring residues had little effect on editing activity. Model building suggested that, instead of directly catalyzing hydrolysis, the role of the editing site is to discriminate and properly position noncognate substrate for nucleophilic attack by water. In agreement with this model, replacement of certain editing site residues abolished substrate specificity but only reduced the catalytic efficiency of hydrolysis 2- to 10-fold. In contrast, substitution of the 3'-OH group of tRNA(Phe) severely impaired editing and revealed an essential function for this group in hydrolysis. The phenylalanyl-tRNA synthetase editing mechanism is also applicable to threonyl-tRNA synthetase and provides a paradigm for synthetase editing.
Collapse
Affiliation(s)
| | - Hervé Roy
- Department of Microbiology, Ohio State University, Columbus, OH 43210
| | - Michael Ibba
- *Biochemistry Program and
- Department of Microbiology, Ohio State University, Columbus, OH 43210
- To whom correspondence should be addressed at:
Department of Microbiology, Ohio State University, 484 West Twelfth Avenue, Columbus, OH 43210-1292. E-mail:
| |
Collapse
|
62
|
Bailly M, Giannouli S, Blaise M, Stathopoulos C, Kern D, Becker HD. A single tRNA base pair mediates bacterial tRNA-dependent biosynthesis of asparagine. Nucleic Acids Res 2006; 34:6083-94. [PMID: 17074748 PMCID: PMC1635274 DOI: 10.1093/nar/gkl622] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In many prokaryotes and in organelles asparagine and glutamine are formed by a tRNA-dependent amidotransferase (AdT) that catalyzes amidation of aspartate and glutamate, respectively, mischarged on tRNAAsn and tRNAGln. These pathways supply the deficiency of the organism in asparaginyl- and glutaminyl-tRNA synthtetases and provide the translational machinery with Asn-tRNAAsn and Gln-tRNAGln. So far, nothing is known about the structural elements that confer to tRNA the role of a specific cofactor in the formation of the cognate amino acid. We show herein, using aspartylated tRNAAsn and tRNAAsp variants, that amidation of Asp acylating tRNAAsn is promoted by the base pair U1-A72 whereas the G1-C72 pair and presence of the supernumerary nucleotide U20A in the D-loop of tRNAAsp prevent amidation. We predict, based on comparison of tRNAGln and tRNAGlu sequence alignments from bacteria using the AdT-dependent pathway to form Gln-tRNAGln, that the same combination of nucleotides also rules specific tRNA-dependent formation of Gln. In contrast, we show that the tRNA-dependent conversion of Asp into Asn by archaeal AdT is mainly mediated by nucleotides G46 and U47 of the variable region. In the light of these results we propose that bacterial and archaeal AdTs use kingdom-specific signals to catalyze the tRNA-dependent formations of Asn and Gln.
Collapse
MESH Headings
- Adenine/chemistry
- Asparagine/biosynthesis
- Base Sequence
- Kinetics
- Neisseria meningitidis/enzymology
- Nitrogenous Group Transferases/chemistry
- Nitrogenous Group Transferases/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/metabolism
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Gln/metabolism
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/metabolism
- Sequence Alignment
- Species Specificity
- Substrate Specificity
- Uridine/chemistry
Collapse
Affiliation(s)
| | - Stamatina Giannouli
- Department of Biochemistry and Biotechnology, University of Thessaly26 Ploutonos street, 41221 Larissa, Greece
| | | | - Constantinos Stathopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly26 Ploutonos street, 41221 Larissa, Greece
- To whom correspondence should be addressed. Tel: +33 3 88 41 70 92; Fax: +33 3 88 60 22 18;
| | - Daniel Kern
- To whom correspondence should be addressed. Tel: +33 3 88 41 70 92; Fax: +33 3 88 60 22 18;
| | | |
Collapse
|
63
|
Chuawong P, Hendrickson TL. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Biochemistry 2006; 45:8079-87. [PMID: 16800632 PMCID: PMC2654173 DOI: 10.1021/bi060189c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divergent tRNA substrate recognition patterns distinguish the two distinct forms of aspartyl-tRNA synthetase (AspRS) that exist in different bacteria. In some cases, a canonical, discriminating AspRS (D-AspRS) specifically generates Asp-tRNA(Asp) and usually coexists with asparaginyl-tRNA synthetase (AsnRS). In other bacteria, particularly those that lack AsnRS, AspRS is nondiscriminating (ND-AspRS) and generates both Asp-tRNA(Asp) and the noncanonical, misacylated Asp-tRNA(Asn); this misacylated tRNA is subsequently repaired by the glutamine-dependent Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase (Asp/Glu-Adt). The molecular features that distinguish the closely related bacterial D-AspRS and ND-AspRS are not well-understood. Here, we report the first characterization of the ND-AspRS from the human pathogen Helicobacter pylori (H. pylori or Hp). This enzyme is toxic when heterologously overexpressed in Escherichia coli. This toxicity is rescued upon coexpression of the Hp Asp/Glu-Adt, indicating that Hp Asp/Glu-Adt can utilize E. coli Asp-tRNA(Asn) as a substrate. Finally, mutations in the anticodon-binding domain of Hp ND-AspRS reduce this enzyme's ability to misacylate tRNA(Asn), in a manner that correlates with the toxicity of the enzyme in E. coli.
