51
|
Jiang Y, Zhang J, Meng F, Zhong Z. Apolipoprotein E Peptide-Directed Chimeric Polymersomes Mediate an Ultrahigh-Efficiency Targeted Protein Therapy for Glioblastoma. ACS NANO 2018; 12:11070-11079. [PMID: 30395440 DOI: 10.1021/acsnano.8b05265] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The inability to cross the blood-brain barrier (BBB) prevents nearly all chemotherapeutics and biotherapeutics from the effective treatment of brain tumors, rendering few improvements in patient survival rates to date. Here, we report that apolipoprotein E peptide [ApoE, (LRKLRKRLL)2C] specifically binds to low-density lipoprotein receptor members (LDLRs) and mediates superb BBB crossing and highly efficient glioblastoma (GBM)-targeted protein therapy in vivo. The in vitro BBB model studies reveal that ApoE induces 2.2-fold better penetration of the immortalized mouse brain endothelial cell line (bEnd.3) monolayer for chimeric polymersomes (CP) compared to Angiopep-2, the best-known BBB-crossing peptide used in clinical trials for GBM therapy. ApoE-installed CP (ApoE-CP) carrying saporin (SAP) displays a highly specific and potent antitumor effect toward U-87 MG cells with a low half-maximum inhibitory concentration of 14.2 nM SAP. Notably, ApoE-CP shows efficient BBB crossing as well as accumulation and penetration in orthotopic U-87 MG glioblastoma. The systemic administration of SAP-loaded ApoE-CP causes complete growth inhibition of orthotopic U-87 MG GBM without eliciting any observable adverse effects, affording markedly improved survival benefits. ApoE peptide provides an ultrahigh-efficiency targeting strategy for GBM therapy.
Collapse
Affiliation(s)
- Yu Jiang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| |
Collapse
|
52
|
Zou Z, Shen Q, Pang Y, Li X, Chen Y, Wang X, Luo X, Wu Z, Bao Z, Zhang J, Liang J, Kong L, Yan L, Xiong L, Zhu T, Yuan S, Wang M, Cai K, Yao Y, Wu J, Jiang Y, Liu H, Liu J, Zhou Y, Dong Q, Wang W, Zhu K, Li L, Lou Y, Wang H, Li Y, Lin H. The synthesized transporter K16APoE enabled the therapeutic HAYED peptide to cross the blood-brain barrier and remove excess iron and radicals in the brain, thus easing Alzheimer’s disease. Drug Deliv Transl Res 2018; 9:394-403. [DOI: 10.1007/s13346-018-0579-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
53
|
Spencer B, Brüschweiler S, Sealey-Cardona M, Rockenstein E, Adame A, Florio J, Mante M, Trinh I, Rissman RA, Konrat R, Masliah E. Selective targeting of 3 repeat Tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol 2018; 136:69-87. [PMID: 29934874 PMCID: PMC6112111 DOI: 10.1007/s00401-018-1869-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly affecting more than 5 million people in the U.S. AD is characterized by the accumulation of β-amyloid (Aβ) and Tau in the brain, and is manifested by severe impairments in memory and cognition. Therefore, removing tau pathology has become one of the main therapeutic goals for the treatment of AD. Tau (tubulin-associated unit) is a major neuronal cytoskeletal protein found in the CNS encoded by the gene MAPT. Alternative splicing generates two major isoforms of tau containing either 3 or 4 repeat (R) segments. These 3R or 4RTau species are differentially expressed in neurodegenerative diseases. Previous studies have been focused on reducing Tau accumulation with antibodies against total Tau, 4RTau or phosphorylated isoforms. Here, we developed a brain penetrating, single chain antibody that specifically recognizes a pathogenic 3RTau. This single chain antibody was modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments reduced the accumulation of 3RTau and related deficits in a transgenic mouse model of tauopathy. NMR studies showed that the single chain antibody recognized an epitope at aa 40-62 of 3RTau. This single chain antibody reduced 3RTau transmission and facilitated the clearance of Tau via the endosomal-lysosomal pathway. Together, these results suggest that targeting 3RTau with highly specific, brain penetrating, single chain antibodies might be of potential value for the treatment of tauopathies such as Pick's Disease.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Sven Brüschweiler
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Marco Sealey-Cardona
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Edward Rockenstein
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Ivy Trinh
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Robert Konrat
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Eliezer Masliah
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA.
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA.
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave, Bethesda, MD, 20892, USA.
| |
Collapse
|
54
|
David M, Lécorché P, Masse M, Faucon A, Abouzid K, Gaudin N, Varini K, Gassiot F, Ferracci G, Jacquot G, Vlieghe P, Khrestchatisky M. Identification and characterization of highly versatile peptide-vectors that bind non-competitively to the low-density lipoprotein receptor for in vivo targeting and delivery of small molecules and protein cargos. PLoS One 2018; 13:e0191052. [PMID: 29485998 PMCID: PMC5828360 DOI: 10.1371/journal.pone.0191052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/27/2017] [Indexed: 01/09/2023] Open
Abstract
Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells-or organs that express the LDLR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karine Varini
- VECT-HORUS SAS, Marseille, France
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | | | - Géraldine Ferracci
- Aix Marseille Univ, CNRS, CRN2M, Marseille, France
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | | | - Michel Khrestchatisky
- Aix Marseille Univ, CNRS, NICN, Marseille, France
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
55
|
Oller-Salvia B, Sánchez-Navarro M, Giralt E, Teixidó M. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem Soc Rev 2018; 45:4690-707. [PMID: 27188322 DOI: 10.1039/c6cs00076b] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain delivery is one of the major challenges in drug development because of the high number of patients suffering from neural diseases and the low efficiency of the treatments available. Although the blood-brain barrier (BBB) prevents most drugs from reaching their targets, molecular vectors - known as BBB shuttles - offer great promise to safely overcome this formidable obstacle. In recent years, peptide shuttles have received growing attention because of their lower cost, reduced immunogenicity, and higher chemical versatility than traditional Trojan horse antibodies and other proteins.
Collapse
Affiliation(s)
- Benjamí Oller-Salvia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Macarena Sánchez-Navarro
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain. and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| |
Collapse
|
56
|
Kelly JM, Gross AL, Martin DR, Byrne ME. Polyethylene glycol-b-poly(lactic acid) polymersomes as vehicles for enzyme replacement therapy. Nanomedicine (Lond) 2017; 12:2591-2606. [PMID: 29111890 DOI: 10.2217/nnm-2017-0221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Polymersomes are created to deliver an enzyme-based therapy to the brain in lysosomal storage disease patients. MATERIALS & METHODS Polymersomes are formed via the injection method using poly(ethylene glycol)-b-poly(lactic acid) (PEGPLA) and bound to apolipoprotein E, to create a brain-targeted delivery vehicle. RESULTS Polymersomes have a smallest average diameter of 145 ± 21 nm and encapsulate β-galactosidase at 72.0 ± 12.2% efficiency. PEGPLA polymersomes demonstrate limited release at physiologic pH (7.4), with a burst release at the acidic pH (4.8) of the lysosome. PEGPLA polymersomes facilitate delivery of active β-galactosidase to an in vitro model of GM1 gangliosidosis. CONCLUSION The foundation has been laid for testing of PEGPLA polymersomes to deliver enzymatic treatments to the brain in lysosomal storage disorders for the first time.
