51
|
Kovalenko V, Popov A, Santoni G, Loiko N, Tereshkina K, Tereshkin E, Krupyanskii Y. Multi-crystal data collection using synchrotron radiation as exemplified with low-symmetry crystals of Dps. Acta Crystallogr F Struct Biol Commun 2020; 76:568-576. [PMID: 33135675 PMCID: PMC7605109 DOI: 10.1107/s2053230x20012571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
Multi-crystal data collection using synchrotron radiation was successfully applied to determine the three-dimensional structure of a triclinic crystal form of Dps from Escherichia coli at 2.0 Å resolution. The final data set was obtained by combining 261 partial diffraction data sets measured from crystals with an average size of approximately 5 µm. The most important features of diffraction data measurement and processing for low-symmetry crystals are discussed.
Collapse
Affiliation(s)
- Vladislav Kovalenko
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| | - Alexander Popov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Gianluca Santoni
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Natalia Loiko
- Survival of Microorganisms, FRC ‘Fundamentals of Biotechnology’, 33 Leninsky Prospect, Building 2, Moscow 119071, Russian Federation
| | - Ksenia Tereshkina
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| | - Eduard Tereshkin
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| | - Yurii Krupyanskii
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| |
Collapse
|
52
|
Fixed-Target Serial Synchrotron Crystallography Using Nylon Mesh and Enclosed Film-Based Sample Holder. CRYSTALS 2020. [DOI: 10.3390/cryst10090803] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Serial crystallography (SX) technique using synchrotron X-ray allows the visualization of room-temperature crystal structures with low-dose data collection as well as time-resolved molecular dynamics. In an SX experiment, delivery of numerous crystals for X-ray interaction, in a serial manner, is very important. Fixed-target scanning approach has the advantage of dramatically minimizing sample consumption as well as any physical damage to crystal sample, compared to other sample delivery methods. Here, we introduce the simple approach of fixed-target serial synchrotron crystallography (FT-SSX) using nylon mesh and enclosed film (NAM)-based sample holder. The NAM-based sample holder consisted of X-ray-transparent nylon-mesh and polyimide film, attached to a magnetic base. This sample holder was mounted to a goniometer head on macromolecular crystallography beamline, and translated along vertical and horizontal directions for raster scanning by the goniometer. Diffraction data were collected in two raster scanning approaches: (i) 100 ms X-ray exposure and 0.011° oscillation at each scan point and (ii) 500 ms X-ray exposure and 0.222° oscillation at each scan point. Using this approach, we determined the room-temperature crystal structures of lysozyme and glucose isomerase at 1.5–2.0 Å resolution. The sample holder produced negligible X-ray background scattering for data processing. Therefore, the new approach provided an opportunity to perform FT-SSX with high accessibility using macromolecular crystallography beamlines at synchrotron without any special equipment.
Collapse
|
53
|
Dickerson JL, Garman EF. Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE-3D. Protein Sci 2020; 30:8-19. [PMID: 32734633 PMCID: PMC7737758 DOI: 10.1002/pro.3922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/07/2022]
Abstract
Increasingly, microbeams and microcrystals are being used for macromolecular crystallography (MX) experiments at synchrotrons. However, radiation damage remains a major concern since it is a fundamental limiting factor affecting the success of macromolecular structure determination. The rate of radiation damage at cryotemperatures is known to be proportional to the absorbed dose, so to optimize experimental outcomes, accurate dose calculations are required which take into account the physics of the interactions of the crystal constituents. The program RADDOSE‐3D estimates the dose absorbed by samples during MX data collection at synchrotron sources, allowing direct comparison of radiation damage between experiments carried out with different samples and beam parameters. This has aided the study of MX radiation damage and enabled prediction of approximately when it will manifest in diffraction patterns so it can potentially be avoided. However, the probability of photoelectron escape from the sample and entry from the surrounding material has not previously been included in RADDOSE‐3D, leading to potentially inaccurate does estimates for experiments using microbeams or microcrystals. We present an extension to RADDOSE‐3D which performs Monte Carlo simulations of a rotating crystal during MX data collection, taking into account the redistribution of photoelectrons produced both in the sample and the material surrounding the crystal. As well as providing more accurate dose estimates, the Monte Carlo simulations highlight the importance of the size and composition of the surrounding material on the dose and thus the rate of radiation damage to the sample. Minimizing irradiation of the surrounding material or removing it almost completely will be key to extending the lifetime of microcrystals and enhancing the potential benefits of using higher incident X‐ray energies.
Collapse
|
54
|
Lawrence JM, Orlans J, Evans G, Orville AM, Foadi J, Aller P. High-throughput in situ experimental phasing. Acta Crystallogr D Struct Biol 2020; 76:790-801. [PMID: 32744261 PMCID: PMC7397491 DOI: 10.1107/s2059798320009109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/03/2020] [Indexed: 11/10/2022] Open
Abstract
In this article, a new approach to experimental phasing for macromolecular crystallography (MX) at synchrotrons is introduced and described for the first time. It makes use of automated robotics applied to a multi-crystal framework in which human intervention is reduced to a minimum. Hundreds of samples are automatically soaked in heavy-atom solutions, using a Labcyte Inc. Echo 550 Liquid Handler, in a highly controlled and optimized fashion in order to generate derivatized and isomorphous crystals. Partial data sets obtained on MX beamlines using an in situ setup for data collection are processed with the aim of producing good-quality anomalous signal leading to successful experimental phasing.
Collapse
Affiliation(s)
- Joshua M. Lawrence
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Julien Orlans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i); Institut National des Sciences Appliquées de Lyon (INSA Lyon); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - James Foadi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
55
|
Abstract
The advent of the X-ray free electron laser (XFEL) in the last decade created the discipline of serial crystallography but also the challenge of how crystal samples are delivered to X-ray. Early sample delivery methods demonstrated the proof-of-concept for serial crystallography and XFEL but were beset with challenges of high sample consumption, jet clogging and low data collection efficiency. The potential of XFEL and serial crystallography as the next frontier of structural solution by X-ray for small and weakly diffracting crystals and provision of ultra-fast time-resolved structural data spawned a huge amount of scientific interest and innovation. To utilize the full potential of XFEL and broaden its applicability to a larger variety of biological samples, researchers are challenged to develop better sample delivery methods. Thus, sample delivery is one of the key areas of research and development in the serial crystallography scientific community. Sample delivery currently falls into three main systems: jet-based methods, fixed-target chips, and drop-on-demand. Huge strides have since been made in reducing sample consumption and improving data collection efficiency, thus enabling the use of XFEL for many biological systems to provide high-resolution, radiation damage-free structural data as well as time-resolved dynamics studies. This review summarizes the current main strategies in sample delivery and their respective pros and cons, as well as some future direction.
Collapse
|
56
|
Müh F, Zouni A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci 2020; 29:1090-1119. [PMID: 32067287 PMCID: PMC7184784 DOI: 10.1002/pro.3841] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is a membrane-spanning, multi-subunit pigment-protein complex responsible for the oxidation of water and the reduction of plastoquinone in oxygenic photosynthesis. In the present review, the recent explosive increase in available structural information about the PSII core complex based on X-ray crystallography and cryo-electron microscopy is described at a level of detail that is suitable for a future structure-based analysis of light-harvesting processes. This description includes a proposal for a consistent numbering scheme of protein-bound pigment cofactors across species. The structural survey is complemented by an overview of the state of affairs in structure-based modeling of excitation energy transfer in the PSII core complex with emphasis on electrostatic computations, optical properties of the reaction center, the assignment of long-wavelength chlorophylls, and energy trapping mechanisms.
Collapse
Affiliation(s)
- Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Institute for Biology, Biophysics of Photosynthesis, Berlin, Germany
| |
Collapse
|
57
|
Bücker R, Hogan-Lamarre P, Mehrabi P, Schulz EC, Bultema LA, Gevorkov Y, Brehm W, Yefanov O, Oberthür D, Kassier GH, Dwayne Miller RJ. Serial protein crystallography in an electron microscope. Nat Commun 2020; 11:996. [PMID: 32081905 PMCID: PMC7035385 DOI: 10.1038/s41467-020-14793-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Serial X-ray crystallography at free-electron lasers allows to solve biomolecular structures from sub-micron-sized crystals. However, beam time at these facilities is scarce, and involved sample delivery techniques are required. On the other hand, rotation electron diffraction (MicroED) has shown great potential as an alternative means for protein nano-crystallography. Here, we present a method for serial electron diffraction of protein nanocrystals combining the benefits of both approaches. In a scanning transmission electron microscope, crystals randomly dispersed on a sample grid are automatically mapped, and a diffraction pattern at fixed orientation is recorded from each at a high acquisition rate. Dose fractionation ensures minimal radiation damage effects. We demonstrate the method by solving the structure of granulovirus occlusion bodies and lysozyme to resolutions of 1.55 Å and 1.80 Å, respectively. Our method promises to provide rapid structure determination for many classes of materials with minimal sample consumption, using readily available instrumentation.
