51
|
Cynoglossus semilaevis Rspo3 Regulates Embryo Development by Inhibiting the Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2018; 19:ijms19071915. [PMID: 29966290 PMCID: PMC6073468 DOI: 10.3390/ijms19071915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/10/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023] Open
Abstract
Cynoglossus semilaevis is an important economic fish species and has long been cultivated in China. Since the completion of its genome and transcriptome sequencing, genes relating to C. semilaevis development have been extensively studied. R-spondin 3 (Rspo3) is a member of the R-spondin family. It plays an important role in biological processes such as vascular development and oncogenesis. In this study, we cloned and characterized the expression patterns and functions of C. semilaevisRspo3. Initial structural and phylogenetic analyses revealed a unique FU3 domain that exists only in ray-finned fish RSPO3. Subsequent embryonic expression profile analysis showed elevating expression of Rspo3 from gastrulation to the formation of the eye lens, while, in tail bud embryos, Rspo3 expression was significantly high in the diencephalon and mesencephalon. The overexpression of C. semilaevis Rspo3 in Danio rerio embryos resulted in a shortened rostral–caudal axis, edema of the pericardial cavity, stubby yolk extension, and ecchymosis. Vascular anomalies were also observed, which is consistent with Rspo3 role in vascular development. Drug treatment and a dual-luciferase reporter assay confirmed the inhibitory role of C. semilaevis Rspo3 in D. rerio Wnt/β-catenin signaling pathway. We further concluded that the FU2, FU3, and TSP1 domains regulate the maternal Wnt/β-catenin signaling pathway, while the FU1 domain regulates the zygotic Wnt/β-catenin signaling pathway. This study enriches Rspo3 research in non-model animals and serves as the basis for further research into the interactions between Rspo and the Wnt/β-catenin signaling pathway.
Collapse
|
52
|
PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc Natl Acad Sci U S A 2018; 115:E3173-E3181. [PMID: 29559533 PMCID: PMC5889626 DOI: 10.1073/pnas.1713510115] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue stem cells in vivo reside in highly structured niches that provide signals for proliferation and differentiation. Understanding the role of the niche requires identifying the key cell types that provide these regulators. In the intestine, R-spondins and Wnts are essential regulators of the stem-cell niche. Here we identify subepithelial myofibroblasts of the PDGF receptor α lineage as the specific stromal cell type that secretes these ligands. These data demonstrate the close interaction between epithelial stem cells and the underlying regulatory stroma niche and provide insights into both normal homeostasis and tissue recovery after injury. Wnts and R-spondins (RSPOs) support intestinal homeostasis by regulating crypt cell proliferation and differentiation. Ex vivo, Wnts secreted by Paneth cells in organoids can regulate the proliferation and differentiation of Lgr5-expressing intestinal stem cells. However, in vivo, Paneth cell and indeed all epithelial Wnt production is completely dispensable, and the cellular source of Wnts and RSPOs that maintain the intestinal stem-cell niche is not known. Here we investigated both the source and the functional role of stromal Wnts and RSPO3 in regulation of intestinal homeostasis. RSPO3 is highly expressed in pericryptal myofibroblasts in the lamina propria and is several orders of magnitude more potent than RSPO1 in stimulating both Wnt/β-catenin signaling and organoid growth. Stromal Rspo3 ablation ex vivo resulted in markedly decreased organoid growth that was rescued by exogenous RSPO3 protein. Pdgf receptor alpha (PdgfRα) is known to be expressed in pericryptal myofibroblasts. We therefore evaluated if PdgfRα identified the key stromal niche cells. In vivo, Porcn excision in PdgfRα+ cells blocked intestinal crypt formation, demonstrating that Wnt production in the stroma is both necessary and sufficient to support the intestinal stem-cell niche. Mice with Rspo3 excision in the PdgfRα+ cells had decreased intestinal crypt Wnt/β-catenin signaling and Paneth cell differentiation and were hypersensitive when stressed with dextran sodium sulfate. The data support a model of the intestinal stem-cell niche regulated by both Wnts and RSPO3 supplied predominantly by stromal pericryptal myofibroblasts marked by PdgfRα.