Collapse
Affiliation(s)
- Jessica M Kelly
- Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA.,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,US Department of Education GAANN Graduate Fellowship Program in Biological & Pharmaceutical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Amanda L Gross
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Department of Anatomy, Physiology, & Pharmacology, Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Douglas R Martin
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,US Department of Education GAANN Graduate Fellowship Program in Biological & Pharmaceutical Engineering, Auburn University, Auburn, AL 36849, USA.,Department of Anatomy, Physiology, & Pharmacology, Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Mark E Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA.,US Department of Education GAANN Graduate Fellowship Program in Biological & Pharmaceutical Engineering, Auburn University, Auburn, AL 36849, USA.,Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
57
|
Dube T, Chibh S, Mishra J, Panda JJ. Receptor Targeted Polymeric Nanostructures Capable of Navigating across the Blood-Brain Barrier for Effective Delivery of Neural Therapeutics. ACS Chem Neurosci 2017; 8:2105-2117. [PMID: 28768412 DOI: 10.1021/acschemneuro.7b00207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The window of neurological maladies encompasses 600 known neurological disorders. In the past few years, an inordinate upsurge in the incidences of neuronal ailments with increased mortality rate has been witnessed globally. Despite noteworthy research in the discovery and development of neural therapeutics, brain drug delivery still encounters limited success due to meager perviousness of most of the drug molecules through the blood-brain barrier (BBB), a tight layer of endothelial cells that selectively impedes routing of the molecules across itself. In this Review, we have tried to present a comprehensive idea on the recent developments in nanoparticle based BBB delivery systems, with a focus on the advancements in receptor targeted polymeric nanoparticles pertaining to BBB delivery. We have also attempted to bridge the gap between conventional brain delivery strategies and nanoparticle based BBB delivery for in-depth understanding. Various strategies are being explored for simplifying delivery of molecules across the BBB; however, they have their own limitations such as invasiveness and need for hospitalization and surgery. Introduction of nanotechnology can impressively benefit brain drug delivery. Though many nanoparticles are being explored, there are still several issues that need to be analyzed scrupulously before a real and efficient BBB traversing nanoformulation is realized.
Collapse
Affiliation(s)
- Taru Dube
- Institute of Nano Science and Technology, Mohali, Punjab − 160062, India
| | - Sonika Chibh
- Institute of Nano Science and Technology, Mohali, Punjab − 160062, India
| | - Jibanananda Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab − 144411, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab − 160062, India
| |
Collapse
|
58
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
59
|
Díaz-Perlas C, Sánchez-Navarro M, Oller-Salvia B, Moreno M, Teixidó M, Giralt E. Phage display as a tool to discover blood-brain barrier (BBB)-shuttle peptides: panning against a human BBB cellular model. Biopolymers 2017; 108. [DOI: 10.1002/bip.22928] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Cristina Díaz-Perlas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST); Baldiri Reixac 10 Barcelona 08028 Spain
| | - Macarena Sánchez-Navarro
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST); Baldiri Reixac 10 Barcelona 08028 Spain
| | - Benjamí Oller-Salvia
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST); Baldiri Reixac 10 Barcelona 08028 Spain
| | - Miguel Moreno
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST); Baldiri Reixac 10 Barcelona 08028 Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST); Baldiri Reixac 10 Barcelona 08028 Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST); Baldiri Reixac 10 Barcelona 08028 Spain
- Department of Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 Barcelona 08028 Spain
| |
Collapse
|
60
|
Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M. Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther 2017; 11:325-335. [PMID: 28184152 PMCID: PMC5291459 DOI: 10.2147/dddt.s100075] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier (BBB) plays a fundamental role in protecting and maintaining the homeostasis of the brain. For this reason, drug delivery to the brain is much more difficult than that to other compartments of the body. In order to bypass or cross the BBB, many strategies have been developed: invasive techniques, such as temporary disruption of the BBB or direct intraventricular and intracerebral administration of the drug, as well as noninvasive techniques. Preliminary results, reported in the large number of studies on the potential strategies for brain delivery, are encouraging, but it is far too early to draw any conclusion about the actual use of these therapeutic approaches. Among the most recent, but still pioneering, approaches related to the nasal mucosa properties, the permeabilization of the BBB via nasal mucosal engrafting can offer new potential opportunities. It should be emphasized that this surgical procedure is quite invasive, but the implication for patient outcome needs to be compared to the gold standard of direct intracranial injection, and evaluated whilst keeping in mind that central nervous system diseases and lysosomal storage diseases are chronic and severely debilitating and that up to now no therapy seems to be completely successful.
Collapse
Affiliation(s)
- Carlotta Marianecci
- Department of Drug Chemistry and Technology, University of Rome “Sapienza”, Rome, Italy
| | - Federica Rinaldi
- Center for Life Nano Science@ Sapienza, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
| | - Patrizia Nadia Hanieh
- Department of Drug Chemistry and Technology, University of Rome “Sapienza”, Rome, Italy
| | - Luisa Di Marzio
- Department of Pharmacy, University “G. d’Annunzio”, Chieti, Italy
| | - Donatella Paolino
- IRC FSH-Interregional Research Center for Food Safety & Health, Campus Universitario “S. Venuta”, University of Catanzaro “Magna Græcia”, Catanzaro, Italy
- Department of Health Sciences, Campus Universitario “S. Venuta”, University of Catanzaro “Magna Græcia”, Catanzaro, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technology, University of Rome “Sapienza”, Rome, Italy
| |
Collapse
|
61
|
In Vivo Efficacy of Latex from Calotropis procera in Ameliorating Fever—Biochemical Characteristics and Plausible Mechanism. Appl Biochem Biotechnol 2017; 182:1229-1239. [DOI: 10.1007/s12010-016-2395-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/29/2016] [Indexed: 01/06/2023]
|
62
|
Qian C, Tan F. Ratio of apoB/LDL: a potential clinical index for vascular cognitive impairment. BMC Neurol 2016; 16:243. [PMID: 27887584 PMCID: PMC5123286 DOI: 10.1186/s12883-016-0766-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/17/2016] [Indexed: 12/04/2022] Open
Abstract
Background Vascular cognitive impairment (VCI), compared to vascular dementia (VD), has a broader definition and highlights the effect of vascular disease in dementia, and stroke seems play an important role in the development of VCI. However, not all patients with brain infarcts suffer from VCI; unique risk factors appear to cause such progression. This study aimed to find potential risk factors of vascular cognitive impairment among patients with brain infarcts. Methods Thirty-seven dementia patients and 74 brain infarction patients were included; all had infarcts in both basilar ganglia. The frequencies of risk factors, such as age, hypertension, and hyperlipidemia, were compared between the two groups. Results The incident rate of hyperlipidemia in the patients with dementia was 35.14%, which was significantly lower than that in the patients with infarction (59.46%, P = 0.015). In the dementia group, there was a positive correlation between the ratio of apoprotein B (apoB)/low density lipoprotein (LDL) and the Mini Mental State Examination (MMSE) score (R = 0.411, P = 0.011). Conclusion Our study indicated that the ratio of apoB/LDL may be a potential clinical index for vascular cognitive impairment. Electronic supplementary material The online version of this article (doi:10.1186/s12883-016-0766-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Neurology, Shengjing hospital of China Medical University, NO.53 Huangxiang Road, Shenyang, China
| | - Fei Tan
- Department of Neurology, Shengjing hospital of China Medical University, NO.53 Huangxiang Road, Shenyang, China.