Collapse
|
64
|
Oshikane H, Sheppard K, Fukai S, Nakamura Y, Ishitani R, Numata T, Sherrer RL, Feng L, Schmitt E, Panvert M, Blanquet S, Mechulam Y, Söll D, Nureki O. Structural basis of RNA-dependent recruitment of glutamine to the genetic code. Science 2006; 312:1950-4. [PMID: 16809540 DOI: 10.1126/science.1128470] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Glutaminyl-transfer RNA (Gln-tRNA(Gln)) in archaea is synthesized in a pretranslational amidation of misacylated Glu-tRNA(Gln) by the heterodimeric Glu-tRNA(Gln) amidotransferase GatDE. Here we report the crystal structure of the Methanothermobacter thermautotrophicus GatDE complexed to tRNA(Gln) at 3.15 angstroms resolution. Biochemical analysis of GatDE and of tRNA(Gln) mutants characterized the catalytic centers for the enzyme's three reactions (glutaminase, kinase, and amidotransferase activity). A 40 angstrom-long channel for ammonia transport connects the active sites in GatD and GatE. tRNA(Gln) recognition by indirect readout based on shape complementarity of the D loop suggests an early anticodon-independent RNA-based mechanism for adding glutamine to the genetic code.
Collapse
MESH Headings
- Acylation
- Adenosine Triphosphate/metabolism
- Ammonia/metabolism
- Anticodon
- Binding Sites
- Catalytic Domain
- Computer Simulation
- Crystallography, X-Ray
- Dimerization
- Genetic Code
- Glutamine/metabolism
- Hydrogen Bonding
- Magnesium/metabolism
- Methanobacteriaceae/enzymology
- Methanobacteriaceae/genetics
- Models, Molecular
- Mutation
- Nitrogenous Group Transferases/chemistry
- Nitrogenous Group Transferases/metabolism
- Nucleic Acid Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Gln/metabolism
Collapse
Affiliation(s)
- Hiroyuki Oshikane
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Fukunaga JI, Yokogawa T, Ohno S, Nishikawa K. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence. J Biochem 2006; 139:689-96. [PMID: 16672269 DOI: 10.1093/jb/mvj078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Through an exhaustive search for Escherichia coli aminoacyl-tRNA synthetase(s) responsible for the misacylation of yeast suppressor tRNA(Tyr), E. coli lysyl-tRNA synthetase was found to have a weak activity to aminoacylate yeast amber suppressor tRNA(Tyr) (CUA) with L-lysine. Since our protein-synthesizing system for site-specific incorporation of unnatural amino acids into proteins is based on the use of yeast suppressor tRNA(Tyr)/tyrosyl-tRNA synthetase (TyrRS) pair as the "carrier" of unusual amino acid in E. coli translation system, this misacylation must be repressed as low as possible. We have succeeded in effectively repressing the misacylation by changing several nucleotides in this tRNA by genetic engineering. This "optimized" tRNA together with our mutant TyrRS should serve as an efficient and faithful tool for site-specific incorporation of unnatural amino acids into proteins in a protein-synthesizing system in vitro or in vivo.