Collapse
Affiliation(s)
- Robert Bücker
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Pascal Hogan-Lamarre
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Pedram Mehrabi
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Eike C Schulz
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lindsey A Bultema
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Institute of Vision Systems, Hamburg University of Technology, Harburger Schlossstrasse 20, 21079, Hamburg, Germany
| | - Wolfgang Brehm
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Günther H Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany.
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
58
|
Dickerson JL, McCubbin PTN, Garman EF. RADDOSE-XFEL: femtosecond time-resolved dose estimates for macromolecular X-ray free-electron laser experiments. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576720000643] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
For macromolecular structure determination at synchrotron sources, radiation damage remains a major limiting factor. Estimation of the absorbed dose (J kg−1) during data collection at these sources by programs such as RADDOSE-3D has allowed direct comparison of radiation damage between experiments carried out with different samples and beam parameters. This has enabled prediction of roughly when radiation damage will manifest so it can potentially be avoided. X-ray free-electron lasers (XFELs), which produce intense X-ray pulses only a few femtoseconds in duration, can be used to generate diffraction patterns before most of the radiation damage processes have occurred and hence hypothetically they enable the determination of damage-free atomic resolution structures. In spite of this, several experimental and theoretical studies have suggested that structures from XFELs are not always free of radiation damage. There are currently no freely available programs designed to calculate the dose absorbed during XFEL data collection. This article presents an extension to RADDOSE-3D called RADDOSE-XFEL, which calculates the time-resolved dose during XFEL experiments. It is anticipated that RADDOSE-XFEL could be used to facilitate the study of radiation damage at XFELs and ultimately be used prior to data collection so that experimenters can plan their experiments to avoid radiation damage manifesting in their structures.
Collapse
|
59
|
Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures. Proc Natl Acad Sci U S A 2020; 117:4142-4151. [PMID: 32047034 PMCID: PMC7049125 DOI: 10.1073/pnas.1821522117] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Macromolecular X-ray crystallography (MX) is the most prolific structure determination method in structural biology but is limited by radiation damage. To reduce damage progression, MX is usually carried out at cryogenic temperatures, sometimes blocking functionally important conformational heterogeneity. Lacking this shortcoming, room temperature MX has gained momentum with the recent advent of serial crystallography, whereby distribution of the X-ray dose over thousands of crystals mitigates damage. Here, an approach to serial crystallography is presented allowing visualization of specific damage to amino acids at room temperature and determination of a dose limit above which structural information from electron density maps decreases due to radiation damage. This limit provides important guidance for the growing number of synchrotron room temperature MX experiments. Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses (D1/2) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å.
Collapse
|
60
|
Nam KH. Stable sample delivery in viscous media via a capillary for serial crystallography. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576719014985] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Serial crystallography (SX) is an innovative technology in structural biology that enables the visualization of the molecular dynamics of macromolecules at room temperature. SX experiments always require a considerable amount of effort to deliver a crystal sample to the X-ray interaction point continuously and reliably. Here, a sample-delivery method using a capillary and a delivery medium is introduced. The crystals embedded in the delivery medium can pass through the capillary tube, which is aligned with the X-ray beam, at very low flow rates without requiring elaborate delivery techniques, drastically reducing sample consumption. In serial millisecond crystallography using a viscous medium via a capillary, crystals of lysozyme embedded in agarose, which produce an unstable injection stream at atmospheric pressure, and crystals of glucose isomerase embedded in gelatin, which is known to be problematic for open-extruder operation, were stably delivered at a flow rate of 100 nl min−1. The room-temperature crystal structures of lysozyme and glucose isomerase were successfully determined at 1.85 and 1.70 Å resolutions, respectively. This simple but highly efficient sample-delivery method can allow researchers to deliver crystals precisely to an X-ray beam in SX experiments.
Collapse
|
61
|
Newton MA, Knorpp AJ, Meyet J, Stoian D, Nachtegaal M, Clark AH, Safonova OV, Emerich H, van Beek W, Sushkevich VL, van Bokhoven JA. Unwanted effects of X-rays in surface grafted copper(ii) organometallics and copper exchanged zeolites, how they manifest, and what can be done about them. Phys Chem Chem Phys 2020; 22:6826-6837. [DOI: 10.1039/d0cp00402b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Commonly applied powder densities at modern X-ray spectroscopy resources have the capacity to affect, in a deleterious manner, the results obtained from a measurement on copper(ii) containing materials.
Collapse
Affiliation(s)
- Mark A. Newton
- Department of Chemical and Bioengineering
- ETH Zurich
- Zurich
- Switzerland
| | - Amy J. Knorpp
- Department of Chemical and Bioengineering
- ETH Zurich
- Zurich
- Switzerland
| | - Jordan Meyet
- Department of Chemical and Bioengineering
- ETH Zurich
- Zurich
- Switzerland
| | | | | | | | | | | | | | | | - Jeroen A. van Bokhoven
- Department of Chemical and Bioengineering
- ETH Zurich
- Zurich
- Switzerland
- Paul Scherrer Institut
| |
Collapse
|
62
|
Storm SLS, Crawshaw AD, Devenish NE, Bolton R, Hall DR, Tews I, Evans G. Measuring energy-dependent photoelectron escape in microcrystals. IUCRJ 2020; 7:129-135. [PMID: 31949913 PMCID: PMC6949606 DOI: 10.1107/s2052252519016178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 05/22/2023]
Abstract
With the increasing trend of using microcrystals and intense microbeams at synchrotron X-ray beamlines, radiation damage becomes a more pressing problem. Theoretical calculations show that the photoelectrons that primarily cause damage can escape microcrystals. This effect would become more pronounced with decreasing crystal size as well as at higher energies. To prove this effect, data from cryocooled lysozyme crystals of dimensions 5 × 3 × 3 and 20 × 8 × 8 µm mounted on cryo-transmission electron microscopy (cryo-TEM) grids were collected at 13.5 and 20.1 keV using a PILATUS CdTe 2M detector, which has a similar quantum efficiency at both energies. Accurate absorbed doses were calculated through the direct measurement of individual crystal sizes using scanning electron microscopy after the experiment and characterization of the X-ray microbeam. The crystal lifetime was then quantified based on the D 1/2 metric. In this first systematic study, a longer crystal lifetime for smaller crystals was observed and crystal lifetime increased at higher X-ray energies, supporting the theoretical predictions of photoelectron escape. The use of detector technologies specifically optimized for data collection at energies above 20 keV allows the theoretically predicted photoelectron escape to be quantified and exploited, guiding future beamline-design choices.
Collapse
Affiliation(s)
- Selina L. S. Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Adam D. Crawshaw
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Nicholas E. Devenish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Rachel Bolton
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Biological Sciences, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - David R. Hall
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
63
|
Brázda P, Palatinus L, Babor M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science 2019; 364:667-669. [PMID: 31097664 DOI: 10.1126/science.aaw2560] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/03/2019] [Indexed: 01/19/2023]
Abstract
Determination of the absolute configuration of organic molecules is essential in drug development and the subsequent approval process. We show that this determination is possible through electron diffraction using nanocrystalline material. Ab initio structure determination by electron diffraction has so far been limited to compounds that maintain their crystallinity after a dose of one electron per square angstrom or more. We present a complete structure analysis of a pharmaceutical cocrystal of sofosbuvir and l-proline, which is about one order of magnitude less stable. Data collection on multiple positions of a crystal and an advanced-intensity extraction procedure enabled us to solve the structure ab initio. We further show that dynamical diffraction effects are strong enough to permit unambiguous determination of the absolute structure of material composed of light scatterers.
Collapse
Affiliation(s)
- Petr Brázda
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18200 Prague 8, Czech Republic.
| | - Lukáš Palatinus
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18200 Prague 8, Czech Republic
| | - Martin Babor
- University of Chemistry and Technology, Technická 3, 16628 Prague 6, Czech Republic.,Zentiva, U Kabelovny 130, 10237 Prague 10, Czech Republic
| |
Collapse
|
64
|
Tai Y, Takaba K, Hanazono Y, Dao HA, Miki K, Takeda K. X-ray crystallographic studies on the hydrogen isotope effects of green fluorescent protein at sub-ångström resolutions. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:1096-1106. [PMID: 31793903 DOI: 10.1107/s2059798319014608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/28/2019] [Indexed: 11/10/2022]
Abstract
Hydrogen atoms are critical to the nature and properties of proteins, and thus deuteration has the potential to influence protein function. In fact, it has been reported that some deuterated proteins show different physical and chemical properties to their protiated counterparts. Consequently, it is important to investigate protonation states around the active site when using deuterated proteins. Here, hydrogen isotope effects on the S65T/F99S/M153T/V163A variant of green fluorescent protein (GFP), in which the deprotonated B form is dominant at pH 8.5, were investigated. The pH/pD dependence of the absorption and fluorescence spectra indicates that the protonation state of the chromophore is the same in protiated GFP in H2O and protiated GFP in D2O at pH/pD 8.5, while the pKa of the chromophore became higher in D2O. Indeed, X-ray crystallographic analyses at sub-ångström resolution revealed no apparent changes in the protonation state of the chromophore between the two samples. However, detailed comparisons of the hydrogen OMIT maps revealed that the protonation state of His148 in the vicinity of the chromophore differed between the two samples. This indicates that protonation states around the active site should be carefully adjusted to be the same as those of the protiated protein when neutron crystallographic analyses of proteins are performed.