| |
Collapse
|
63
|
Pinto MP, Arce M, Yameen B, Vilos C. Targeted brain delivery nanoparticles for malignant gliomas. Nanomedicine (Lond) 2016; 12:59-72. [PMID: 27876436 DOI: 10.2217/nnm-2016-0307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain tumors display the highest mortality rates of all childhood cancers, and over the last decade its prevalence has steadily increased in elderly. To date, effective treatments for brain tumors and particularly for malignant gliomas remain a challenge mainly due to the low permeability and high selectivity of the blood-brain barrier (BBB) to conventional anticancer drugs. In recent years, the elucidation of the cellular mechanisms involved in the transport of substances into the brain has boosted the development of therapeutic-targeted nanoparticles (NPs) with the ability to cross the BBB. Here, we present a comprehensive overview of the available therapeutic strategies developed against malignant gliomas based on 'actively targeted' NPs, the challenges of crossing the BBB and blood-brain tumor barrier as well as its mechanisms and a critical assessment of clinical studies that have used targeted NPs for the treatment of malignant gliomas. Finally, we discuss the potential of actively targeted NP-based strategies in clinical settings, its possible side effects and future directions for therapeutic applications. First draft submitted: 4 October 2016; Accepted for publication: 14 October 2016; Published online: 23 November 2016.
Collapse
Affiliation(s)
- Mauricio P Pinto
- Laboratory of Immunology of Reproduction, Faculty of Chemistry & Biology, Universidad de Santiago de Chile, 9170022 Santiago, Chile
| | - Maximiliano Arce
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Basit Yameen
- Laboratory of Nanomedicine & Biomaterials, Department of Anesthesiology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02115, USA.,Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Cristian Vilos
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Center for the Development of Nanoscience & Nanotechnology, CEDENNA, 9170124 Santiago, Chile
| |
Collapse
|
64
|
Tan JKY, Sellers DL, Pham B, Pun SH, Horner PJ. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Front Mol Neurosci 2016; 9:108. [PMID: 27847462 PMCID: PMC5088201 DOI: 10.3389/fnmol.2016.00108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
With an increased prevalence and understanding of central nervous system (CNS) injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the CNS and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the CNS are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for CNS applications and will ultimately bring non-viral vectors closer to clinical application.
Collapse
Affiliation(s)
- James-Kevin Y Tan
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Drew L Sellers
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Binhan Pham
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Philip J Horner
- Center for Neuroregenerative Medicine, Houston Methodist Research Institute Houston, TX, USA
| |
Collapse
|
65
|
Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 2016; 11:5381-5414. [PMID: 27799765 PMCID: PMC5077137 DOI: 10.2147/ijn.s117210] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review summarizes articles that have been reported in literature on liposome-based strategies for effective drug delivery across the blood–brain barrier. Due to their unique physicochemical characteristics, liposomes have been widely investigated for their application in drug delivery and in vivo bioimaging for the treatment and/or diagnosis of neurological diseases, such as Alzheimer’s, Parkinson’s, stroke, and glioma. Several strategies have been used to deliver drug and/or imaging agents to the brain. Covalent ligation of such macromolecules as peptides, antibodies, and RNA aptamers is an effective method for receptor-targeting liposomes, which allows their blood–brain barrier penetration and/or the delivery of their therapeutic molecule specifically to the disease site. Additionally, methods have been employed for the development of liposomes that can respond to external stimuli. It can be concluded that the development of liposomes for brain delivery is still in its infancy, although these systems have the potential to revolutionize the ways in which medicine is administered.
Collapse
Affiliation(s)
| | - Lionel F Gamarra
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| |
Collapse
|
66
|
Xu J, de Winter F, Farrokhi C, Rockenstein E, Mante M, Adame A, Cook J, Jin X, Masliah E, Lee KF. Neuregulin 1 improves cognitive deficits and neuropathology in an Alzheimer's disease model. Sci Rep 2016; 6:31692. [PMID: 27558862 PMCID: PMC4997345 DOI: 10.1038/srep31692] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023] Open
Abstract
Several lines of evidence suggest that neuregulin 1 (NRG1) signaling may influence cognitive function and neuropathology in Alzheimer’s disease (AD). To test this possibility, full-length type I or type III NRG1 was overexpressed via lentiviral vectors in the hippocampus of line 41 AD mouse. Both type I and type III NRG1 improves deficits in the Morris water-maze behavioral task. Neuropathology was also significantly ameliorated. Decreased expression of the neuronal marker MAP2 and synaptic markers PSD95 and synaptophysin in AD mice was significantly reversed. Levels of Aβ peptides and plaques were markedly reduced. Furthermore, we showed that soluble ectodomains of both type I and type III NRG1 significantly increased expression of Aβ-degrading enzyme neprilysin (NEP) in primary neuronal cultures. Consistent with this finding, immunoreactivity of NEP was increased in the hippocampus of AD mice. These results suggest that NRG1 provides beneficial effects in candidate neuropathologic substrates of AD and, therefore, is a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Jiqing Xu
- Clayton Foundation for Peptide Biology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| | - Fred de Winter
- Clayton Foundation for Peptide Biology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| | - Catherine Farrokhi
- Clayton Foundation for Peptide Biology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Michael Mante
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Anthony Adame
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jonathan Cook
- Molecular Neurobiology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| | - Xin Jin
- Molecular Neurobiology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kuo-Fen Lee
- Clayton Foundation for Peptide Biology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| |
Collapse
|
67
|
Thuenauer R, Müller SK, Römer W. Pathways of protein and lipid receptor-mediated transcytosis in drug delivery. Expert Opin Drug Deliv 2016; 14:341-351. [DOI: 10.1080/17425247.2016.1220364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
68
|
Abstract
The amyloid β-protein (Aβ) plays an indispensable role in the pathogenesis of Alzheimer disease (AD). Aβ is subject to proteolytic degradation by a diverse array of peptidases and proteinases, known collectively as Aβ-degrading proteases (AβDPs). A growing number of AβDPs have been identified that impact Aβ powerfully and in a surprising variety of ways. As such, AβDPs hold considerable therapeutic potential for the treatment and/or prevention of AD. Here, we critically review the relative merits of therapeutic strategies targeting AβDPs compared with current Aβ-lowering strategies focused on immunotherapies and pharmacological modulation of Aβ-producing enzymes. Several innovative advances have increased considerably the feasibility of delivering AβDPs to the brain or enhancing their activity in a non-invasive manner. We argue that therapies targeting AβDPs offer numerous potential advantages that should be explored through continued research into this promising field.