Collapse
Affiliation(s)
- Jun-ichi Fukunaga
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193
| | | | | | | |
Collapse
|
66
|
Gomes AC, Costa T, Carreto L, Santos MAS. On the molecular mechanism of the evolution of genetic code alterations. Mol Biol 2006. [DOI: 10.1134/s002689330604008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
67
|
Zhang CM, Perona JJ, Ryu K, Francklyn C, Hou YM. Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases. J Mol Biol 2006; 361:300-11. [PMID: 16843487 DOI: 10.1016/j.jmb.2006.06.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/30/2006] [Accepted: 06/08/2006] [Indexed: 11/26/2022]
Abstract
Aminoacyl-tRNA synthetases are divided into two classes based on both functional and structural criteria. Distinctions between the classes have heretofore been based on general features, such as the position of aminoacylation on the 3'-terminal tRNA ribose, and the topology and tRNA-binding orientation of the active-site protein fold. Here we show instead that transient burst kinetics provides a distinct mechanistic signature dividing the two classes of tRNA synthetases, and that this distinction has significant downstream effects on protein synthesis. Steady-state and transient kinetic analyses of class I CysRS and ValRS, and class II AlaRS and ProRS, reveal that class I tRNA synthetases are rate-limited by release of aminoacyl-tRNA, while class II synthetases are limited by a step prior to aminoacyl transfer. The tight aminoacyl-tRNA product binding by class I enzymes correlates with the ability of EF-Tu to form a ternary complex with class I but not class II synthetases, and the further capacity of this protein to enhance the rate of aminoacylation by class I synthetases. These results emphasize that the distinct mechanistic signatures of class I versus class II tRNA synthetases ensure rapid turnover of aminoacyl-tRNAs during protein synthesis.
Collapse
Affiliation(s)
- Chun-Mei Zhang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
68
|
Hartman MCT, Josephson K, Szostak JW. Enzymatic aminoacylation of tRNA with unnatural amino acids. Proc Natl Acad Sci U S A 2006; 103:4356-61. [PMID: 16537388 PMCID: PMC1450175 DOI: 10.1073/pnas.0509219103] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Indexed: 11/18/2022] Open
Abstract
The biochemical flexibility of the cellular translation apparatus offers, in principle, a simple route to the synthesis of drug-like modified peptides and novel biopolymers. However, only approximately 75 unnatural building blocks are known to be fully compatible with enzymatic tRNA acylation and subsequent ribosomal synthesis of modified peptides. Although the translation system can reject substrate analogs at several steps along the pathway to peptide synthesis, much of the specificity resides at the level of the aminoacyl-tRNA synthetase (AARS) enzymes that are responsible for charging tRNAs with amino acids. We have developed an AARS assay based on mass spectrometry that can be used to rapidly identify unnatural monomers that can be enzymatically charged onto tRNA. By using this assay, we have found 59 previously unknown AARS substrates. These include numerous side-chain analogs with useful functional properties. Remarkably, many beta-amino acids, N-methyl amino acids, and alpha,alpha-disubstituted amino acids are also AARS substrates. These previously unidentified AARS substrates will be useful in studies of the specificity of subsequent steps in translation and may significantly expand the number of analogs that can be used for the ribosomal synthesis of modified peptides.
Collapse
Affiliation(s)
- Matthew C. T. Hartman
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| | - Kristopher Josephson
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| | - Jack W. Szostak
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| |
Collapse
|
69
|
Dale T, Uhlenbeck OC. Amino acid specificity in translation. Trends Biochem Sci 2005; 30:659-65. [PMID: 16260144 DOI: 10.1016/j.tibs.2005.10.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 09/27/2005] [Accepted: 10/13/2005] [Indexed: 11/16/2022]
Abstract
Recent structural and biochemical experiments indicate that bacterial elongation factor Tu and the ribosomal A-site show specificity for both the amino acid and the tRNA portions of their aminoacyl-tRNA (aa-tRNA) substrates. These data are inconsistent with the traditional view that tRNAs are generic adaptors in translation. We hypothesize that each tRNA sequence has co-evolved with its cognate amino acid, such that all aa-tRNAs are translated uniformly.