Collapse
Affiliation(s)
- Yang Tai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyofumi Takaba
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuya Hanazono
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hoang Anh Dao
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
65
|
Polikarpov M, Bourenkov G, Snigireva I, Snigirev A, Zimmermann S, Csanko K, Brockhauser S, Schneider TR. Visualization of protein crystals by high-energy phase-contrast X-ray imaging. Acta Crystallogr D Struct Biol 2019; 75:947-958. [PMID: 31692469 PMCID: PMC6834075 DOI: 10.1107/s2059798319011379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/13/2019] [Indexed: 12/05/2022] Open
Abstract
For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallography beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can be used for high-energy phase-contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three-dimensional tomograms have been obtained at X-ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction-scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two-dimensional imaging at sub-micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data-collection workflows and apparatus. Phase-contrast X-ray imaging of macromolecular crystals could find wide application at existing and upcoming low-emittance synchrotron-radiation sources.
Collapse
Affiliation(s)
- Maxim Polikarpov
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Building 25A, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Building 25A, Notkestrasse 85, 22607 Hamburg, Germany
| | - Irina Snigireva
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Anatoly Snigirev
- X-ray Optics and Physical Materials Science Laboratory, Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236041, Russian Federation
| | - Sophie Zimmermann
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Building 25A, Notkestrasse 85, 22607 Hamburg, Germany
- BASF SE, Pfalzgrafenstrasse 1, 67061 Ludwigshafen, Germany
| | - Krisztian Csanko
- Biological Research Centre (BRC), Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Sandor Brockhauser
- Biological Research Centre (BRC), Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Thomas R. Schneider
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Building 25A, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
66
|
Atakisi H, Conger L, Moreau DW, Thorne RE. Resolution and dose dependence of radiation damage in biomolecular systems. IUCRJ 2019; 6:1040-1053. [PMID: 31709060 PMCID: PMC6830208 DOI: 10.1107/s2052252519008777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/19/2019] [Indexed: 05/30/2023]
Abstract
The local Fourier-space relation between diffracted intensity I, diffraction wavevector q and dose D, , is key to probing and understanding radiation damage by X-rays and energetic particles in both diffraction and imaging experiments. The models used in protein crystallography for the last 50 years provide good fits to experimental I(q) versus nominal dose data, but have unclear physical significance. More recently, a fit to diffraction and imaging experiments suggested that the maximum tolerable dose varies as q -1 or linearly with resolution. Here, it is shown that crystallographic data have been strongly perturbed by the effects of spatially nonuniform crystal irradiation and diffraction during data collection. Reanalysis shows that these data are consistent with a purely exponential local dose dependence, = I 0(q)exp[-D/D e(q)], where D e(q) ∝ q α with α ≃ 1.7. A physics-based model for radiation damage, in which damage events occurring at random locations within a sample each cause energy deposition and blurring of the electron density within a small volume, predicts this exponential variation with dose for all q values and a decay exponent α ≃ 2 in two and three dimensions, roughly consistent with both diffraction and imaging experiments over more than two orders of magnitude in resolution. The B-factor model used to account for radiation damage in crystallographic scaling programs is consistent with α = 2, but may not accurately capture the dose dependencies of structure factors under typical nonuniform illumination conditions. The strong q dependence of radiation-induced diffraction decays implies that the previously proposed 20-30 MGy dose limit for protein crystallography should be replaced by a resolution-dependent dose limit that, for atomic resolution data sets, will be much smaller. The results suggest that the physics underlying basic experimental trends in radiation damage at T ≃ 100 K is straightforward and universal. Deviations of the local I(q, D) from strictly exponential behavior may provide mechanistic insights, especially into the radiation-damage processes responsible for the greatly increased radiation sensitivity observed at T ≃ 300 K.
Collapse
Affiliation(s)
- Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | | - David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
67
|
Abstract
Until recently X-ray crystallography has been the standard technique for virus structure determinations. Available X-ray sources have continuously improved over the decades, leading to the realization of X-ray free-electron lasers (XFELs). They provide high-intensity femtosecond X-ray pulses, which allow for new kinds of experiments by making use of the diffraction-before-destruction principle. By overcoming classical dose constraints, they at least in principle allow researchers to perform X-ray virus structure determination for single particles at room temperature. Simultaneously, the availability of XFELs led to the development of the method of serial femtosecond crystallography, where a crystal structure is determined from the measurement of hundreds to thousands of microcrystals. In the case of virus crystallography this method does not require freezing of the crystals and allows researchers to perform experiments under non-equilibrium conditions (e.g., by laser-induced temperature jumps or rapid chemical mixing), which is currently not possible with electron microscopy.
Collapse
Affiliation(s)
- A. Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - M.O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
68
|
Tolstikova A, Levantino M, Yefanov O, Hennicke V, Fischer P, Meyer J, Mozzanica A, Redford S, Crosas E, Opara NL, Barthelmess M, Lieske J, Oberthuer D, Wator E, Mohacsi I, Wulff M, Schmitt B, Chapman HN, Meents A. 1 kHz fixed-target serial crystallography using a multilayer monochromator and an integrating pixel detector. IUCRJ 2019; 6:927-937. [PMID: 31576225 PMCID: PMC6760437 DOI: 10.1107/s205225251900914x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/25/2019] [Indexed: 05/18/2023]
Abstract
Reliable sample delivery and efficient use of limited beam time have remained bottlenecks for serial crystallography (SX). Using a high-intensity polychromatic X-ray beam in combination with a newly developed charge-integrating JUNGFRAU detector, we have applied the method of fixed-target SX to collect data at a rate of 1 kHz at a synchrotron-radiation facility. According to our data analysis for the given experimental conditions, only about 3 000 diffraction patterns are required for a high-quality diffraction dataset. With indexing rates of up to 25%, recording of such a dataset takes less than 30 s.
Collapse
Affiliation(s)
- A. Tolstikova
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - M. Levantino
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - O. Yefanov
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - V. Hennicke
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - P. Fischer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - J. Meyer
- Deutsches Elektronen Synchrotron, Photon Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - A. Mozzanica
- Paul Scherrer Institute, 111 Forschungsstrasse, 5232 Villigen, Switzerland
| | - S. Redford
- Paul Scherrer Institute, 111 Forschungsstrasse, 5232 Villigen, Switzerland
| | - E. Crosas
- Deutsches Elektronen Synchrotron, Photon Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - N. L. Opara
- Paul Scherrer Institute, 111 Forschungsstrasse, 5232 Villigen, Switzerland
- C-CINA, Biozentrum, University of Basel, Mattenstrasse 26, 4002 Basel, Switzerland
| | - M. Barthelmess
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - J. Lieske
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - D. Oberthuer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - E. Wator
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow 30-387, Poland
| | - I. Mohacsi
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - M. Wulff
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - B. Schmitt
- Paul Scherrer Institute, 111 Forschungsstrasse, 5232 Villigen, Switzerland
| | - H. N. Chapman
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - A. Meents
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Deutsches Elektronen Synchrotron, Photon Science, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
69
|
Stachowski T, Grant TD, Snell EH. Structural consequences of transforming growth factor beta-1 activation from near-therapeutic X-ray doses. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:967-979. [PMID: 31274418 PMCID: PMC6613122 DOI: 10.1107/s1600577519005113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/14/2019] [Indexed: 05/24/2023]
Abstract
Dissociation of transforming growth factor beta-1 (TGFβ-1) from the inhibitory protein latency-associated peptide (LAP) can occur from low doses of X-ray irradiation of the LAP-TGFβ-1 complex, resulting in the activation of TGFβ-1, and can have health-related consequences. Using the tools and knowledge developed in the study of radiation damage in the crystallographic setting, small-angle X-ray scattering (SAXS) and complementary techniques suggest an activation process that is initiated but not driven by the initial X-ray exposure. LAP is revealed to be extended when not bound to TGFβ-1 and has a different structural conformation compared to the bound state. These studies pave the way for the structural understanding of systems impacted at therapeutic X-ray doses and show the potential impact of radiation damage studies beyond their original intent.
Collapse
Affiliation(s)
- Timothy Stachowski
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA
| | - Thomas D. Grant
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Materials Design and Innovation, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
70
|
Taberman H, Bury CS, van der Woerd MJ, Snell EH, Garman EF. Structural knowledge or X-ray damage? A case study on xylose isomerase illustrating both. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:931-944. [PMID: 31274415 PMCID: PMC6613113 DOI: 10.1107/s1600577519005599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/23/2019] [Indexed: 05/29/2023]
Abstract
Xylose isomerase (XI) is an industrially important metalloprotein studied for decades. Its reaction mechanism has been postulated to involve movement of the catalytic metal cofactor to several different conformations. Here, a dose-dependent approach was used to investigate the radiation damage effects on XI and their potential influence on the reaction mechanism interpreted from the X-ray derived structures. Radiation damage is still one of the major challenges for X-ray diffraction experiments and causes both global and site-specific damage. In this study, consecutive high-resolution data sets from a single XI crystal from the same wedge were collected at 100 K and the progression of radiation damage was tracked over increasing dose (0.13-3.88 MGy). The catalytic metal and its surrounding amino acid environment experience a build-up of free radicals, and the results show radiation-damage-induced structural perturbations ranging from an absolute metal positional shift to specific residue motions in the active site. The apparent metal movement is an artefact of global damage and the resulting unit-cell expansion, but residue motion appears to be driven by the dose. Understanding and identifying radiation-induced damage is an important factor in accurately interpreting the biological conclusions being drawn.