Collapse
Affiliation(s)
- Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Office: 5212 Natural Sciences II, Irvine, CA, 92697-1450, USA.
| |
Collapse
|
69
|
Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1241-51. [DOI: 10.1016/j.nano.2016.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 11/14/2015] [Accepted: 01/15/2016] [Indexed: 11/30/2022]
|
70
|
Spencer B, Williams S, Rockenstein E, Valera E, Xin W, Mante M, Florio J, Adame A, Masliah E, Sierks MR. α-synuclein conformational antibodies fused to penetratin are effective in models of Lewy body disease. Ann Clin Transl Neurol 2016; 3:588-606. [PMID: 27606342 PMCID: PMC4999592 DOI: 10.1002/acn3.321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/12/2016] [Accepted: 04/29/2016] [Indexed: 12/15/2022] Open
Abstract
Objective Progressive accumulation of α‐synuclein (α‐syn) has been associated with Parkinson's disease (PD) and Dementia with Lewy body (DLB). The mechanisms through which α‐syn leads to neurodegeneration are not completely clear; however, the formation of various oligomeric species have been proposed to play a role. Antibody therapy has shown effectiveness at reducing α‐syn accumulation in the central nervous system (CNS); however, most of these studies have been conducted utilizing antibodies that recognize both monomeric and higher molecular weight α‐syn. In this context, the main objective of this study was to investigate the efficacy of immunotherapy with single‐chain antibodies (scFVs) against specific conformational forms of α‐syn fused to a novel brain penetrating sequence. Method We screened various scFVs against α‐syn expressed from lentiviral vectors by intracerebral injections in an α‐syn tg model. The most effective scFVs were fused to the cell‐penetrating peptide penetratin to enhance transport across the blood–brain barrier, and lentiviral vectors were constructed and tested for efficacy following systemic delivery intraperitoneal into α‐syn tg mice. Result Two scFVs (D5 and 10H) selectively targeted different α‐syn oligomers and reduced the accumulation of α‐syn and ameliorated functional deficits when delivered late in disease development; however, only one of the antibodies (D5) was also effective when delivered early in disease development. These scFVs were also utilized in an enzyme‐linked immunosorbent assay (ELISA) assay to monitor the effects of immunotherapy on α‐syn oligomers in brain and plasma. Interpretation The design and targeting of antibodies for specific species of α‐syn oligomers is crucial for therapeutic immunotherapy and might be of relevance for the treatment of Lewy body disease.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neuroscience University of California San Diego California
| | - Stephanie Williams
- Department of Chemical Engineering Arizona State University Tempe Arizona
| | - Edward Rockenstein
- Department of Neuroscience University of California San Diego California
| | - Elvira Valera
- Department of Neuroscience University of California San Diego California
| | - Wei Xin
- Department of Chemical Engineering Arizona State University Tempe Arizona
| | - Michael Mante
- Department of Neuroscience University of California San Diego California
| | - Jazmin Florio
- Department of Neuroscience University of California San Diego California
| | - Anthony Adame
- Department of Neuroscience University of California San Diego California
| | - Eliezer Masliah
- Department of Neuroscience University of California San Diego California; Department of Pathology University of California San Diego California
| | - Michael R Sierks
- Department of Chemical Engineering Arizona State University Tempe Arizona
| |
Collapse
|
71
|
Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration. Proc Natl Acad Sci U S A 2016; 113:2514-9. [PMID: 26888285 DOI: 10.1073/pnas.1515526113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics.
Collapse
|
72
|
Gramlich PA, Westbroek W, Feldman RA, Awad O, Mello N, Remington MP, Sun Y, Zhang W, Sidransky E, Betenbaugh MJ, Fishman PS. A peptide-linked recombinant glucocerebrosidase for targeted neuronal delivery: Design, production, and assessment. J Biotechnol 2016; 221:1-12. [PMID: 26795355 DOI: 10.1016/j.jbiotec.2016.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
Abstract
Although recombinant glucocerebrosidase (GCase) is the standard therapy for the inherited lysosomal storage disease Gaucher's disease (GD), enzyme replacement is not effective when the central nervous system is affected. We created a series of recombinant genes/proteins where GCase was linked to different membrane binding peptides including the Tat peptide, the rabies glycoprotein derived peptide (RDP), the binding domain from tetanus toxin (TTC), and a tetanus like peptide (Tet1). The majority of these proteins were well-expressed in a mammalian producer cell line (HEK 293F). Purified recombinant Tat-GCase and RDP-GCase showed similar GCase protein delivery to a neuronal cell line that genetically lacks the functional enzyme, and greater delivery than control GCase, Cerezyme (Genzyme). This initial result was unexpected based on observations of superior protein delivery to neurons with RDP as a vector. A recombinant protein where a fragment of the flexible hinge region from IgA (IgAh) was introduced between RDP and GCase showed substantially enhanced GCase neuronal delivery (2.5 times over Tat-GCase), suggesting that the original construct resulted in interference with the capacity of RDP to bind neuronal membranes. Extended treatment of these knockout neuronal cells with either Tat-GCase or RDP-IgAh-GCase resulted in an >90% reduction in the lipid substrate glucosylsphingosine, approaching normal levels. Further in vivo studies of RDP-IgAh-GCase as well as Tat-GCase are warranted to assess their potential as treatments for neuronopathic forms of GD. These peptide vectors are especially attractive as they have the potential to carry a protein across the blood-brain barrier, avoiding invasive direct brain delivery.
Collapse
Affiliation(s)
- Paul A Gramlich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA.
| | - Wendy Westbroek
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, MD, USA
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, MD, USA
| | - Nicholas Mello
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA; Department of Molecular Medicine, University of Maryland School of Medicine, MD, USA
| | - Mary P Remington
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Paul S Fishman
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA; Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
73
|
Tagami T, Taki M, Ozeki T. Nanoparticulate Drug Delivery Systems to Overcome the Blood–Brain Barrier. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
74
|
Wang S, Meng Y, Li C, Qian M, Huang R. Receptor-Mediated Drug Delivery Systems Targeting to Glioma. NANOMATERIALS 2015; 6:nano6010003. [PMID: 28344260 PMCID: PMC5302535 DOI: 10.3390/nano6010003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/08/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022]
Abstract
Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS). The complexity of glioma, especially the existence of the blood-brain barrier (BBB), makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China.
| | - Ying Meng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China.
| | - Chengyi Li
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China.
| | - Min Qian
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China.