Collapse
Affiliation(s)
- Taraka Dale
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
70
|
Dale T, Uhlenbeck OC. Binding of misacylated tRNAs to the ribosomal A site. RNA (NEW YORK, N.Y.) 2005; 11:1610-5. [PMID: 16244128 PMCID: PMC1370846 DOI: 10.1261/rna.2130505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/15/2005] [Indexed: 05/05/2023]
Abstract
To test whether the ribosome displays specificity for the esterified amino acid and the tRNA body of an aminoacyl-tRNA (aa-tRNA), the stabilities of 4 correctly acylated and 12 misacylated tRNAs in the ribosomal A site were determined. By introducing the GAC (valine) anticodon into each tRNA, a constant anticodon.codon interaction was maintained, thus removing concern that different anticodon.codon strengths might affect the binding of the different aa-tRNAs to the A site. Surprisingly, all 16 aa-tRNAs displayed similar dissociation rate constants from the A site. These results suggest that either the ribosome is not specific for different amino acids and tRNA bodies when intact aa-tRNAs are used or the specificity for the amino acid side chain and tRNA body is masked by a conformational change upon aa-tRNA release.
Collapse
Affiliation(s)
- Taraka Dale
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
71
|
Wolfson A, Knight R. Occurrence of the aminoacyl-tRNA synthetases in high-molecular weight complexes correlates with the size of substrate amino acids. FEBS Lett 2005; 579:3467-72. [PMID: 15963508 DOI: 10.1016/j.febslet.2005.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 05/06/2005] [Accepted: 05/11/2005] [Indexed: 11/16/2022]
Abstract
One of the distinctive and mysterious features of mammalian aminoacyl-tRNA synthetases (AARSs) is the existence of stable high-molecular weight complexes containing 10 out of 20 AARSs. The composition and structure of these complexes are conserved among multicellular animals. No specific function associated with these structures has been found, and there is no evident rationale for a particular separation of AARSs in "complex-bound" and "free" forms. We have demonstrated a strong association between the occurrence of AARSs in the complexes and the volume of their substrate amino acids. The significance of this association is discussed in terms of the structural organization of translation in the living cell.
Collapse
Affiliation(s)
- Alexey Wolfson
- Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, CO 80309, USA.
| | | |
Collapse
|
72
|
Rothman DM, Petersson EJ, Vázquez ME, Brandt GS, Dougherty DA, Imperiali B. Caged Phosphoproteins. J Am Chem Soc 2004; 127:846-7. [PMID: 15656617 DOI: 10.1021/ja043875c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present the chemical and biological synthesis of caged phosphoproteins using the in vitro nonsense codon suppression methodology. Specifically, phosphoamino acid analogues of serine, threonine, and tyrosine with a single photocleavable o-nitrophenylethyl caging group were synthesized as the amino acyl tRNA adducts for insertion into full-length proteins. For this purpose, a novel phosphitylating agent was developed. The successful incorporation of these bulky and charged amino acids into the alpha-subunit of the nicotinic acetyl choline receptor (nAChR) and the vasodilator-stimulated phosphoprotein (VASP) using an in vitro translation system is reported.
Collapse
Affiliation(s)
- Deborah M Rothman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
73
|
Hunter SE, Spremulli LL. Effects of mutagenesis of residue 221 on the properties of bacterial and mitochondrial elongation factor EF-Tu. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1699:173-82. [PMID: 15158725 DOI: 10.1016/j.bbapap.2004.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 01/14/2004] [Accepted: 02/19/2004] [Indexed: 11/19/2022]
Abstract
During protein biosynthesis, elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes. This factor is highly conserved throughout evolution. However, several key residues differ between bacterial and mammalian mitochondrial EF-Tu (EF-Tu(mt)). One such residue is Ser221 (Escherichia coli numbering). This residue is conserved as a Ser or Thr in the bacterial factors but is present as Pro269 in EF-Tu(mt). Pro269 reorients the loop containing this residue and shifts the adjoining beta-strand in EF-Tu(mt) compared to that of E. coli EF-Tu potentially altering the binding pocket for the acceptor stem of the aa-tRNA. Pro269 was mutated to a serine residue (P269S) in EF-Tu(mt). For comparison, the complementary mutation was created at Ser221 in E. coli EF-Tu (S221P). The E. coli EF-Tu S221P variant is poorly expressed in E. coli and the majority of the molecules fail to fold into an active conformation. In contrast, EF-Tu(mt) P269S is expressed to a high level in E. coli. When corrected for the percentage of active molecules, both variants function as effectively as their respective wild-type factors in ternary complex formation using E. coli Phe-tRNA(Phe) and Cys-tRNA(Cys). They are also active in A-site binding and in vitro translation assays with E. coli Phe-tRNA(Phe). In addition, both variants are as active as their respective wild-type factors in ternary complex formation, A-site binding and in vitro translation assays using mitochondrial Phe-tRNA(Phe).