Collapse
Affiliation(s)
- Helena Taberman
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin, Albert-Einstein Straße 15, 12489 Berlin, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Charles S. Bury
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark J. van der Woerd
- Department of Enterprise Technology Services, 2001 Capitol Avenue, Cheyenne, WY 82001, USA
| | - Edward H. Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Materials Design and Innovation, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
71
|
Gotthard G, Aumonier S, De Sanctis D, Leonard G, von Stetten D, Royant A. Specific radiation damage is a lesser concern at room temperature. IUCRJ 2019; 6:665-680. [PMID: 31316810 PMCID: PMC6608634 DOI: 10.1107/s205225251900616x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/02/2019] [Indexed: 05/22/2023]
Abstract
Carrying out macromolecular crystallography (MX) experiments at cryogenic temperatures significantly slows the rate of global radiation damage, thus facilitating the solution of high-resolution crystal structures of macromolecules. However, cryo-MX experiments suffer from the early onset of so-called specific radiation damage that affects certain amino-acid residues and, in particular, the active sites of many proteins. Here, a series of MX experiments are described which suggest that specific and global radiation damage are much less decoupled at room temperature than they are at cryogenic temperatures. The results reported here demonstrate the interest in reviving the practice of collecting MX diffraction data at room temperature and allow structural biologists to favourably envisage the development of time-resolved MX experiments at synchrotron sources.
Collapse
Affiliation(s)
| | - Sylvain Aumonier
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | | | - Gordon Leonard
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | | | - Antoine Royant
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale), F-38000 Grenoble, France
| |
Collapse
|
72
|
Ebrahim A, Moreno-Chicano T, Appleby MV, Chaplin AK, Beale JH, Sherrell DA, Duyvesteyn HME, Owada S, Tono K, Sugimoto H, Strange RW, Worrall JAR, Axford D, Owen RL, Hough MA. Dose-resolved serial synchrotron and XFEL structures of radiation-sensitive metalloproteins. IUCRJ 2019; 6:543-551. [PMID: 31316799 PMCID: PMC6608622 DOI: 10.1107/s2052252519003956] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 05/18/2023]
Abstract
An approach is demonstrated to obtain, in a sample- and time-efficient manner, multiple dose-resolved crystal structures from room-temperature protein microcrystals using identical fixed-target supports at both synchrotrons and X-ray free-electron lasers (XFELs). This approach allows direct comparison of dose-resolved serial synchrotron and damage-free XFEL serial femtosecond crystallography structures of radiation-sensitive proteins. Specifically, serial synchrotron structures of a heme peroxidase enzyme reveal that X-ray induced changes occur at far lower doses than those at which diffraction quality is compromised (the Garman limit), consistent with previous studies on the reduction of heme proteins by low X-ray doses. In these structures, a functionally relevant bond length is shown to vary rapidly as a function of absorbed dose, with all room-temperature synchrotron structures exhibiting linear deformation of the active site compared with the XFEL structure. It is demonstrated that extrapolation of dose-dependent synchrotron structures to zero dose can closely approximate the damage-free XFEL structure. This approach is widely applicable to any protein where the crystal structure is altered by the synchrotron X-ray beam and provides a solution to the urgent requirement to determine intact structures of such proteins in a high-throughput and accessible manner.
Collapse
Affiliation(s)
- Ali Ebrahim
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Tadeo Moreno-Chicano
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Martin V. Appleby
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Amanda K. Chaplin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Darren A. Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Helen M. E. Duyvesteyn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Division of Structural Biology (STRUBI), The Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, Oxfordshire OX3 7BN, UK
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Hiroshi Sugimoto
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Richard W. Strange
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Jonathan A. R. Worrall
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Michael A. Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
73
|
Bugris V, Harmat V, Ferenc G, Brockhauser S, Carmichael I, Garman EF. Radiation-damage investigation of a DNA 16-mer. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:998-1009. [PMID: 31274421 DOI: 10.1107/s160057751900763x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
In macromolecular crystallography, a great deal of effort has been invested in understanding radiation-damage progression. While the sensitivity of protein crystals has been well characterized, crystals of DNA and of DNA-protein complexes have not thus far been studied as thoroughly. Here, a systematic investigation of radiation damage to a crystal of a DNA 16-mer diffracting to 1.8 Å resolution and held at 100 K, up to an absorbed dose of 45 MGy, is reported. The RIDL (Radiation-Induced Density Loss) automated computational tool was used for electron-density analysis. Both the global and specific damage to the DNA crystal as a function of dose were monitored, following careful calibration of the X-ray flux and beam profile. The DNA crystal was found to be fairly radiation insensitive to both global and specific damage, with half of the initial diffraction intensity being lost at an absorbed average diffraction-weighted dose, D1/2, of 19 MGy, compared with 9 MGy for chicken egg-white lysozyme crystals under the same beam conditions but at the higher resolution of 1.4 Å. The coefficient of sensitivity of the DNA crystal was 0.014 Å2 MGy-1, which is similar to that observed for proteins. These results imply that the significantly greater radiation hardness of DNA and RNA compared with protein observed in a DNA-protein complex and an RNA-protein complex could be due to scavenging action by the protein, thereby protecting the DNA and RNA in these studies. In terms of specific damage, the regions of DNA that were found to be sensitive were those associated with some of the bound calcium ions sequestered from the crystallization buffer. In contrast, moieties farther from these sites showed only small changes even at higher doses.
Collapse
Affiliation(s)
- Valéria Bugris
- X-ray Crystallography Laboratory, Biological Research Centre, HAC-BRC, Temesvári krt. 62, Szeged 6726, Hungary
| | - Veronika Harmat
- X-ray Crystallography Laboratory, Biological Research Centre, HAC-BRC, Temesvári krt. 62, Szeged 6726, Hungary
| | - Györgyi Ferenc
- Nucleic Acid Synthesis Laboratory, Biological Research Centre, HAC-BRC, Temesvári krt. 62, Szeged 6726, Hungary
| | - Sándor Brockhauser
- X-ray Crystallography Laboratory, Biological Research Centre, HAC-BRC, Temesvári krt. 62, Szeged 6726, Hungary
| | - Ian Carmichael
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
74
|
Ueno G, Shimada A, Yamashita E, Hasegawa K, Kumasaka T, Shinzawa-Itoh K, Yoshikawa S, Tsukihara T, Yamamoto M. Low-dose X-ray structure analysis of cytochrome c oxidase utilizing high-energy X-rays. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:912-921. [PMID: 31274413 PMCID: PMC6613116 DOI: 10.1107/s1600577519006805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/12/2019] [Indexed: 05/29/2023]
Abstract
To investigate the effect of high-energy X-rays on site-specific radiation-damage, low-dose diffraction data were collected from radiation-sensitive crystals of the metal enzyme cytochrome c oxidase. Data were collected at the Structural Biology I beamline (BL41XU) at SPring-8, using 30 keV X-rays and a highly sensitive pixel array detector equipped with a cadmium telluride sensor. The experimental setup of continuous sample translation using multiple crystals allowed the average diffraction weighted dose per data set to be reduced to 58 kGy, and the resulting data revealed a ligand structure featuring an identical bond length to that in the damage-free structure determined using an X-ray free-electron laser. However, precise analysis of the residual density around the ligand structure refined with the synchrotron data showed the possibility of a small level of specific damage, which might have resulted from the accumulated dose of 58 kGy per data set. Further investigation of the photon-energy dependence of specific damage, as assessed by variations in UV-vis absorption spectra, was conducted using an on-line spectrometer at various energies ranging from 10 to 30 keV. No evidence was found for specific radiation damage being energy dependent.