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China.
| |
Collapse
|
75
|
Neurometabolic roles of ApoE and Ldl-R in mouse brain. J Bioenerg Biomembr 2015; 48:13-21. [PMID: 26686234 DOI: 10.1007/s10863-015-9636-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Polymorphisms in ApoE are highly correlated with the progression of neurodegenerative disease, in particular Alzheimer's disease. Little is known, however, about the role of ApoE or cholesterol metabolism on brain neurochemistry in general. To better understand the role of lipoprotein and cholesterol metabolism in the brain, we profiled 6 and 12-week old Apoe KO and Ldlr KO mouse models via unbiased metabolomics to determine which metabolites were affected at an early age to identify those that may play a role in triggering pathology later in life. Steady-state metabolomics revealed only subtle differences among Apoe KO, Ldlr KO and WT mouse brains. Ldlr KO mice exhibited alterations in metabolites involved in neurotransmitter, amino acid and cholesterol metabolism. In contrast, Apoe KO mice only showed subtle changes in amino acid and neurotransmitter metabolism. These subtle changes in a broad range of metabolites indicate that ApoE and Ldl-R alone may not play a significant role in these mouse models at an early age, but instead require the cumulative effect from different pathways that lead to dysfunction at a much later stage of life.
Collapse
|
76
|
Rueda F, Céspedes MV, Conchillo-Solé O, Sánchez-Chardi A, Seras-Franzoso J, Cubarsi R, Gallardo A, Pesarrodona M, Ferrer-Miralles N, Daura X, Vázquez E, García-Fruitós E, Mangues R, Unzueta U, Villaverde A. Bottom-Up Instructive Quality Control in the Biofabrication of Smart Protein Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7816-22. [PMID: 26509451 DOI: 10.1002/adma.201503676] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/04/2015] [Indexed: 05/05/2023]
Abstract
The impact of cell factory quality control on material properties is a neglected but critical issue in the fabrication of protein biomaterials, which are unique in merging structure and function. The molecular chaperoning of protein conformational status is revealed here as a potent molecular instructor of the macroscopic properties of self-assembling, cell-targeted protein nanoparticles, including biodistribution upon in vivo administration.
Collapse
Affiliation(s)
- Fabián Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Biomedical Research Institute Sant Pau (IIB-SantPau), Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | | | - Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Rafael Cubarsi
- Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, 08034, Barcelona, Spain
| | - Alberto Gallardo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Biomedical Research Institute Sant Pau (IIB-SantPau), Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Mireia Pesarrodona
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Biomedical Research Institute Sant Pau (IIB-SantPau), Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Biomedical Research Institute Sant Pau (IIB-SantPau), Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| |
Collapse
|
77
|
Spencer B, Potkar R, Metcalf J, Thrin I, Adame A, Rockenstein E, Masliah E. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease. J Biol Chem 2015; 291:1905-1920. [PMID: 26620558 DOI: 10.1074/jbc.m115.678185] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 01/07/2023] Open
Abstract
Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic.
Collapse
Affiliation(s)
| | | | - Jeff Metcalf
- From the Departments of Neuroscience and; Pathology, University of California, San Diego, California 92102
| | - Ivy Thrin
- From the Departments of Neuroscience and
| | | | | | - Eliezer Masliah
- From the Departments of Neuroscience and; Pathology, University of California, San Diego, California 92102.
| |
Collapse
|
78
|
Ginocchio VM, Brunetti-Pierri N. Progress toward improved therapies for inborn errors of metabolism. Hum Mol Genet 2015; 25:R27-35. [PMID: 26443595 DOI: 10.1093/hmg/ddv418] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022] Open
Abstract
Because of their prevalence, severity and lack of effective treatments, inborn errors of metabolism need novel and more effective therapeutic approaches. The opportunity for an early treatment coming from expanded newborn screening has made this need even more urgent. To meet this demand, a growing number of novel treatments are entering in the phase of clinical development. Strategies to overcome the detrimental consequences of the enzyme deficiencies responsible for inborn errors of metabolism have been focused on multiple fronts at the levels of the gene, RNA, protein and whole cell. These strategies have been accomplished using a wide spectrum of approaches ranging from small molecules to enzyme replacement therapy, cell and gene therapy. The applications of new technologies in the field of inborn errors of metabolism, such as genome editing, RNA interference and cell reprogramming, along with progress in pre-existing strategies, such as gene therapy or cell transplantation, have tremendous potential for clinical translation.
Collapse
Affiliation(s)
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli (NA) 80078, Italy and Department of Translational Medicine, Federico II University, Naples 80131, Italy
| |
Collapse
|
79
|
Spencer B, Valera E, Rockenstein E, Trejo-Morales M, Adame A, Masliah E. A brain-targeted, modified neurosin (kallikrein-6) reduces α-synuclein accumulation in a mouse model of multiple system atrophy. Mol Neurodegener 2015; 10:48. [PMID: 26394760 PMCID: PMC4580347 DOI: 10.1186/s13024-015-0043-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022] Open
Abstract
Background Multiple system atrophy (MSA) is a progressive, neurodegenerative disease characterized by parkinsonism, resistance to dopamine therapy, ataxia, autonomic dysfunction, and pathological accumulation of α-synuclein (α-syn) in oligodendrocytes. Neurosin (kallikrein-6) is a serine protease capable of cleaving α-syn in the CNS, and we have previously shown that lentiviral (LV) vector delivery of neurosin into the brain of a mouse model of dementia with Lewy body/ Parkinson’s disease reduces the accumulation of α-syn and improves neuronal synaptic integrity. Results In this study, we investigated the ability of a modified, systemically delivered neurosin to reduce the levels of α-syn in oligodendrocytes and reduce the cell-to-cell spread of α-syn to glial cells in a mouse model of MSA (MBP-α-syn). We engineered a viral vector that expresses a neurosin genetically modified for increased half-life (R80Q mutation) that also contains a brain-targeting sequence (apoB) for delivery into the CNS. Peripheral administration of the LV-neurosin-apoB to the MBP-α-syn tg model resulted in accumulation of neurosin-apoB in the CNS, reduced accumulation of α-syn in oligodendrocytes and astrocytes, improved myelin sheath formation in the corpus callosum and behavioral improvements. Conclusion Thus, the modified, brain-targeted neurosin may warrant further investigation as potential therapy for MSA. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0043-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | | | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA. .,Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
80
|
Thongrangsalit S, Phaechamud T, Lipipun V, Ritthidej GC. Bromocriptine tablet of self-microemulsifying system adsorbed onto porous carrier to stimulate lipoproteins secretion for brain cellular uptake. Colloids Surf B Biointerfaces 2015; 131:162-9. [DOI: 10.1016/j.colsurfb.2015.04.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/05/2015] [Accepted: 04/27/2015] [Indexed: 01/26/2023]
|
81
|
Planque SA, Nishiyama Y, Sonoda S, Lin Y, Taguchi H, Hara M, Kolodziej S, Mitsuda Y, Gonzalez V, Sait HBR, Fukuchi KI, Massey RJ, Friedland RP, O'Nuallain B, Sigurdsson EM, Paul S. Specific amyloid β clearance by a catalytic antibody construct. J Biol Chem 2015; 290:10229-41. [PMID: 25724648 DOI: 10.1074/jbc.m115.641738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Indexed: 11/06/2022] Open
Abstract
Classical immunization methods do not generate catalytic antibodies (catabodies), but recent findings suggest that the innate antibody repertoire is a rich catabody source. We describe the specificity and amyloid β (Aβ)-clearing effect of a catabody construct engineered from innate immunity principles. The catabody recognized the Aβ C terminus noncovalently and hydrolyzed Aβ rapidly, with no reactivity to the Aβ precursor protein, transthyretin amyloid aggregates, or irrelevant proteins containing the catabody-sensitive Aβ dipeptide unit. The catabody dissolved preformed Aβ aggregates and inhibited Aβ aggregation more potently than an Aβ-binding IgG. Intravenous catabody treatment reduced brain Aβ deposits in a mouse Alzheimer disease model without inducing microgliosis or microhemorrhages. Specific Aβ hydrolysis appears to be an innate immune function that could be applied for therapeutic Aβ removal.