Collapse
|
53
|
Smith NR, Swain JR, Davies PS, Gallagher AC, Parappilly MS, Beach CZ, Streeter PR, Williamson IA, Magness ST, Wong MH. Monoclonal Antibodies Reveal Dynamic Plasticity Between Lgr5- and Bmi1-Expressing Intestinal Cell Populations. Cell Mol Gastroenterol Hepatol 2018; 6:79-96. [PMID: 29928673 PMCID: PMC6008251 DOI: 10.1016/j.jcmgh.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Continual renewal of the intestinal epithelium is dependent on active- and slow-cycling stem cells that are confined to the crypt base. Tight regulation of these stem cell populations maintains homeostasis by balancing proliferation and differentiation to support critical intestinal functions. The hierarchical relation of discrete stem cell populations in homeostasis or during regenerative epithelial repair remains controversial. Although recent studies have supported a model for the active-cycling leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)+ intestinal stem cell (ISC) functioning upstream of the slow-cycling B lymphoma Mo-MLV insertion region 1 homolog (Bmi1)-expressing cell, other studies have reported the opposite relation. Tools that facilitate simultaneous analyses of these populations are required to evaluate their coordinated function. METHODS We used novel monoclonal antibodies (mAbs) raised against murine intestinal epithelial cells in conjunction with ISC-green fluorescent protein (GFP) reporter mice to analyze relations between ISC populations by microscopy. Ex vivo 3-dimensional cultures, flow cytometry, and quantitative reverse-transcription polymerase chain reaction analyses were performed. RESULTS Two novel mAbs recognized distinct subpopulations of the intestinal epithelium and when used in combination permitted isolation of discrete Lgr5GFP and Bmi1GFP-enriched populations with stem activity. Growth from singly isolated Lgr5GFP ISCs gave rise to small spheroids. Spheroids did not express Lgr5GFP and instead up-regulated Bmi1GFP expression. Conversely, Bmi1-derived spheroids initiated Lgr5GFP expression as crypt domains were established. CONCLUSIONS These data showed the functional utility of murine mAbs in the isolation and investigation of Lgr5GFP and Bmi1GFP ISC-enriched populations. Ex vivo analyses showed hierarchical plasticity between different ISC-expressing states; specifically Lgr5GFP ISCs gave rise to Bmi1GFP cells, and vice versa. These data highlight the impact of temporal and physiological context on unappreciated interactions between Lgr5GFP and Bmi1GFP cells during crypt formation.
Collapse
Key Words
- 3D, 3-dimensional
- 4-OHT, 4-hydroxytamoxifen
- APC, allophycocyanin
- Bmi1
- Bmi1, B lymphoma Mo-MLV insertion region 1 homolog
- Egf, epidermal growth factor
- FACS, fluorescence-activated cell sorting
- GFP, green fluorescent protein
- HBSS, Hank’s balanced salt solution
- Hierarchy
- ISC, intestinal stem cell
- Intestinal Stem Cells
- Lgr5
- Lgr5, leucine-rich repeat-containing G-protein–coupled receptor 5
- Lyz, lysozyme
- OHSU, Oregon Health and Science University
- PBS, phosphate-buffered saline
- PE, Phycoerythrin
- Plasticity
- Rspo1, R-spondin1
- TdT, tdTomato
- Wnt, wingless-type MMTV (mouse mammary tumor virus) integration site
- cDNA, complementary DNA
- mAb, monoclonal antibody
- mRNA, messenger RNA
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
Collapse
Affiliation(s)
- Nicholas R. Smith
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - John R. Swain
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Paige S. Davies
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Alexandra C. Gallagher
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Michael S. Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Catherine Z. Beach
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Philip R. Streeter
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon,Oregon Health & Science University Stem Cell Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Ian A. Williamson
- Department of Biomedical Engineering, Department of Medicine, Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Scott T. Magness
- Department of Biomedical Engineering, Department of Medicine, Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon,Oregon Health & Science University Stem Cell Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon,Correspondence Address correspondence to: Melissa H. Wong, PhD, Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L215, Portland, Oregon 97239. fax: (503) 494-4253.