Collapse
Affiliation(s)
- Go Ueno
- SR Life Science Instrumentation Team, Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Hasegawa
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Yamamoto
- SR Life Science Instrumentation Team, Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
75
|
Christensen J, Horton PN, Bury CS, Dickerson JL, Taberman H, Garman EF, Coles SJ. Radiation damage in small-molecule crystallography: fact not fiction. IUCRJ 2019; 6:703-713. [PMID: 31316814 PMCID: PMC6608633 DOI: 10.1107/s2052252519006948] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/14/2019] [Indexed: 05/29/2023]
Abstract
Traditionally small-molecule crystallographers have not usually observed or recognized significant radiation damage to their samples during diffraction experiments. However, the increased flux densities provided by third-generation synchrotrons have resulted in increasing numbers of observations of this phenomenon. The diversity of types of small-molecule systems means it is not yet possible to propose a general mechanism for their radiation-induced sample decay, however characterization of the effects will permit attempts to understand and mitigate it. Here, systematic experiments are reported on the effects that sample temperature and beam attenuation have on radiation damage progression, allowing qualitative and quantitative assessment of their impact on crystals of a small-molecule test sample. To allow inter-comparison of different measurements, radiation-damage metrics (diffraction-intensity decline, resolution fall-off, scaling B-factor increase) are plotted against the absorbed dose. For ease-of-dose calculations, the software developed for protein crystallography, RADDOSE-3D, has been modified for use in small-molecule crystallography. It is intended that these initial experiments will assist in establishing protocols for small-molecule crystallographers to optimize the diffraction signal from their samples prior to the onset of the deleterious effects of radiation damage.
Collapse
Affiliation(s)
- Jeppe Christensen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Peter N. Horton
- National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Charles S. Bury
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Joshua L. Dickerson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Helena Taberman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Simon J. Coles
- National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
76
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
77
|
X-ray driven reduction of Cpd I of Catalase-3 from N. crassa reveals differential sensitivity of active sites and formation of ferrous state. Arch Biochem Biophys 2019; 666:107-115. [PMID: 30940570 DOI: 10.1016/j.abb.2019.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
Catalases are biotechnologically relevant enzymes because of their applications in food technology, bioremediation, and biomedicine. The dismutation of hydrogen peroxide occurs in two steps; in the first one, the enzyme forms an oxidized compound I (Cpd I) and in the second one, the enzyme is reduced to the ferric state. In this research work, we analyzed the reduction of Cpd I by X-ray radiation damage during diffraction experiments in crystals of CAT-3, a Large-Size Subunit Catalase (LSC) from Neurospora crassa. A Multi-Crystal Data collection Strategy was applied in order to obtain the Cpd I structure at a resolution of 2.2 Å; this intermediate was highly sensitive to X-ray and was easily reduced at very low deposited radiation dose, causing breakage of the Fe=O bond. The comparison of the structures showed reduced intermediates and also evidenced the differential sensitivity per monomer. The resting ferric state was reduced to the ferrous state, an intermediate without a previous report in LSC. The chemically obtained Cpd I and the X-ray reduced intermediates were identified by UV-visible microspectrometry coupled to data collection. The differential sensitivity and the formation of a ferrous state are discussed, emphasizing the importance of the correct interpretation in the oxidation state of the iron heme.
Collapse
|
78
|
Nam KH. Sample Delivery Media for Serial Crystallography. Int J Mol Sci 2019; 20:E1094. [PMID: 30836596 PMCID: PMC6429298 DOI: 10.3390/ijms20051094] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/19/2023] Open
Abstract
X-ray crystallographic methods can be used to visualize macromolecules at high resolution. This provides an understanding of molecular mechanisms and an insight into drug development and rational engineering of enzymes used in the industry. Although conventional synchrotron-based X-ray crystallography remains a powerful tool for understanding molecular function, it has experimental limitations, including radiation damage, cryogenic temperature, and static structural information. Serial femtosecond crystallography (SFX) using X-ray free electron laser (XFEL) and serial millisecond crystallography (SMX) using synchrotron X-ray have recently gained attention as research methods for visualizing macromolecules at room temperature without causing or reducing radiation damage, respectively. These techniques provide more biologically relevant structures than traditional X-ray crystallography at cryogenic temperatures using a single crystal. Serial femtosecond crystallography techniques visualize the dynamics of macromolecules through time-resolved experiments. In serial crystallography (SX), one of the most important aspects is the delivery of crystal samples efficiently, reliably, and continuously to an X-ray interaction point. A viscous delivery medium, such as a carrier matrix, dramatically reduces sample consumption, contributing to the success of SX experiments. This review discusses the preparation and criteria for the selection and development of a sample delivery medium and its application for SX.
Collapse
Affiliation(s)
- Ki Hyun Nam
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Korea.
| |
Collapse
|
79
|
Nagai T, Tama F, Miyashita O. Cryo-Cooling Effect on DHFR Crystal Studied by Replica-Exchange Molecular Dynamics Simulations. Biophys J 2019; 116:395-405. [PMID: 30638963 DOI: 10.1016/j.bpj.2018.11.3139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022] Open
Abstract
Cryo-cooling is routinely performed before x-ray diffraction image collection to reduce the damage to crystals due to ionizing radiation. It has been suggested that although backbone structures are usually very similar between room temperature and cryo-temperature, cryo-cooling may hamper biologically relevant dynamics. In this study, the crystal of Escherichia coli dihydrofolate reductase is studied with replica-exchange molecular dynamics simulation, and the results are compared with the crystal structure determined at cryo-temperature and room temperature with the time-averaged ensemble method. Although temperature dependence of unit cell compaction and root mean-square fluctuation of Cα is found in accord with experiment, it is found that the protein structure at low temperature can be more heterogeneous than the ensemble of structures reported by using the time-averaged ensemble method, encouraging further development of the time-averaged ensemble method and indicating that data should be examined carefully to avoid overinterpretation of one average structure.
Collapse
Affiliation(s)
- Tetsuro Nagai
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Florence Tama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan; ITbM, Nagoya University, Nagoya, Aichi, Japan; RIKEN Center for Computational Science, Kobe, Hyogo, Japan
| | | |
Collapse
|
80
|
Ebrahim A, Appleby MV, Axford D, Beale J, Moreno-Chicano T, Sherrell DA, Strange RW, Hough MA, Owen RL. Resolving polymorphs and radiation-driven effects in microcrystals using fixed-target serial synchrotron crystallography. Acta Crystallogr D Struct Biol 2019; 75:151-159. [PMID: 30821704 PMCID: PMC6400251 DOI: 10.1107/s2059798318010240] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/16/2018] [Indexed: 11/11/2022] Open
Abstract
The ability to determine high-quality, artefact-free structures is a challenge in micro-crystallography, and the rapid onset of radiation damage and requirement for a high-brilliance X-ray beam mean that a multi-crystal approach is essential. However, the combination of crystal-to-crystal variation and X-ray-induced changes can make the formation of a final complete data set challenging; this is particularly true in the case of metalloproteins, where X-ray-induced changes occur rapidly and at the active site. An approach is described that allows the resolution, separation and structure determination of crystal polymorphs, and the tracking of radiation damage in microcrystals. Within the microcrystal population of copper nitrite reductase, two polymorphs with different unit-cell sizes were successfully separated to determine two independent structures, and an X-ray-driven change between these polymorphs was followed. This was achieved through the determination of multiple serial structures from microcrystals using a high-throughput high-speed fixed-target approach coupled with robust data processing.
Collapse
Affiliation(s)
- Ali Ebrahim
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Martin V. Appleby
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - John Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Tadeo Moreno-Chicano
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Darren A. Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Richard W. Strange
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Michael A. Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| |
Collapse
|
81
|
Cianci M, Nanao M, Schneider TR. Long-wavelength Mesh&Collect native SAD phasing from microcrystals. Acta Crystallogr D Struct Biol 2019; 75:192-199. [PMID: 30821707 PMCID: PMC6400262 DOI: 10.1107/s2059798319002031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/05/2019] [Indexed: 11/10/2022] Open
Abstract
Harnessing the anomalous signal from macromolecular crystals with volumes of less than 10 000 µm3 for native phasing requires careful experimental planning. The type of anomalous scatterers that are naturally present in the sample, such as sulfur, phosphorus and calcium, will dictate the beam energy required and determine the level of radiation sensitivity, while the crystal size will dictate the beam size and the sample-mounting technique, in turn indicating the specifications of a suitable beamline. On the EMBL beamline P13 at PETRA III, Mesh&Collect data collection from concanavalin A microcrystals with linear dimensions of ∼20 µm or less using an accordingly sized microbeam at a wavelength of 1.892 Å (6.551 keV, close to the Mn edge at 6.549 keV) increases the expected Bijvoet ratio to 2.1% from an expected 0.7% at 12.6 keV (Se K edge), thus allowing experimental phase determination using the anomalous signal from naturally present Mn2+ and Ca2+ ions. Dozens of crystals were harvested and flash-cryocooled in micro-meshes, rapidly screened for diffraction (less than a minute per loop) and then used for serial Mesh&Collect collection of about 298 partial data sets (10° of crystal rotation per sample). The partial data sets were integrated and scaled. A genetic algorithm for combining partial data sets was used to select those to be merged into a single data set. This final data set showed high completeness, high multiplicity and sufficient anomalous signal to locate the anomalous scatterers, and provided phasing information which allowed complete auto-tracing of the polypeptide chain. To allow the complete experiment to run in less than 2 h, a practically acceptable time frame, the diffractometer and detector had to run together with limited manual intervention. The combination of several cutting-edge components allowed accurate anomalous signal to be measured from small crystals.