Collapse
Affiliation(s)
- Stephanie A Planque
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yasuhiro Nishiyama
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sari Sonoda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yan Lin
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Hiroaki Taguchi
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Mariko Hara
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Steven Kolodziej
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yukie Mitsuda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Veronica Gonzalez
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Hameetha B R Sait
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Ken-ichiro Fukuchi
- the Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois 61605
| | | | - Robert P Friedland
- the Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky 40202, and
| | - Brian O'Nuallain
- the Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Einar M Sigurdsson
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016,
| | - Sudhir Paul
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030,
| |
Collapse
|
82
|
Peluffo H, Unzueta U, Negro-Demontel ML, Xu Z, Váquez E, Ferrer-Miralles N, Villaverde A. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol Adv 2015; 33:277-87. [PMID: 25698504 DOI: 10.1016/j.biotechadv.2015.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 01/14/2015] [Accepted: 02/09/2015] [Indexed: 01/17/2023]
Abstract
The increasing incidence of diseases affecting the central nervous system (CNS) demands the urgent development of efficient drugs. While many of these medicines are already available, the Blood Brain Barrier and to a lesser extent, the Blood Spinal Cord Barrier pose physical and biological limitations to their diffusion to reach target tissues. Therefore, efforts are needed not only to address drug development but specially to design suitable vehicles for delivery into the CNS through systemic administration. In the context of the functional and structural versatility of proteins, recent advances in their biological fabrication and a better comprehension of the physiology of the CNS offer a plethora of opportunities for the construction and tailoring of plain nanoconjugates and of more complex nanosized vehicles able to cross these barriers. We revise here how the engineering of functional proteins offers drug delivery tools for specific CNS diseases and more transversally, how proteins can be engineered into smart nanoparticles or 'artificial viruses' to afford therapeutic requirements through alternative administration routes.
Collapse
Affiliation(s)
- Hugo Peluffo
- Neuroinflammation Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - María Luciana Negro-Demontel
- Neuroinflammation Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Zhikun Xu
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Esther Váquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
83
|
Aronovich EL, Hackett PB. Lysosomal storage disease: gene therapy on both sides of the blood-brain barrier. Mol Genet Metab 2015; 114:83-93. [PMID: 25410058 PMCID: PMC4312729 DOI: 10.1016/j.ymgme.2014.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
Most lysosomal storage disorders affect the nervous system as well as other tissues and organs of the body. Previously, the complexities of these diseases, particularly in treating neurologic abnormalities, were too great to surmount. However, based on recent developments there are realistic expectations that effective therapies are coming soon. Gene therapy offers the possibility of affordable, comprehensive treatment associated with these diseases currently not provided by standards of care. With a focus on correction of neurologic disease by systemic gene therapy of mucopolysaccharidoses types I and IIIA, we review some of the major recent advances in viral and non-viral vectors, methods of their delivery and strategies leading to correction of both the nervous and somatic tissues as well as evaluation of functional correction of neurologic manifestations in animal models. We discuss two questions: what systemic gene therapy strategies work best for correction of both somatic and neurologic abnormalities in a lysosomal storage disorder and is there evidence that targeting peripheral tissues (e.g., in the liver) has a future for ameliorating neurologic disease in patients?
Collapse
Affiliation(s)
- Elena L Aronovich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Perry B Hackett
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
84
|
Golebiowski D, Bradbury AM, Kwon CS, van der Bom IMJ, Stoica L, Johnson AK, Wilson DU, Gray-Edwards HL, Hudson JA, Johnson JA, Randle AN, Whitlock BK, Sartin JL, Kühn AL, Gounis M, Asaad W, Martin DR, Sena-Esteves M. AAV Gene Therapy Strategies for Lysosomal Storage Disorders with Central Nervous System Involvement. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-1-4939-2306-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
85
|
Sardi SP, Cheng SH, Shihabuddin LS. Gaucher-related synucleinopathies: the examination of sporadic neurodegeneration from a rare (disease) angle. Prog Neurobiol 2015; 125:47-62. [PMID: 25573151 DOI: 10.1016/j.pneurobio.2014.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/01/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
Gaucher disease, the most common lysosomal storage disease, is caused by a recessively inherited deficiency in glucocerebrosidase and subsequent accumulation of toxic lipid substrates. Heterozygous mutations in the lysosomal glucocerebrosidase gene (GBA1) have recently been recognized as the highest genetic risk factor for the development of α-synuclein aggregation disorders ("synucleinopathies"), including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Despite the wealth of experimental, clinical and genetic evidence that supports the association between mutant genotypes and synucleinopathy risk, the precise mechanisms by which GBA1 mutations lead to PD and DLB remain unclear. Decreased glucocerebrosidase activity has been demonstrated to promote α-synuclein misprocessing. Furthermore, aberrant α-synuclein species have been reported to downregulate glucocerebrosidase activity, which further contributes to disease progression. In this review, we summarize the recent findings that highlight the complexity of this pathogenetic link and how several pathways that connect glucocerebrosidase insufficiency with α-synuclein misprocessing have emerged as potential therapeutic targets. From a translational perspective, we discuss how various therapeutic approaches to lysosomal dysfunction have been explored for the treatment of GBA1-related synucleinopathies, and potentially, for non-GBA1-associated neurodegenerative diseases. In summary, the link between GBA1 and synucleinopathies has become the paradigm of how the study of a rare lysosomal disease can transform the understanding of the etiopathology, and hopefully the treatment, of a more prevalent and multifactorial disorder.