| |
Collapse
|
54
|
Lee NK, Zhang Y, Su Y, Bidlingmaier S, Sherbenou DW, Ha KD, Liu B. Cell-type specific potent Wnt signaling blockade by bispecific antibody. Sci Rep 2018; 8:766. [PMID: 29335534 PMCID: PMC5768681 DOI: 10.1038/s41598-017-17539-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
Cell signaling pathways are often shared between normal and diseased cells. How to achieve cell type-specific, potent inhibition of signaling pathways is a major challenge with implications for therapeutic development. Using the Wnt/β-catenin signaling pathway as a model system, we report here a novel and generally applicable method to achieve cell type-selective signaling blockade. We constructed a bispecific antibody targeting the Wnt co-receptor LRP6 (the effector antigen) and a cell type-associated antigen (the guide antigen) that provides the targeting specificity. We found that the bispecific antibody inhibits Wnt-induced reporter activities with over one hundred-fold enhancement in potency, and in a cell type-selective manner. Potency enhancement is dependent on the expression level of the guide antigen on the target cell surface and the apparent affinity of the anti-guide antibody. Both internalizing and non-internalizing guide antigens can be used, with internalizing bispecific antibody being able to block signaling by all ligands binding to the target receptor due to its removal from the cell surface. It is thus feasible to develop bispecific-based therapeutic strategies that potently and selectively inhibit signaling pathways in a cell type-selective manner, creating opportunity for therapeutic targeting.
Collapse
Affiliation(s)
- Nam-Kyung Lee
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Yafeng Zhang
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Yang Su
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Daniel W Sherbenou
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Kevin D Ha
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA
| | - Bin Liu
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, 1001 Potrero Ave., 1305, San Francisco, CA, 94110-1305, USA.
| |
Collapse
|
55
|
Wei M, Xu WT, Li HL, Wang L, Xiu YJ, Yang YM, Li YZ, Zhao FZ, Chen SL. Molecular characterization and expression analysis of a novel r-spondin member (rspo2l) in Chinese tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2018; 72:436-442. [PMID: 29154943 DOI: 10.1016/j.fsi.2017.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Numerous studies suggest R-spondins (Rspos) plays a role in mammalian sex development and differentiation by activating WNT signaling pathways. However, Rspos are frequently less reported in teleosts. In this study, a molecular characterization and expression analysis was conducted with a new rspondin member in the Chinese tongue sole, rspondin2-like (rspo2l). The length of rspo2l cDNA is 1251 bp with 732 bp of coding sequence. A qRT-PCR analysis revealed that the transcription of rspo2l was distributed in various tissues, with high transcription levels in the liver, skin, and gills which might indicate a possible role in immunity. We next examined a time-course of transcription levels in four immune tissues (gill, liver, spleen, and kidney) after Vibrio harveyi challenge. It was found that rspo2l was up-regulated in the gills, spleen, and kidney and down-regulated in the liver, and the greatest responses occurred at 24 and 48 h after bacterial challenge. An assessment of β-catenin, the key regulator of the canonical WNT signaling pathway, at different time points in four immune organs revealed that its transcription profile was similar to that of rspo2l after bacterial challenge. The results suggest that tongue sole rspo2l might play a role in immune responses after bacterial challenge, while the potential link with the WNT signaling pathway still requires further investigation. This is the first report about the involvement of rspondins in fish immune responses.