Collapse
Affiliation(s)
- Senyene Eyo Hunter
- Department of Chemistry, Lineberger Cancer Research Center, University of North Carolina, Campus Box 3290, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
74
|
Blaise M, Becker HD, Keith G, Cambillau C, Lapointe J, Giegé R, Kern D. A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon. Nucleic Acids Res 2004; 32:2768-75. [PMID: 15150343 PMCID: PMC419609 DOI: 10.1093/nar/gkh608] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli encodes YadB, a protein displaying 34% identity with the catalytic core of glutamyl-tRNA synthetase but lacking the anticodon-binding domain. We show that YadB is a tRNA modifying enzyme that evidently glutamylates the queuosine residue, a modified nucleoside at the wobble position of the tRNA(Asp) QUC anticodon. This conclusion is supported by a variety of biochemical data and by the inability of the enzyme to glutamylate tRNA(Asp) isolated from an E.coli tRNA-guanosine transglycosylase minus strain deprived of the capacity to exchange guanosine 34 with queuosine. Structural mimicry between the tRNA(Asp) anticodon stem and the tRNA(Glu) amino acid acceptor stem in prokaryotes encoding YadB proteins indicates that the function of these tRNA modifying enzymes, which we rename glutamyl-Q tRNA(Asp) synthetases, is conserved among prokaryotes.
Collapse
MESH Headings
- Acylation
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Sequence
- Biological Evolution
- Conserved Sequence
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Glutamate-tRNA Ligase/chemistry
- Glutamate-tRNA Ligase/genetics
- Glutamate-tRNA Ligase/metabolism
- Molecular Mimicry
- Nucleoside Q/genetics
- Nucleoside Q/metabolism
- Periodic Acid/pharmacology
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
Collapse
Affiliation(s)
- Mickaël Blaise
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 Rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
75
|
Affiliation(s)
- Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA.
| | | |
Collapse
|
76
|
Levengood J, Ataide SF, Roy H, Ibba M. Divergence in Noncognate Amino Acid Recognition between Class I and Class II Lysyl-tRNA Synthetases. J Biol Chem 2004; 279:17707-14. [PMID: 14747465 DOI: 10.1074/jbc.m313665200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysine insertion during coded protein synthesis requires lysyl-tRNA(Lys), which is synthesized by lysyl-tRNA synthetase (LysRS). Two unrelated forms of LysRS are known: LysRS2, which is found in eukaryotes, most bacteria, and a few archaea, and LysRS1, which is found in most archaea and a few bacteria. To compare amino acid recognition between the two forms of LysRS, the effects of l-lysine analogues on aminoacylation were investigated. Both enzymes showed stereospecificity toward the l-enantiomer of lysine and discriminated against noncognate amino acids with different R-groups (arginine, ornithine). Lysine analogues containing substitutions at other positions were generally most effective as inhibitors of LysRS2. For example, the K(i) values for aminoacylation of S-(2-aminoethyl)-l-cysteine and l-lysinamide were over 180-fold lower with LysRS2 than with LysRS1. Of the other analogues tested, only gamma-aminobutyric acid showed a significantly higher K(i) for LysRS2 than LysRS1. These data indicate that the lysine-binding site is more open in LysRS2 than in LysRS1, in agreement with previous structural studies. The physiological significance of divergent amino acid recognition was reflected by the in vivo resistance to growth inhibition imparted by LysRS1 against S-(2-aminoethyl)-l-cysteine and LysRS2 against gamma-aminobutyric acid. These differences in resistance to naturally occurring noncognate amino acids suggest the distribution of LysRS1 and LysRS2 contributes to quality control during protein synthesis. In addition, the specific inhibition of LysRS1 indicates it is a potential drug target.