Collapse
Affiliation(s)
- Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Max Nanao
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | | |
Collapse
|
82
|
Getting the Most Out of Your Crystals: Data Collection at the New High-Flux, Microfocus MX Beamlines at NSLS-II. Molecules 2019; 24:molecules24030496. [PMID: 30704096 PMCID: PMC6384729 DOI: 10.3390/molecules24030496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022] Open
Abstract
Advances in synchrotron technology are changing the landscape of macromolecular crystallography. The two recently opened beamlines at NSLS-II-AMX and FMX-deliver high-flux microfocus beams that open new possibilities for crystallographic data collection. They are equipped with state-of-the-art experimental stations and automation to allow data collection on previously intractable crystals. Optimized data collection strategies allow users to tailor crystal positioning to optimally distribute the X-ray dose over its volume. Vector data collection allows the user to define a linear trajectory along a well diffracting volume of the crystal and perform rotational data collection while moving along the vector. This is particularly well suited to long, thin crystals. We describe vector data collection of three proteins-Akt1, PI3Kα, and CDP-Chase-to demonstrate its application and utility. For smaller crystals, we describe two methods for multicrystal data collection in a single loop, either manually selecting multiple centers (using H108A-PHM as an example), or "raster-collect", a more automated approach for a larger number of crystals (using CDP-Chase as an example).
Collapse
|
83
|
Deng J, Lo YH, Gallagher-Jones M, Chen S, Pryor A, Jin Q, Hong YP, Nashed YSG, Vogt S, Miao J, Jacobsen C. Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae. SCIENCE ADVANCES 2018; 4:eaau4548. [PMID: 30406204 PMCID: PMC6214637 DOI: 10.1126/sciadv.aau4548] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/24/2018] [Indexed: 05/20/2023]
Abstract
Accurate knowledge of elemental distributions within biological organisms is critical for understanding their cellular roles. The ability to couple this knowledge with overall cellular architecture in three dimensions (3D) deepens our understanding of cellular chemistry. Using a whole, frozen-hydrated Chlamydomonas reinhardtii cell as an example, we report the development of 3D correlative microscopy through a combination of simultaneous cryogenic x-ray ptychography and x-ray fluorescence microscopy. By taking advantage of a recently developed tomographic reconstruction algorithm, termed GENeralized Fourier Iterative REconstruction (GENFIRE), we produce high-quality 3D maps of the unlabeled alga's cellular ultrastructure and elemental distributions within the cell. We demonstrate GENFIRE's ability to outperform conventional tomography algorithms and to further improve the reconstruction quality by refining the experimentally intended tomographic angles. As this method continues to advance with brighter coherent light sources and more efficient data handling, we expect correlative 3D x-ray fluorescence and ptychographic tomography to be a powerful tool for probing a wide range of frozen-hydrated biological specimens, ranging from small prokaryotes such as bacteria, algae, and parasites to large eukaryotes such as mammalian cells, with applications that include understanding cellular responses to environmental stimuli and cell-to-cell interactions.
Collapse
Affiliation(s)
- Junjing Deng
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Yuan Hung Lo
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California Los Angeles, CA 90095, USA
| | - Marcus Gallagher-Jones
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Department of Chemistry & Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095-1570, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alan Pryor
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
| | - Qiaoling Jin
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Young Pyo Hong
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Youssef S. G. Nashed
- Mathematics and Computing Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Stefan Vogt
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Corresponding author. (J.M.); (C.J.)
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (J.M.); (C.J.)
| |
Collapse
|
84
|
Samara YN, Brennan HM, McCarthy L, Bollard MT, Laspina D, Wlodek JM, Campos SL, Natarajan R, Gofron K, McSweeney S, Soares AS, Leroy L. Using sound pulses to solve the crystal-harvesting bottleneck. Acta Crystallogr D Struct Biol 2018; 74:986-999. [PMID: 30289409 PMCID: PMC6173054 DOI: 10.1107/s2059798318011506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/14/2018] [Indexed: 01/16/2023] Open
Abstract
Crystal harvesting has proven to be difficult to automate and remains the rate-limiting step for many structure-determination and high-throughput screening projects. This has resulted in crystals being prepared more rapidly than they can be harvested for X-ray data collection. Fourth-generation synchrotrons will support extraordinarily rapid rates of data acquisition, putting further pressure on the crystal-harvesting bottleneck. Here, a simple solution is reported in which crystals can be acoustically harvested from slightly modified MiTeGen In Situ-1 crystallization plates. This technique uses an acoustic pulse to eject each crystal out of its crystallization well, through a short air column and onto a micro-mesh (improving on previous work, which required separately grown crystals to be transferred before harvesting). Crystals can be individually harvested or can be serially combined with a chemical library such as a fragment library.
Collapse
Affiliation(s)
- Yasmin N. Samara
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil
| | - Haley M. Brennan
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Liam McCarthy
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, Stony Brook University, New York, NY 11794-5215, USA
| | - Mary T. Bollard
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, York College of Pennsylvania, York, PA 17403, USA
| | - Denise Laspina
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, Stony Brook University, New York, NY 11794-5215, USA
| | - Jakub M. Wlodek
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Computer Science, Stony Brook University, New York, NY 11794-5215, USA
| | - Stefanie L. Campos
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Clinical Nutrition, Stony Brook University, New York, NY 11794-5215, USA
| | - Ramya Natarajan
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kazimierz Gofron
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Sean McSweeney
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Alexei S. Soares
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Ludmila Leroy
- Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil
| |
Collapse
|
85
|
Ciccone L, Fruchart-Gaillard C, Mourier G, Savko M, Nencetti S, Orlandini E, Servent D, Stura EA, Shepard W. Copper mediated amyloid-β binding to Transthyretin. Sci Rep 2018; 8:13744. [PMID: 30213975 PMCID: PMC6137083 DOI: 10.1038/s41598-018-31808-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/23/2018] [Indexed: 01/27/2023] Open
Abstract
Transthyretin (TTR), a homotetrameric protein that transports thyroxine and retinol both in plasma and in cerebrospinal (CSF) fluid provides a natural protective response against Alzheimer's disease (AD), modulates amyloid-β (Aβ) deposition by direct interaction and co-localizes with Aβ in plaques. TTR levels are lower in the CSF of AD patients. Zn2+, Mn2+ and Fe2+ transform TTR into a protease able to cleave Aβ. To explain these activities, monomer dissociation or conformational changes have been suggested. Here, we report that when TTR crystals are exposed to copper or iron salts, the tetramer undergoes a significant conformational change that alters the dimer-dimer interface and rearranges residues implicated in TTR's ability to neutralize Aβ. We also describe the conformational changes in TTR upon the binding of the various metal ions. Furthermore, using bio-layer interferometry (BLI) with immobilized Aβ(1-28), we observe the binding of TTR only in the presence of copper. Such Cu2+-dependent binding suggests a recognition mechanism whereby Cu2+ modulates both the TTR conformation, induces a complementary Aβ structure and may participate in the interaction. Cu2+-soaked TTR crystals show a conformation different from that induced by Fe2+, and intriguingly, TTR crystals grown in presence of Aβ(1-28) show different positions for the copper sites from those grown its absence.
Collapse
Affiliation(s)
- Lidia Ciccone
- CEA Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingènierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, 91191, Gif-sur-Yvette, France.,Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Carole Fruchart-Gaillard
- CEA Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingènierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Gilles Mourier
- CEA Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingènierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Martin Savko
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Susanna Nencetti
- Dipartimento di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Elisabetta Orlandini
- Dipartimento di Scienze della Terra, Universitá di Pisa, Via Santa Maria 53-55, 56100, Pisa, Italy
| | - Denis Servent
- CEA Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingènierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Enrico A Stura
- CEA Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingènierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France.
| |
Collapse
|
86
|
Wiedorn MO, Awel S, Morgan AJ, Ayyer K, Gevorkov Y, Fleckenstein H, Roth N, Adriano L, Bean R, Beyerlein KR, Chen J, Coe J, Cruz-Mazo F, Ekeberg T, Graceffa R, Heymann M, Horke DA, Knoška J, Mariani V, Nazari R, Oberthür D, Samanta AK, Sierra RG, Stan CA, Yefanov O, Rompotis D, Correa J, Erk B, Treusch R, Schulz J, Hogue BG, Gañán-Calvo AM, Fromme P, Küpper J, Rode AV, Bajt S, Kirian RA, Chapman HN. Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCRJ 2018; 5:574-584. [PMID: 30224961 PMCID: PMC6126653 DOI: 10.1107/s2052252518008369] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/06/2018] [Indexed: 05/21/2023]
Abstract
Liquid microjets are a common means of delivering protein crystals to the focus of X-ray free-electron lasers (FELs) for serial femtosecond crystallography measurements. The high X-ray intensity in the focus initiates an explosion of the microjet and sample. With the advent of X-ray FELs with megahertz rates, the typical velocities of these jets must be increased significantly in order to replenish the damaged material in time for the subsequent measurement with the next X-ray pulse. This work reports the results of a megahertz serial diffraction experiment at the FLASH FEL facility using 4.3 nm radiation. The operation of gas-dynamic nozzles that produce liquid microjets with velocities greater than 80 m s-1 was demonstrated. Furthermore, this article provides optical images of X-ray-induced explosions together with Bragg diffraction from protein microcrystals exposed to trains of X-ray pulses repeating at rates of up to 4.5 MHz. The results indicate the feasibility for megahertz serial crystallography measurements with hard X-rays and give guidance for the design of such experiments.