Collapse
Affiliation(s)
- Min Wei
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wen-Teng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hai-Long Li
- Research Institute of Metabolic Disease, Qingdao University, Qingdao, 266003, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yun-Ji Xiu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ying-Ming Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang-Zhen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fa-Zhen Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Song-Lin Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
56
|
Yu H, Jiang L, Wan B, Zhang W, Yao L, Che T, Gan C, Su N, He J, Huang J, Zhang K, Zhang Y. The role of aryl hydrocarbon receptor in bone remodeling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 134:44-49. [PMID: 29277341 DOI: 10.1016/j.pbiomolbio.2017.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
Bone remodeling is a persistent process for maintaining skeletal system homeostasis, and it depends on the dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. Aryl hydrocarbon receptor (Ahr), a ligand-activated transcription factor, plays a pivotal role in regulating skeletal system. In order to better understand the role of Ahr in bone remodeling, we focused on bone remodeling characteristic, and the effects of Ahr on bone formation and differentiation, which suggest that Ahr is a critical control factor in the process of bone remodeling. Moreover, we discussed the impacts of Ahr on several signaling pathways related to bone remodeling, hoping to provide a theoretical basis to improve bone remodeling.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Clincal Laboratory, The First Hospital of Lanzhou University, West Road No. 1 East Hills, Chengguan District, Lanzhou, 730000, Gansu Province, PR China; The First Clinical College of Lanzhou University, West Road No. 1 East Hills, Chengguan District, Lanzhou, 730000, Gansu Province, PR China.
| | - Lili Jiang
- School of Material Science and Technology, Lanzhou University of Technology, Langongping Road, Lanzhou 730050, Gansu Province, PR China
| | - Bo Wan
- The 3rd and 4th Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, Gansu Province, PR China
| | - Wei Zhang
- Cental Laboratory, The First Hospital of Lanzhou University, West Road No. 1 East Hills, Chengguan District, Lanzhou, 730000, Gansu Province, PR China
| | - Liqiong Yao
- Department of Clincal Laboratory, The First Hospital of Lanzhou University, West Road No. 1 East Hills, Chengguan District, Lanzhou, 730000, Gansu Province, PR China
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, East road no. 110 nanhe yantan, Chengguan District, Lanzhou, 730000, Gansu Province, PR China
| | - Chao Gan
- Department of Clincal Laboratory, The First Hospital of Lanzhou University, West Road No. 1 East Hills, Chengguan District, Lanzhou, 730000, Gansu Province, PR China
| | - Na Su
- Department of Clincal Laboratory, The First Hospital of Lanzhou University, West Road No. 1 East Hills, Chengguan District, Lanzhou, 730000, Gansu Province, PR China
| | - Jinchun He
- Department of Clincal Laboratory, The First Hospital of Lanzhou University, West Road No. 1 East Hills, Chengguan District, Lanzhou, 730000, Gansu Province, PR China
| | - Jintian Huang
- The First Clinical College of Lanzhou University, West Road No. 1 East Hills, Chengguan District, Lanzhou, 730000, Gansu Province, PR China
| | - Kaiyun Zhang
- The First Clinical College of Lanzhou University, West Road No. 1 East Hills, Chengguan District, Lanzhou, 730000, Gansu Province, PR China
| | - Yiheng Zhang
- The First Clinical College of Lanzhou University, West Road No. 1 East Hills, Chengguan District, Lanzhou, 730000, Gansu Province, PR China
| |
Collapse
|
57
|
Abstract
The canonical Wnt/β-catenin signaling pathway, an important modulator of progenitor cell proliferation and differentiation, is highly regulated for the maintenance of critical biological homeostasis. Decades of studies in cancer genetics and genomics have demonstrated that multiple genes encoding key proteins in this signaling pathway serve as targets for recurrent mutational alterations. Among these proteins, β-catenin and adenomatosis polyposis coli (APC) are two key nodes. β-catenin contributes in transporting extracellular signals for nuclear programming. Mutations of the CTNNB1 gene that encodes β-catenin occur in a wide spectrum of cancers. These mutations alter the spatial characteristics of the β-catenin protein, leading to drastic reprogramming of the nuclear transcriptional network. Among the outcomes of this reprogramming are increased cell proliferation, enhanced immunosuppression, and disruption of metabolic regulation. Herein we review the current understanding of CTNNB1 mutations, their roles in tumorigenesis and discuss their possible therapeutic implications for cancer.