Collapse
Affiliation(s)
- Jeffrey Levengood
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210-1292,USA
| | | | | | | |
Collapse
|
77
|
Théobald-Dietrich A, Frugier M, Giegé R, Rudinger-Thirion J. Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA. Nucleic Acids Res 2004; 32:1091-6. [PMID: 14872064 PMCID: PMC373401 DOI: 10.1093/nar/gkh266] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 01/15/2004] [Accepted: 01/15/2004] [Indexed: 11/14/2022] Open
Abstract
The newly discovered tRNA(Pyl) is involved in specific incorporation of pyrrolysine in the active site of methylamine methyltransferases in the archaeon Methanosarcina barkeri. In solution probing experiments, a transcript derived from tRNA(Pyl) displays a secondary fold slightly different from the canonical cloverleaf and interestingly similar to that of bovine mitochondrial tRNA(Ser)(uga). Aminoacylation of tRNA(Pyl) transcript by a typical class II synthetase, LysRS from yeast, was possible when its amber anticodon CUA was mutated into a lysine UUU anticodon. Hydrolysis protection assays show that lysylated tRNA(Pyl) can be recognized by bacterial elongation factor. This indicates that no antideterminant sequence is present in the body of the tRNA(Pyl) transcript to prevent it from interacting with EF-Tu, in contrast with the otherwise functionally similar tRNA(Sec) that mediates selenocysteine incorporation.
Collapse
Affiliation(s)
- Anne Théobald-Dietrich
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
78
|
Zagryadskaya EI, Doyon FR, Steinberg SV. Importance of the reverse Hoogsteen base pair 54-58 for tRNA function. Nucleic Acids Res 2003; 31:3946-53. [PMID: 12853610 PMCID: PMC165963 DOI: 10.1093/nar/gkg448] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To elucidate the general constraints imposed on the structure of the D- and T-loops in functional tRNAs, active suppressor tRNAs were selected in vivo from a combinatorial tRNA gene library in which several nucleotide positions of these loops were randomized. Analysis of the nucleotide sequences of the selected clones demonstrates that among the randomized nucleotides, the most conservative are nucleotides 54 and 58 in the T-loop. In most cases, they make the combination U54-A58, which allows the formation of the normal reverse Hoogsteen base pair. Surprisingly, other clones have either the combination G54-A58 or G54-G58. However, molecular modeling shows that these purine-purine base pairs can very closely mimic the reverse Hoogsteen base pair U-A and thus can replace it in the T-loop of a functional tRNA. This places the reverse Hoogsteen base pair 54-58 as one of the most important structural aspects of tRNA functionality. We suggest that the major role of this base pair is to preserve the conformation of dinucleotide 59-60 and, through this, to maintain the general architecture of the tRNA L-form.
Collapse
MESH Headings
- Anticodon/genetics
- Base Pairing/genetics
- Base Sequence
- Blotting, Northern
- Escherichia coli/genetics
- Lac Operon/genetics
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Ala/chemistry
- RNA, Transfer, Ala/genetics
- RNA, Transfer, Ala/metabolism
- Suppression, Genetic
- beta-Galactosidase/metabolism
Collapse
|
79
|
Starck SR, Qi X, Olsen BN, Roberts RW. The puromycin route to assess stereo- and regiochemical constraints on peptide bond formation in eukaryotic ribosomes. J Am Chem Soc 2003; 125:8090-1. [PMID: 12837064 DOI: 10.1021/ja034817e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We synthesized a series of puromycin analogues to probe the chemical specificity of the ribosome in an intact eukaryotic translation system. These studies reveal that both d-enantiomers and beta-amino acid analogues can be incorporated into protein, and provide a quantitative means to rank natural and unnatural residues. Modeling of a d-amino acid analogue into the 50S ribosomal subunit indicates that steric clash may provide part of the chiral discrimination. The data presented provide one metric of the chiral and regiospecificity of mammalian ribosomes.