Collapse
Affiliation(s)
- S Pablo Sardi
- Genzyme, a Sanofi Company, 49 New York Avenue, Framingham, MA 01701, USA.
| | - Seng H Cheng
- Genzyme, a Sanofi Company, 49 New York Avenue, Framingham, MA 01701, USA
| | | |
Collapse
|
86
|
McIntyre C, Derrick-Roberts ALK, Byers S, Anson DS. Correction of murine mucopolysaccharidosis type IIIA central nervous system pathology by intracerebroventricular lentiviral-mediated gene delivery. J Gene Med 2014; 16:374-87. [DOI: 10.1002/jgm.2816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chantelle McIntyre
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
| | - Ainslie L. K. Derrick-Roberts
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
| | - Sharon Byers
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
- School of Molecular and Biomedical Science; University of Adelaide; South Australia Australia
| | - Donald S. Anson
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
| |
Collapse
|
87
|
Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol 2014; 55:613-31. [PMID: 25340933 DOI: 10.1146/annurev-pharmtox-010814-124852] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biologics are an emerging class of medicines with substantial promise to treat neurological disorders such as Alzheimer's disease, stroke, and multiple sclerosis. However, the blood-brain barrier (BBB) presents a formidable obstacle that appreciably limits brain uptake and hence the therapeutic potential of biologics following intravenous administration. One promising strategy for overcoming the BBB to deliver biologics is the targeting of endogenous receptor-mediated transport (RMT) systems that employ vesicular trafficking to transport ligands across the BBB endothelium. If a biologic is modified with an appropriate targeting ligand, it can gain improved access to the brain via RMT. Various RMT-targeting strategies have been developed over the past 20 years, and this review explores exciting recent advances, emphasizing studies that show brain targeting in vivo.
Collapse
Affiliation(s)
- Jason M Lajoie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | | |
Collapse
|
88
|
Affiliation(s)
- Anne Messer
- Neural Stem Cell Institute, Rensselaer, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
89
|
Stanimirovic D, Kemmerich K, Haqqani AS, Farrington GK. Engineering and pharmacology of blood-brain barrier-permeable bispecific antibodies. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:301-35. [PMID: 25307221 DOI: 10.1016/bs.apha.2014.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The development and approval of antibody-based therapeutics have progressed rapidly over the past decade. However, poor blood-brain barrier (BBB) permeability hinders the progress of antibody therapies for conditions in which the target is located in the central nervous system (CNS). Increased brain penetration of therapeutic antibodies can be achieved by engineering bispecific antibodies in which one antibody binding specificity recognizes a BBB receptor that undergoes receptor-mediated transcytosis (RMT) from the circulatory compartment into brain parenchyma, and the second binding specificity recognizes a therapeutic target within the CNS. These bispecific antibodies can be built using various antibody fragments as "building blocks," including monomeric single-domain antibodies, the smallest antigen-binding fragments of immunoglobulins. The development of BBB-crossing bispecific antibodies requires targeted antibody engineering to optimize multiple characteristics of "BBB carrier" and therapeutic arms, as well as other antibody properties impacting pharmacokinetics and effector function. Whereas several BBB-crossing bispecific antibodies have been developed using transferrin receptor antibodies as BBB carriers, the principal obstacle for capitalizing on the future promise of CNS-active antibodies remains the scarcity of known, characterized RMT receptors which could be exploited for the development of BBB carriers. This chapter reviews the recent advances and guiding principles for designing, engineering, and evaluating BBB-crossing bispecific antibodies and discusses approaches to identify and characterize novel BBB-crossing antibodies and RMT receptors.
Collapse
Affiliation(s)
- Danica Stanimirovic
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada.
| | - Kristin Kemmerich
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
90
|
ESCRT-mediated uptake and degradation of brain-targeted α-synuclein single chain antibody attenuates neuronal degeneration in vivo. Mol Ther 2014; 22:1753-67. [PMID: 25008355 PMCID: PMC4428402 DOI: 10.1038/mt.2014.129] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/01/2014] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease and dementia with Lewy bodies are neurodegenerative
disorders characterized by accumulation of α-synuclein (α-syn).
Recently, single-chain fragment variables (scFVs) have been developed against
individual conformational species of α-syn. Unlike more traditional
monoclonal antibodies, these scFVs will not activate or be endocytosed by Fc
receptors. For this study, we investigated an scFV directed against oligomeric
α-syn fused to the LDL receptor-binding domain from apolipoprotein B
(apoB). The modified scFV showed enhanced brain penetration and was imported
into neuronal cells through the endosomal sorting complex required for transport
(ESCRT) pathway, leading to lysosomal degradation of α-syn aggregates.
Further analysis showed that the scFV was effective at ameliorating
neurodegenerative pathology and behavioral deficits observed in the mouse model
of dementia with Lewy bodies/Parkinson's disease. Thus, the apoB
modification had the effect of both increasing accumulation of the scFV in the
brain and directing scFV/α-syn complexes for degradation through the ESCRT
pathway, leading to improved therapeutic potential of immunotherapy.
Collapse
|
91
|
Molino Y, Jabès F, Lacassagne E, Gaudin N, Khrestchatisky M. Setting-up an in vitro model of rat blood-brain barrier (BBB): a focus on BBB impermeability and receptor-mediated transport. J Vis Exp 2014:e51278. [PMID: 24998179 PMCID: PMC4208856 DOI: 10.3791/51278] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Collapse
|
92
|
Spencer B, Masliah E. Immunotherapy for Alzheimer's disease: past, present and future. Front Aging Neurosci 2014; 6:114. [PMID: 24959143 PMCID: PMC4051211 DOI: 10.3389/fnagi.2014.00114] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/21/2014] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive, neurodegenerative disorder affecting over 5 million people in the US alone. This neurological disorder is characterized by widespread neurodegeneration throughout the association cortex and limbic system caused by deposition of Aβ resulting in the formation of plaques and tau resulting in the formation of neurofibrillary tangles. Active immunization for Aβ showed promise in animal models of AD; however, the models were unable to predict the off-target immune effects in human patients. A few patients in the initial trial suffered cerebral meningoencephalitis. Recently, passive immunization has shown promise in the lab with less chance of off-target immune effects. Several trials have attempted using passive immunization for Aβ, but again, positive end points have been elusive. The next generation of immunotherapy for AD may involve the marriage of anti-Aβ antibodies with technology aimed at improving transport across the blood-brain barrier (BBB). Receptor mediated transport of antibodies may increase CNS exposure and improve the therapeutic index in the clinic.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of CaliforniaSan Diego, La Jolla, CA, USA
- Department of Pathology, University of CaliforniaSan Diego, La Jolla, CA, USA
| |
Collapse
|
93
|
Sarkar G, Curran GL, Sarkaria JN, Lowe VJ, Jenkins RB. Peptide carrier-mediated non-covalent delivery of unmodified cisplatin, methotrexate and other agents via intravenous route to the brain. PLoS One 2014; 9:e97655. [PMID: 24847943 PMCID: PMC4029735 DOI: 10.1371/journal.pone.0097655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/22/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rapid pre-clinical evaluation of chemotherapeutic agents against brain cancers and other neurological disorders remains largely unattained due to the presence of the blood-brain barrier (BBB), which limits transport of most therapeutic compounds to the brain. A synthetic peptide carrier, K16ApoE, was previously developed that enabled transport of target proteins to the brain by mimicking a ligand-receptor system. The peptide carrier was found to generate transient BBB permeability, which was utilized for non-covalent delivery of cisplatin, methotrexate and other compounds to the brain. APPROACH Brain delivery of the chemotherapeutics and other agents was achieved either by injecting the carrier peptide and the drugs separately or as a mixture, to the femoral vein. A modification of the method comprised injection of K16ApoE pre-mixed with cetuximab, followed by injection of a 'small-molecule' drug. PRINCIPAL FINDINGS Seven-of-seven different small molecules were successfully delivered to the brain via K16ApoE. Depending on the method, brain uptake with K16ApoE was 0.72-1.1% for cisplatin and 0.58-0.92% for methotrexate (34-50-fold and 54-92 fold greater for cisplatin and methotrexate, respectively, with K16ApoE than without). Visually intense brain-uptake of Evans Blue, Light Green SF and Crocein scarlet was also achieved. Direct intracranial injection of EB show locally restricted distribution of the dye in the brain, whereas K16ApoE-mediated intravenous injection of EB resulted in the distribution of the dye throughout the brain. Experiments with insulin suggest that ligand-receptor signaling intrinsic to the BBB provides a natural means for passive transport of some molecules across the BBB. SIGNIFICANCE The results suggest that the carrier peptide can non-covalently transport various chemotherapeutic agents to the brain. Thus, the method offers an avenue for pre-clinical evaluation of various small and large therapeutic molecules against brain tumors and other neurological disorders.