Collapse
|
58
|
Liu J, Liu T, Niu J, Wu X, Zhai J, Zhang Q, Qi J. Expression pattern and functional analysis of R-spondin1 in tongue sole Cynoglossus semilaevis. Gene 2017; 642:453-460. [PMID: 29155330 DOI: 10.1016/j.gene.2017.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/16/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
R-spondin 1 (Rspo1) is a potential female-determining gene in mammals that could regulate the Wnt/β-catenin signaling pathway. The deletion of Rspo1 causes sex reversal in females. To investigate sexual determination and differentiation, we cloned and analyzed the Rspo1 gene in Cynoglossus semilaevis. Phylogenetic and gene structure analyses revealed that Rspo1 gene exhibited high sequence conservation and contained an N-terminal signal peptide, two furin-like cysteine-rich domains (FU1 and FU2), a thrombospondin type 1 repeat, and a C-terminal region enriched with basic charged amino acids. qRT-PCR revealed that Rspo1 expressed sexual dimorphism in gonad, with higher expression levels in the ovary than in the testis, thus, suggesting the involvement of Rspo1 in gonad differentiation. In situ hybridization results demonstrated that Rspo1 was expressed in premature germ cells, including spermatogonia and spermatocytes in the testis and stage II and stage III oocytes in the ovary. The methylation levels in two CpG sites of Rspo1 promoter significantly differed among females, males, and pseudomales. After 30days of exposure to high temperature, the expression of Rspo1 significantly decreased in female individuals, some of which were prone to males. However, no difference of Rspo1 gene expression was observed between the control group and high-temperature group in males. These preliminary findings suggested that Rspo1 played a crucial role in sex determination and development. This study laid the groundwork for further sex control breeding techniques in C. semilaevis.
Collapse
Affiliation(s)
- Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Tiantian Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jingjing Niu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xiaolong Wu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jieming Zhai
- LaizhouMingbo Aquatic CO., Ltd., Laizhou, 261418, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China.
| |
Collapse
|
59
|
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. Dev Cell 2017; 43:71-82.e6. [PMID: 29017031 DOI: 10.1016/j.devcel.2017.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 11/23/2022]
Abstract
Angiopoietin-like 4 (ANGPTL4) is a secreted signaling protein that is implicated in cardiovascular disease, metabolic disorder, and cancer. Outside of its role in lipid metabolism, ANGPTL4 signaling remains poorly understood. Here, we identify ANGPTL4 as a Wnt signaling antagonist that binds to syndecans and forms a ternary complex with the Wnt co-receptor Lipoprotein receptor-related protein 6 (LRP6). This protein complex is internalized via clathrin-mediated endocytosis and degraded in lysosomes, leading to attenuation of Wnt/β-catenin signaling. Angptl4 is expressed in the Spemann organizer of Xenopus embryos and acts as a Wnt antagonist to promote notochord formation and prevent muscle differentiation. This unexpected function of ANGPTL4 invites re-interpretation of its diverse physiological effects in light of Wnt signaling and may open therapeutic avenues for human disease.
Collapse
|
60
|
Liu F, Bu HF, Geng H, De Plaen IG, Gao C, Wang P, Wang X, Kurowski JA, Yang H, Qian J, Tan XD. Sirtuin-6 preserves R-spondin-1 expression and increases resistance of intestinal epithelium to injury in mice. Mol Med 2017; 23:272-284. [PMID: 29387864 PMCID: PMC5654826 DOI: 10.2119/molmed.2017.00085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022] Open
Abstract
Sirtuin-6 (Sirt6) is a critical epigenetic regulator, but its function in the gut is unknown. Here, we studied the role of intestinal epithelial Sirt6 in colitis-associated intestinal epithelial injury. We found that Sirt6, which is predominantly expressed in epithelial cells in intestinal crypts, is decreased in colitis in both mice and humans. Colitis-derived inflammatory mediators including interferon-γ and reactive oxygen species strongly inhibited Sirt6 protein expression in young adult mouse colonocyte (YAMC) cells. The susceptibility of the cells to injurious insults was increased after knockdown of Sirt6 expression. In contrast, YAMC cells with Sirt6 overexpression exhibited more resistance to injurious insult. Furthermore, intestinal epithelial-specific Sirt6 (Sirt6IEC-KO) knockout mice exhibited greater susceptibility to dextran sulfate sodium (DSS)-induced colitis. RNA sequencing transcriptome analysis revealed that inflammatory mediators such as tumor necrosis factor (TNF)-α suppressed expression of R-spondin-1 (Rspo1, a critical growth factor for intestinal epithelial cells) in Sirt6-silenced YAMC cells in vitro. In addition, lipopolysaccharide was found to inhibit colonic Rspo1 expression in Sirt6IEC-KO mice but not their control littermates. Furthermore, Sirt6IEC-KO mice with DSS-induced colitis also exhibited in a significant decrease in Rspo1 expression in colons. In vitro, knockdown of Rspo1 attenuated the effect of ectopic expression of Sirt6 on protection of YAMC cells against cell death challenges. In conclusion, Sirt6 plays an important role in protecting intestinal epithelial cells against inflammatory injury in a mechanism associated with preserving Rspo1 levels in the cells.