Collapse
Affiliation(s)
- Shelley R Starck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
80
|
Abstract
The genetic code is an enduring feature of biology: only rare circumstances result in changes to translation of the code, at least in nature. Researchers are devising methods to engineer ribosome-synthesized polypeptides containing novel and potentially useful amino acids.
Collapse
Affiliation(s)
- James F Curran
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
81
|
Murakami H, Saito H, Suga H. A versatile tRNA aminoacylation catalyst based on RNA. CHEMISTRY & BIOLOGY 2003; 10:655-62. [PMID: 12890539 DOI: 10.1016/s1074-5521(03)00145-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aminoacyl-tRNA synthetase (ARS) ribozymes have potential to develop a novel genetic coding system. Although we have previously isolated such a ribozyme that recognizes aromatic amino acids, it could not be used as a versatile catalyst due to its limited ability of aminoacylation to a particular tRNA used for the selection. To overcome this limitation, we used a combination of evolutionary and engineering approaches to generate an optimized ribozyme. The ribozyme, consisting of 45 nucleotides, displays a broad spectrum of activity toward various tRNAs. Most significantly, this ribozyme is able to exhibit multiple turnover activity and charge parasubstituted Phe analogs onto an engineered suppressor tRNA (tRNA(Asn)(CCCG)). Thus, it provides a useful and flexible tool for the custom synthesis of mischarged tRNAs with natural and nonnatural amino acids.
Collapse
Affiliation(s)
- Hiroshi Murakami
- Department of Chemistry, State University of New York, Buffalo, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
82
|
Hegde SS, Blanchard JS. Kinetic and mechanistic characterization of recombinant Lactobacillus viridescens FemX (UDP-N-acetylmuramoyl pentapeptide-lysine N6-alanyltransferase). J Biol Chem 2003; 278:22861-7. [PMID: 12679335 DOI: 10.1074/jbc.m301565200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The FemABX family encodes enzymes that incorporate l-amino acids into the interchain peptide bridge of Gram-positive cell wall peptidoglycan and are novel nonribosomal peptidyl transferases that use aminoacyl-tRNA as the amino acid donor. We previously reported the identification of the femX gene from Lactobacillus viridescens and recombinant expression of active FemX (LvFemX) that catalyzes the transfer of l-Ala from Ala-tRNAAla to the epsilon-amino group of l-lysine of UDP-MurNAc pentapeptide (Hegde, S. S., and Shrader, T. E. (2001) J. Biol. Chem. 276, 6998-7003). Recombinant LvFemX exhibits Km values of 42 and 15 microm for UDP-MurNAc pentapeptide and Escherichia coli Ala-tRNAAla, respectively, and exhibited a kcat value of 660 min-1. Initial velocity and inhibition kinetic studies support an ordered sequential mechanism for the enzyme, and we propose that catalysis proceeds via a ternary complex. The pH dependence of the activity was bell-shaped, depending on the ionization state of two groups exhibiting apparent pKa values of 5.5 and 9.3. Chemical modification of the enzyme and the kinetics of inactivation, and protection by substrate, indicated the involvement of carboxyl groups in the catalytic function of the enzyme. Site-directed mutagenesis identified Asp109 as a candidate for the catalytic base and Glu320 plays an additional important role in the catalytic function of the enzyme.