Collapse
Affiliation(s)
- Gobinda Sarkar
- Department of Experimental Pathology, Mayo Clinic and Foundation, Rochester, Minnesota, United States of America
- * E-mail: (GS); (RJ)
| | - Geoffry L. Curran
- Department of Neurology, Mayo Clinic and Foundation, Rochester, Minnesota, United States of America
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic and Foundation, Rochester, Minnesota, United States of America
| | - Val J. Lowe
- Department of Nuclear Medicine, Mayo Clinic and Foundation, Rochester, Minnesota, United States of America
| | - Robert B. Jenkins
- Department of Experimental Pathology, Mayo Clinic and Foundation, Rochester, Minnesota, United States of America
- * E-mail: (GS); (RJ)
| |
Collapse
|
94
|
Spencer B, Verma I, Desplats P, Morvinski D, Rockenstein E, Adame A, Masliah E. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis. J Biol Chem 2014; 289:17917-31. [PMID: 24825898 DOI: 10.1074/jbc.m114.557439] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials.
Collapse
Affiliation(s)
- Brian Spencer
- From the NeuroTransit, Inc., San Diego, California 92121,
| | - Inder Verma
- the Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, and
| | | | - Dinorah Morvinski
- the Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, and
| | | | | | - Eliezer Masliah
- the Departments of Neuroscience and Pathology, University of California at San Diego, San Diego, California 92093
| |
Collapse
|
95
|
Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A. J Neurosci 2014; 34:3122-9. [PMID: 24573272 DOI: 10.1523/jneurosci.4785-13.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enzyme replacement therapy (ERT) is a treatment option for lysosomal storage disorders (LSDs) caused by deficiencies of soluble lysosomal enzymes. ERT depends on receptor-mediated transport of intravenously injected recombinant enzyme to lysosomes of patient cells. The blood-brain barrier (BBB) prevents efficient transfer of therapeutic polypeptides from the blood to the brain parenchyma and thus hinders effective treatment of LSDs with CNS involvement. We compared the potential of five brain-targeting peptides to promote brain delivery of the lysosomal enzyme arylsulfatase A (ASA). Fusion proteins between ASA and the protein transduction domain of the human immunodeficiency virus TAT protein (Tat), an Angiopep peptide (Ang-2), and the receptor-binding domains of human apolipoprotein B (ApoB) and ApoE (two versions, ApoE-I and ApoE-II) were generated. All ASA fusion proteins were enzymatically active and targeted to lysosomes when added to cultured cells. In contrast to wild-type ASA, which is taken up by mannose-6-phosphate receptors, all chimeric proteins were additionally endocytosed via mannose-6-phosphate-independent routes. For ASA-Ang-2, ASA-ApoE-I, and ASA-ApoE-II, uptake was partially due to the low-density lipoprotein receptor-related protein 1. Transendothelial transfer in a BBB cell culture model was elevated for ASA-ApoB, ASA-ApoE-I, and ASA-ApoE-II. Brain delivery was, however, increased only for ASA-ApoE-II. ApoE-II was also superior to wild-type ASA in reducing lysosomal storage in the CNS of ASA-knock-out mice treated by ERT. Therefore, the ApoE-derived peptide appears useful to treat metachromatic leukodystrophy and possibly other neurological disorders more efficiently.
Collapse
|
96
|
LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 2013; 34:9171-82. [DOI: 10.1016/j.biomaterials.2013.08.039] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023]
|
97
|
Ye D, Raghnaill MN, Bramini M, Mahon E, Åberg C, Salvati A, Dawson KA. Nanoparticle accumulation and transcytosis in brain endothelial cell layers. NANOSCALE 2013; 5:11153-65. [PMID: 24077327 DOI: 10.1039/c3nr02905k] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The blood-brain barrier (BBB) is a selective barrier, which controls and limits access to the central nervous system (CNS). The selectivity of the BBB relies on specialized characteristics of the endothelial cells that line the microvasculature, including the expression of intercellular tight junctions, which limit paracellular permeability. Several reports suggest that nanoparticles have a unique capacity to cross the BBB. However, direct evidence of nanoparticle transcytosis is difficult to obtain, and we found that typical transport studies present several limitations when applied to nanoparticles. In order to investigate the capacity of nanoparticles to access and transport across the BBB, several different nanomaterials, including silica, titania and albumin- or transferrin-conjugated gold nanoparticles of different sizes, were exposed to a human in vitro BBB model of endothelial hCMEC/D3 cells. Extensive transmission electron microscopy imaging was applied in order to describe nanoparticle endocytosis and typical intracellular localisation, as well as to look for evidence of eventual transcytosis. Our results show that all of the nanoparticles were internalised, to different extents, by the BBB model and accumulated along the endo-lysosomal pathway. Rare events suggestive of nanoparticle transcytosis were also observed for several of the tested materials.
Collapse
Affiliation(s)
- Dong Ye
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology & UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | |
Collapse
|
98
|
Sly WS, Vogler C. The final frontier -- crossing the blood-brain barrier. EMBO Mol Med 2013; 5:655-7. [PMID: 23653302 PMCID: PMC3662309 DOI: 10.1002/emmm.201302668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 11/07/2022] Open
Affiliation(s)
- William S Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|
99
|
|
100
|
Human-derived physiological heat shock protein 27 complex protects brain after focal cerebral ischemia in mice. PLoS One 2013; 8:e66001. [PMID: 23785464 PMCID: PMC3681760 DOI: 10.1371/journal.pone.0066001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/30/2013] [Indexed: 02/04/2023] Open
Abstract
Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27) is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a "physiological" HSP27 (hHSP27) from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27), which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes.
Collapse
|