Collapse
Affiliation(s)
- Max O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andrew J. Morgan
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kartik Ayyer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Institute of Vision Systems, Hamburg University of Technology, Harburger Schlossstrasse 20, 21079 Hamburg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Nils Roth
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Luigi Adriano
- Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Kenneth R. Beyerlein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Joe Chen
- Arizona State University, 550 E. Tyler Drive, Tempe, AZ 85287, USA
| | - Jesse Coe
- Arizona State University, 550 E. Tyler Drive, Tempe, AZ 85287, USA
| | - Francisco Cruz-Mazo
- Universidad de Sevilla, Department of Aerospace Engineering and Fluid Mechanics, Camino de los Descubriemientos s/n, 41092 Sevilla, Spain
| | - Tomas Ekeberg
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Rita Graceffa
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Heymann
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, 82152 Martinsried, Germany
| | - Daniel A. Horke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Juraj Knoška
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Reza Nazari
- Arizona State University, 550 E. Tyler Drive, Tempe, AZ 85287, USA
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Amit K. Samanta
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Raymond G. Sierra
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Claudiu A. Stan
- Department of Physics, Rutgers University Newark, Newark, NJ 07102, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dimitrios Rompotis
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jonathan Correa
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Brenda G. Hogue
- Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Alfonso M. Gañán-Calvo
- Universidad de Sevilla, Department of Aerospace Engineering and Fluid Mechanics, Camino de los Descubriemientos s/n, 41092 Sevilla, Spain
| | - Petra Fromme
- Arizona State University, 550 E. Tyler Drive, Tempe, AZ 85287, USA
- Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andrei V. Rode
- Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia
| | - Saša Bajt
- Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
87
|
Gao Y, Xu W, Shi W, Soares A, Jakoncic J, Myers S, Martins B, Skinner J, Liu Q, Bernstein H, McSweeney S, Nazaretski E, Fuchs MR. High-speed raster-scanning synchrotron serial microcrystallography with a high-precision piezo-scanner. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1362-1370. [PMID: 30179174 PMCID: PMC6140394 DOI: 10.1107/s1600577518010354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/18/2018] [Indexed: 05/06/2023]
Abstract
The Frontier Microfocus Macromolecular Crystallography (FMX) beamline at the National Synchrotron Light Source II with its 1 µm beam size and photon flux of 3 × 1012 photons s-1 at a photon energy of 12.66 keV has reached unprecedented dose rates for a structural biology beamline. The high dose rate presents a great advantage for serial microcrystallography in cutting measurement time from hours to minutes. To provide the instrumentation basis for such measurements at the full flux of the FMX beamline, a high-speed, high-precision goniometer based on a unique XYZ piezo positioner has been designed and constructed. The piezo-based goniometer is able to achieve sub-100 nm raster-scanning precision at over 10 grid-linepairs s-1 frequency for fly scans of a 200 µm-wide raster. The performance of the scanner in both laboratory and serial crystallography measurements up to the maximum frame rate of 750 Hz of the Eiger 16M's 4M region-of-interest mode has been verified in this work. This unprecedented experimental speed significantly reduces serial-crystallography data collection time at synchrotrons, allowing utilization of the full brightness of the emerging synchrotron radiation facilities.
Collapse
Affiliation(s)
- Yuan Gao
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Weihe Xu
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wuxian Shi
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
- Case Center for Synchrotron Biosciences, Case Western Reserve University, OH 44106, USA
| | - Alexei Soares
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jean Jakoncic
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Stuart Myers
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruno Martins
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John Skinner
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Qun Liu
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Herbert Bernstein
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
- School of Chemistry and Materials Science, Rochester Institute of Technology, NY 14623, USA
| | - Sean McSweeney
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Evgeny Nazaretski
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin R. Fuchs
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
88
|
Kubin M, Kern J, Guo M, Källman E, Mitzner R, Yachandra VK, Lundberg M, Yano J, Wernet P. X-ray-induced sample damage at the Mn L-edge: a case study for soft X-ray spectroscopy of transition metal complexes in solution. Phys Chem Chem Phys 2018; 20:16817-16827. [PMID: 29888772 PMCID: PMC6011208 DOI: 10.1039/c8cp03094d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
X-ray induced sample damage can impede electronic and structural investigations of radiation-sensitive samples studied with X-rays. Here we quantify dose-dependent sample damage to the prototypical MnIII(acac)3 complex in solution and at room temperature for the soft X-ray range, using X-ray absorption spectroscopy at the Mn L-edge. We observe the appearance of a reduced MnII species as the X-ray dose is increased. We find a half-damage dose of 1.6 MGy and quantify a spectroscopically tolerable dose on the order of 0.3 MGy (1 Gy = 1 J kg-1), where 90% of MnIII(acac)3 are intact. Our dose-limit is around one order of magnitude lower than the Henderson limit (half-damage dose of 20 MGy) which is commonly employed for protein crystallography with hard X-rays. It is comparable, however, to the dose-limits obtained for collecting un-damaged Mn K-edge spectra of the photosystem II protein, using hard X-rays. The dose-dependent reduction of MnIII observed here for solution samples occurs at a dose limit that is two to four orders of magnitude smaller than the dose limits previously reported for soft X-ray spectroscopy of iron samples in the solid phase. We compare our measured to calculated spectra from ab initio restricted active space (RAS) theory and discuss possible mechanisms for the observed dose-dependent damage of MnIII(acac)3 in solution. On the basis of our results, we assess the influence of sample damage in other experimental studies with soft X-rays from storage-ring synchrotron radiation sources and X-ray free-electron lasers.
Collapse
Affiliation(s)
- Markus Kubin
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Guo G, Fuchs MR, Shi W, Skinner J, Berman E, Ogata CM, Hendrickson WA, McSweeney S, Liu Q. Sample manipulation and data assembly for robust microcrystal synchrotron crystallography. IUCRJ 2018; 5:238-246. [PMID: 29755741 PMCID: PMC5929371 DOI: 10.1107/s2052252518005389] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/05/2018] [Indexed: 05/19/2023]
Abstract
With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallo-graphy with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described. The method demonstrates that microcrystals may be routinely utilized for the acquisition and assembly of complete data sets from synchrotron microdiffraction beamlines.
Collapse
Affiliation(s)
- Gongrui Guo
- Photon Science Directorate, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin R. Fuchs
- Photon Science Directorate, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wuxian Shi
- Photon Science Directorate, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John Skinner
- Photon Science Directorate, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Evanna Berman
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Craig M. Ogata
- GM/CA@APS, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sean McSweeney
- Photon Science Directorate, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Qun Liu
- Photon Science Directorate, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
90
|
Thompson MC, Cascio D, Yeates TO. Microfocus diffraction from different regions of a protein crystal: structural variations and unit-cell polymorphism. Acta Crystallogr D Struct Biol 2018; 74:411-421. [PMID: 29717712 PMCID: PMC5930349 DOI: 10.1107/s2059798318003479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/28/2018] [Indexed: 11/10/2022] Open
Abstract
Real macromolecular crystals can be non-ideal in a myriad of ways. This often creates challenges for structure determination, while also offering opportunities for greater insight into the crystalline state and the dynamic behavior of macromolecules. To evaluate whether different parts of a single crystal of a dynamic protein, EutL, might be informative about crystal and protein polymorphism, a microfocus X-ray synchrotron beam was used to collect a series of 18 separate data sets from non-overlapping regions of the same crystal specimen. A principal component analysis (PCA) approach was employed to compare the structure factors and unit cells across the data sets, and it was found that the 18 data sets separated into two distinct groups, with large R values (in the 40% range) and significant unit-cell variations between the members of the two groups. This categorization mapped the different data-set types to distinct regions of the crystal specimen. Atomic models of EutL were then refined against two different data sets obtained by separately merging data from the two distinct groups. A comparison of the two resulting models revealed minor but discernable differences in certain segments of the protein structure, and regions of higher deviation were found to correlate with regions where larger dynamic motions were predicted to occur by normal-mode molecular-dynamics simulations. The findings emphasize that large spatially dependent variations may be present across individual macromolecular crystals. This information can be uncovered by simultaneous analysis of multiple partial data sets and can be exploited to reveal new insights about protein dynamics, while also improving the accuracy of the structure-factor data ultimately obtained in X-ray diffraction experiments.
Collapse
Affiliation(s)
- Michael C. Thompson
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Duilio Cascio
- UCLA–DOE Institute for Genomics and Proteomics, Los Angeles, California, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
- UCLA–DOE Institute for Genomics and Proteomics, Los Angeles, California, USA
| |
Collapse
|
91
|
Abstract
Radiation damage still remains a major limitation and challenge in macromolecular X-ray crystallography. Some of the high-intensity radiation used for diffraction data collection experiments is absorbed by the crystals, generating free radicals. These give rise to radiation damage even at cryotemperatures (~100 K), which can lead to incorrect biological conclusions being drawn from the resulting structure, or even prevent structure solution entirely. Investigation of mitigation strategies and the effects caused by radiation damage has been extensive over the past fifteen years. Here, recent understanding of the physical and chemical phenomena of radiation damage is described, along with the global effects inflicted on the collected data and the specific effects observed in the solved structure. Furthermore, this review aims to summarise the progress made in radiation damage studies in macromolecular crystallography from the experimentalist’s point of view and to give an introduction to the current literature.