Collapse
Affiliation(s)
- Subray S Hegde
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
83
|
Forster AC, Tan Z, Nalam MNL, Lin H, Qu H, Cornish VW, Blacklow SC. Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proc Natl Acad Sci U S A 2003; 100:6353-7. [PMID: 12754376 PMCID: PMC164450 DOI: 10.1073/pnas.1132122100] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2003] [Indexed: 11/18/2022] Open
Abstract
Although the universal genetic code exhibits only minor variations in nature, Francis Crick proposed in 1955 that "the adaptor hypothesis allows one to construct, in theory, codes of bewildering variety." The existing code has been expanded to enable incorporation of a variety of unnatural amino acids at one or two nonadjacent sites within a protein by using nonsense or frameshift suppressor aminoacyl-tRNAs (aa-tRNAs) as adaptors. However, the suppressor strategy is inherently limited by compatibility with only a small subset of codons, by the ways such codons can be combined, and by variation in the efficiency of incorporation. Here, by preventing competing reactions with aa-tRNA synthetases, aa-tRNAs, and release factors during translation and by using nonsuppressor aa-tRNA substrates, we realize a potentially generalizable approach for template-encoded polymer synthesis that unmasks the substantially broader versatility of the core translation apparatus as a catalyst. We show that several adjacent, arbitrarily chosen sense codons can be completely reassigned to various unnatural amino acids according to de novo genetic codes by translating mRNAs into specific peptide analog polymers (peptidomimetics). Unnatural aa-tRNA substrates do not uniformly function as well as natural substrates, revealing important recognition elements for the translation apparatus. Genetic programming of peptidomimetic synthesis should facilitate mechanistic studies of translation and may ultimately enable the directed evolution of small molecules with desirable catalytic or pharmacological properties.
Collapse
Affiliation(s)
- Anthony C Forster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
84
|
Stortchevoi A, Varshney U, RajBhandary UL. Common location of determinants in initiator transfer RNAs for initiator-elongator discrimination in bacteria and in eukaryotes. J Biol Chem 2003; 278:17672-9. [PMID: 12639964 DOI: 10.1074/jbc.m212890200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for elongation. We show that both Escherichia coli and eukaryotic initiator tRNAs have negative determinants, at the same positions, that block their activity in elongation. The primary negative determinant in E. coli initiator tRNA is the C1xA72 mismatch at the end of the acceptor stem. The primary negative determinant in eukaryotic initiator tRNAs is located in the TPsiC stem, whereas a secondary negative determinant is the A1:U72 base pair at the end of the acceptor stem. Here we show that E. coli initiator tRNA also has a secondary negative determinant for elongation and that it is the U50.G64 wobble base pair, located at the same position in the TPsiC stem as the primary negative determinant in eukaryotic initiator tRNAs. Mutation of the U50.G64 wobble base pair to C50:G64 or U50:A64 base pairs increases the in vivo amber suppressor activity of initiator tRNA mutants that have changes in the acceptor stem and in the anticodon sequence necessary for amber suppressor activity. Binding assays of the mutant aminoacyl-tRNAs carrying the C50 and A64 changes to the elongation factor EF-Tu.GTP show marginally higher affinity of the C50 and A64 mutant tRNAs and increased stability of the EF-Tu.GTP. aminoacyl-tRNA ternary complexes. Other results show a large effect of the amino acid attached to a tRNA, glutamine versus methionine, on the binding affinity toward EF-Tu.GTP and on the stability of the EF-Tu.GTP.aminoacyl-tRNA ternary complex.
Collapse
Affiliation(s)
- Alexei Stortchevoi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
85
|
Ryckelynck M, Giegé R, Frugier M. Yeast tRNA(Asp) charging accuracy is threatened by the N-terminal extension of aspartyl-tRNA synthetase. J Biol Chem 2003; 278:9683-90. [PMID: 12486031 DOI: 10.1074/jbc.m211035200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study evaluates the role of the N-terminal extension from yeast aspartyl-tRNA synthetase in tRNA aspartylation. The presence of an RNA-binding motif in this extension, conserved in eukaryotic class IIb aminoacyl-tRNA synthetases, provides nonspecific tRNA binding properties to this enzyme. Here, it is assumed that the additional contacts the 70 amino acid-long appendix of aspartyl-tRNA synthetase makes with tRNA could be important in expression of aspartate identity in yeast. Using in vitro transcripts mutated at identity positions, it is demonstrated that the extension grants better aminoacylation efficiency but reduced specificity to the synthetase, increasing considerably the risk of noncognate tRNA mischarging. Yeast tRNA(Glu(UUC)) and tRNA(Asn(GUU)) were identified as the most easily mischarged tRNA species. Both have a G at the discriminator position, and their anticodon differs only by one change from the GUC aspartate anticodon.
Collapse
Affiliation(s)
- Michaël Ryckelynck
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | |
Collapse
|