Collapse
Affiliation(s)
- Fangyi Liu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Heng-Fu Bu
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Isabelle G De Plaen
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Chao Gao
- Center of Clinical Reproductive Medicine, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Peng Wang
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Xiao Wang
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jacob A Kurowski
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiao-Di Tan
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
61
|
Zhou X, Geng L, Wang D, Yi H, Talmon G, Wang J. R-Spondin1/LGR5 Activates TGFβ Signaling and Suppresses Colon Cancer Metastasis. Cancer Res 2017; 77:6589-6602. [PMID: 28939678 DOI: 10.1158/0008-5472.can-17-0219] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/16/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023]
Abstract
Leucine-rich repeat containing G-protein-coupled receptor 5 (LGR5), an intestinal stem cell marker, is known to exhibit tumor suppressor activity in colon cancer, the mechanism of which is not understood. Here we show that R-spondin 1 (RSPO1)/LGR5 directly activates TGFβ signaling cooperatively with TGFβ type II receptor in colon cancer cells, enhancing TGFβ-mediated growth inhibition and stress-induced apoptosis. Knockdown of LGR5 attenuated downstream TGFβ signaling and increased cell proliferation, survival, and metastasis in an orthotopic model of colon cancer in vivo Upon RSPO1 stimulation, LGR5 formed complexes with TGFβ receptors. Studies of patient specimens indicate that LGR5 expression was reduced in advanced stages and positively correlated with markers of TGFβ activation in colon cancer. Our study uncovers a novel cross-talk between LGR5 and TGFβ signaling in colon cancer and identifies LGR5 as a new modulator of TGFβ signaling able to suppress colon cancer metastasis. Cancer Res; 77(23); 6589-602. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaolin Zhou
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska
| | - Liying Geng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska
| | - Degeng Wang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas
| | - Haowei Yi
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - Jing Wang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska. .,Department of Genetics, Cell Biology and Anatomy, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska.,Department of Biochemistry and Molecular Biology, Fred & Pamela Buffett Cancer Center, Omaha, Nebraska
| |
Collapse
|
62
|
LGR5 promotes cancer stem cell traits and chemoresistance in cervical cancer. Cell Death Dis 2017; 8:e3039. [PMID: 28880275 PMCID: PMC5636966 DOI: 10.1038/cddis.2017.393] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, contribute to tumorigenesis, resistance to chemoradiotherapy and recurrence in human cancers, suggesting targeting CSCs may represent a potential therapeutic strategy. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) has recently been found to be a bona fide marker of colorectal CSCs. Our previous study showed that LGR5 functions as a tumor promoter in cervical cancer by activating the Wnt/β-catenin pathway. However, very little is known about the function or contribution of LGR5 to cervical CSCs. Here, we have modulated the expression of LGR5 using an overexpression vector or short hairpin RNA in cervical cancer cell lines. We demonstrated that elevated LGR5 expression in cervical cancer cells increased tumorsphere-forming efficiency; conferred chemoresistance to cisplatin treatment; augmented cell migration, invasion and clonogenicity; and elevated the levels of stem cell-related transcription factors in vitro. Furthermore, modulated LGR5+ cells, unlike LGR5- cells, were highly tumorigenic in vivo. In addition, the modulated LGR5+ cells could give rise to both LGR5+ and LGR5- cells in vitro and in vivo, thereby establishing a cellular hierarchy. Finally, we found that the increased tumorsphere-forming efficiency induced by LGR5 could be regulated through the inhibition or activation of the Wnt/β-catenin pathway in cervical cancer cells. Taken together, these results indicate that LGR5 has a vital oncogenic role by promoting cervical CSC traits and may represent a potential clinical target.