Collapse
|
92
|
Shelley KL, Dixon TPE, Brooks-Bartlett JC, Garman EF. RABDAM: quantifying specific radiation damage in individual protein crystal structures. J Appl Crystallogr 2018; 51:552-559. [PMID: 29657569 PMCID: PMC5884390 DOI: 10.1107/s1600576718002509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/12/2018] [Indexed: 11/10/2022] Open
Abstract
Radiation damage remains one of the major limitations to accurate structure determination in protein crystallography (PX). Despite the use of cryo-cooling techniques, it is highly probable that a number of the structures deposited in the Protein Data Bank (PDB) have suffered substantial radiation damage as a result of the high flux densities of third generation synchrotron X-ray sources. Whereas the effects of global damage upon diffraction pattern reflection intensities are readily detectable, traditionally the (earlier onset) site-specific structural changes induced by radiation damage have proven difficult to identify within individual PX structures. More recently, however, development of the BDamage metric has helped to address this problem. BDamage is a quantitative, per-atom metric identifies potential sites of specific damage by comparing the atomic B-factor values of atoms that occupy a similar local packing density environment in the structure. Building upon this past work, this article presents a program, RABDAM, to calculate the BDamage metric for all selected atoms within any standard-format PDB or mmCIF file. RABDAM provides several useful outputs to assess the extent of damage suffered by an input PX structure. This free and open-source software will allow assessment and improvement of the quality of PX structures both previously and newly deposited in the PDB.
Collapse
Affiliation(s)
- Kathryn L. Shelley
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas P. E. Dixon
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
93
|
Clabbers MTB, Abrahams JP. Electron diffraction and three-dimensional crystallography for structural biology. CRYSTALLOGR REV 2018. [DOI: 10.1080/0889311x.2018.1446427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Max T. B. Clabbers
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Jan Pieter Abrahams
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
- Department of Biology and Chemistry, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland
- Institute of Biology Leiden (IBL), Leiden, Netherlands
| |
Collapse
|
94
|
Du M, Jacobsen C. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials. Ultramicroscopy 2018; 184:293-309. [PMID: 29073575 PMCID: PMC5696083 DOI: 10.1016/j.ultramic.2017.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/05/2017] [Indexed: 12/01/2022]
Abstract
Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.
Collapse
Affiliation(s)
- Ming Du
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, USA
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne IL 60439, USA; Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston IL 60208, USA.
| |
Collapse
|
95
|
X-ray free electron laser: opportunities for drug discovery. Essays Biochem 2017; 61:529-542. [PMID: 29118098 DOI: 10.1042/ebc20170031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023]
Abstract
Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds.
Collapse
|
96
|
Bury CS, Brooks-Bartlett JC, Walsh SP, Garman EF. Estimate your dose: RADDOSE-3D. Protein Sci 2017; 27:217-228. [PMID: 28921782 DOI: 10.1002/pro.3302] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022]
Abstract
We present the current status of RADDOSE-3D, a software tool allowing the estimation of the dose absorbed in a macromolecular crystallography diffraction experiment. The code allows a temporal and spatial dose contour map to be calculated for a crystal of any geometry and size as it is rotated in an X-ray beam, and gives several summary dose values: among them diffraction weighted dose. This allows experimenters to plan data collections which will minimize radiation damage effects by spreading the absorbed dose more homogeneously, and thus to optimize the use of their crystals. It also allows quantitative comparisons between different radiation damage studies, giving a universal "x-axis" against which to plot various metrics.
Collapse
Affiliation(s)
- Charles S Bury
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | - Steven P Walsh
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Elspeth F Garman
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
97
|
Meents A, Wiedorn MO, Srajer V, Henning R, Sarrou I, Bergtholdt J, Barthelmess M, Reinke PYA, Dierksmeyer D, Tolstikova A, Schaible S, Messerschmidt M, Ogata CM, Kissick DJ, Taft MH, Manstein DJ, Lieske J, Oberthuer D, Fischetti RF, Chapman HN. Pink-beam serial crystallography. Nat Commun 2017; 8:1281. [PMID: 29097720 PMCID: PMC5668288 DOI: 10.1038/s41467-017-01417-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/14/2017] [Indexed: 02/02/2023] Open
Abstract
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, "pink", beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized for very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.
Collapse
Affiliation(s)
- A Meents
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany.
| | - M O Wiedorn
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - V Srajer
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - R Henning
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - I Sarrou
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - J Bergtholdt
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Barthelmess
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - P Y A Reinke
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D Dierksmeyer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - A Tolstikova
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - S Schaible
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Messerschmidt
- National Science Foundation BioXFEL Science and Technology Center, 700 Ellicott Street, Buffalo, NY, 14203, USA
| | - C M Ogata
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - D J Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - M H Taft
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D J Manstein
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - J Lieske
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - D Oberthuer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - R F Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - H N Chapman
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| |
Collapse
|
98
|
Abela R, Beaud P, van Bokhoven JA, Chergui M, Feurer T, Haase J, Ingold G, Johnson SL, Knopp G, Lemke H, Milne CJ, Pedrini B, Radi P, Schertler G, Standfuss J, Staub U, Patthey L. Perspective: Opportunities for ultrafast science at SwissFEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061602. [PMID: 29376109 PMCID: PMC5758366 DOI: 10.1063/1.4997222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science.
Collapse
Affiliation(s)
- Rafael Abela
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Paul Beaud
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-FSB, Station 6, 1015 Lausanne, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Johannes Haase
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Gerhard Ingold
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Steven L Johnson
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Henrik Lemke
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chris J Milne
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bill Pedrini
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Peter Radi
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Urs Staub
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Luc Patthey
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
99
|
Papp G, Felisaz F, Sorez C, Lopez-Marrero M, Janocha R, Manjasetty B, Gobbo A, Belrhali H, Bowler MW, Cipriani F. FlexED8: the first member of a fast and flexible sample-changer family for macromolecular crystallography. Acta Crystallogr D Struct Biol 2017; 73:841-851. [PMID: 28994413 PMCID: PMC5633909 DOI: 10.1107/s2059798317013596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/22/2017] [Indexed: 11/23/2022] Open
Abstract
Automated sample changers are now standard equipment for modern macromolecular crystallography synchrotron beamlines. Nevertheless, most are only compatible with a single type of sample holder and puck. Recent work aimed at reducing sample-handling efforts and crystal-alignment times at beamlines has resulted in a new generation of compact and precise sample holders for cryocrystallography: miniSPINE and NewPin [see the companion paper by Papp et al. (2017, Acta Cryst., D73, 829-840)]. With full data collection now possible within seconds at most advanced beamlines, and future fourth-generation synchrotron sources promising to extract data in a few tens of milliseconds, the time taken to mount and centre a sample is rate-limiting. In this context, a versatile and fast sample changer, FlexED8, has been developed that is compatible with the highly successful SPINE sample holder and with the miniSPINE and NewPin sample holders. Based on a six-axis industrial robot, FlexED8 is equipped with a tool changer and includes a novel open sample-storage dewar with a built-in ice-filtering system. With seven versatile puck slots, it can hold up to 112 SPINE sample holders in uni-pucks, or 252 miniSPINE or NewPin sample holders, with 36 samples per puck. Additionally, a double gripper, compatible with the SPINE sample holders and uni-pucks, allows a reduction in the sample-exchange time from 40 s, the typical time with a standard single gripper, to less than 5 s. Computer vision-based sample-transfer monitoring, sophisticated error handling and automatic error-recovery procedures ensure high reliability. The FlexED8 sample changer has been successfully tested under real conditions on a beamline.
Collapse
Affiliation(s)
- Gergely Papp
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Franck Felisaz
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Clement Sorez
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Marcos Lopez-Marrero
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Robert Janocha
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Babu Manjasetty
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Alexandre Gobbo
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Matthew W. Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Florent Cipriani
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| |
Collapse
|
100
|
Šrajer V, Schmidt M. Watching Proteins Function with Time-resolved X-ray Crystallography. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:373001. [PMID: 29353938 PMCID: PMC5771432 DOI: 10.1088/1361-6463/aa7d32] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron X-ray sources. An expansive database of more than 100,000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al., 2005a; Schmidt 2008; Neutze and Moffat, 2012; Šrajer 2014). In this approach, short and intense X-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron X-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard X-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond X-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al., 2014; Barends et al., 2015; Pande et al., 2016). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline challenges and further developments necessary to broaden the application of these methods to many important proteins and enzymes of biomedical relevance.
Collapse
Affiliation(s)
- Vukica Šrajer
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, IL, USA
| |
Collapse
|