Collapse
|
63
|
Tortelote GG, Reis RR, de Almeida Mendes F, Abreu JG. Complexity of the Wnt/β‑catenin pathway: Searching for an activation model. Cell Signal 2017; 40:30-43. [PMID: 28844868 DOI: 10.1016/j.cellsig.2017.08.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Wnt signaling refers to a conserved signaling pathway, widely studied due to its roles in cellular communication, cell fate decisions, development and cancer. However, the exact mechanism underlying inhibition of the GSK phosphorylation towards β-catenin and activation of the pathway after biding of Wnt ligand to its cognate receptors at the plasma membrane remains unclear. Wnt target genes are widely spread over several animal phyla. They participate in a plethora of functions during the development of an organism, from axial specification, gastrulation and organogenesis all the way to regeneration and repair in adults. Temporal and spatial oncogenetic re-activation of Wnt signaling almost certainly leads to cancer. Wnt signaling components have been extensively studied as possible targets in anti-cancer therapies. In this review we will discuss one of the most intriguing questions in this field, that is how β-catenin, a major component in this pathway, escapes the destruction complex, gets stabilized in the cytosol and it is translocated to the nucleus where it acts as a co-transcription factor. Four major models have evolved during the past 20years. We dissected each of them along with current views and future perspectives on this pathway. This review will focus on the molecular mechanisms by which Wnt proteins modulate β-catenin cytoplasmic levels and the relevance of this pathway for the development and cancer.
Collapse
Affiliation(s)
- Giovane G Tortelote
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata R Reis
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Garcia Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
64
|
Redondo PA, Pavlou M, Loizidou M, Cheema U. Elements of the niche for adult stem cell expansion. J Tissue Eng 2017; 8:2041731417725464. [PMID: 28890779 PMCID: PMC5574483 DOI: 10.1177/2041731417725464] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.
Collapse
Affiliation(s)
- Patricia A Redondo
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Marina Pavlou
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Umber Cheema
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| |
Collapse
|
65
|
Liu Z, Wu C, Xie N, Wang P. Long non-coding RNA MEG3 inhibits the proliferation and metastasis of oral squamous cell carcinoma by regulating the WNT/β-catenin signaling pathway. Oncol Lett 2017; 14:4053-4058. [PMID: 28959364 PMCID: PMC5607653 DOI: 10.3892/ol.2017.6682] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate how long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) inhibits the growth and metastasis of oral squamous cell carcinoma (OSCC) by regulating WNT/β-catenin signaling pathway in order to explore the antitumor effect of MEG3 and to provide a potential molecular target for the treatment of OSCC. The RT-qPCR technique was used to quantitatively analyze the expression of MEG3 in cancer and adjacent tissues collected from the patients after surgery. Using the Lipofectamine method, the MEG3 overexpression vector and the siRNA interference vector were constructed and transfected into SCC15 and Cal27 cells, respectively, followed by cell proliferation, apoptosis and metastasis analyses. The semi-quantitative analysis of the expression of the β-catenin protein in transfected cells was performed by the western blot analysis, and the activity of the WNT/β-catenin signaling pathway was analyzed using the TOP/FOP flash reporters. In addition, the cells were treated with decitabine to investigate the correlation between the MEG3 expression and the DNA methylation. Results showed that the expression level of MEG3 was significantly decreased in OSCC (p<0.05) and overexpression of MEG3 inhibited the proliferation and metastasis of cancer cells and promoted apoptosis. Importantly, MEG3 played a role as a tumor suppressor by inhibiting the WNT/β-catenin signaling pathway. In addition, the expression of the MEG3 was significantly affected by the degree of DNA methylation. It was concluded that the lncRNA MEG3 can inhibit the growth and metastasis of OSCC by negatively regulating the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zongxiang Liu
- Department of Oral and Maxillofacial Surgery, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Cui Wu
- Department of Oral and Maxillofacial Surgery, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Nina Xie
- Department of Oral and Maxillofacial Surgery, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu 221006, P.R. China.,School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Penglai Wang
- Department of Oral and Maxillofacial Surgery, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
66
|
Zhang J, Gao Y. CCAT-1 promotes proliferation and inhibits apoptosis of cervical cancer cells via the Wnt signaling pathway. Oncotarget 2017; 8:68059-68070. [PMID: 28978096 PMCID: PMC5620236 DOI: 10.18632/oncotarget.19155] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/02/2017] [Indexed: 01/17/2023] Open
Abstract
Though the long noncoding RNA colon cancer associated transcript-1 (CCAT-1) has been shown to be involved in tumors of other tissues, its involvement in cervical cancer is still unknown. Therefore, the aim of this study was to investigate the molecular mechanism of CCAT-1 in cervical cancer. We quantified the expression of CCAT-1 long noncoding RNA in samples of cervical cancer tissue by real-time PCR. Effects of CCAT-1 expression on the proliferation and apoptosis of HeLa and CaSki cells were assessed by cell-count, colony-formation, and flow cytometry assays. Binding of the c-Myc protein to the CCAT-1 promoter was confirmed by chromatin immunoprecipitation. Finally, TOP-Flash and western blotting were used to examine the regulation of the Wnt/β-catenin pathway by CCAT-1. The results showed that compared with adjacent normal tissue, the expression of CCAT-1 in cervical cancer tissue was significantly upregulated. CCAT-1 expression was related to the stage and size of the tumor and recurrence prognosis. Then, we showed through functional assays that CCAT-1 could promote proliferation and inhibit apoptosis of cervical cancer cells. Furthermore, chromatin immunoprecipitation showed that c-Myc protein could promote CCAT-1 expression by binding to its promoter. Finally, fluorescent-reporter assays and western blotting showed that CCAT-1 could activate the Wnt/β-catenin pathway. In conclusion, we showed that CCAT-1 can be activated by the c-Myc protein and it can promote proliferation and inhibit apoptosis in cervical cancer cells by regulating the Wnt/β-catenin pathway. CCAT-1 might serve as a good prognostic indicator and target for treatment of cervical cancer.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Obstetrics and Gynecology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Yali Gao
- Department of Ophthalmology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| |
Collapse
|
67
|
|
68
|
Genthe JR, Clements WK. R-spondin 1 is required for specification of hematopoietic stem cells through Wnt16 and Vegfa signaling pathways. Development 2017; 144:590-600. [PMID: 28087636 DOI: 10.1242/dev.139956] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/22/2016] [Indexed: 01/18/2023]
Abstract
Hematopoietic stem cells (HSCs) are the therapeutic component of bone marrow transplants, but finding immune-compatible donors limits treatment availability and efficacy. Recapitulation of endogenous specification during development is a promising approach to directing HSC specification in vitro, but current protocols are not capable of generating authentic HSCs with high efficiency. Across phyla, HSCs arise from hemogenic endothelium in the ventral floor of the dorsal aorta concurrent with arteriovenous specification and intersegmental vessel (ISV) sprouting, processes regulated by Notch and Wnt. We hypothesized that coordination of HSC specification with vessel patterning might involve modulatory regulatory factors such as R-spondin 1 (Rspo1), an extracellular protein that enhances β-catenin-dependent Wnt signaling and has previously been shown to regulate ISV patterning. We find that Rspo1 is required for HSC specification through control of parallel signaling pathways controlling HSC specification: Wnt16/DeltaC/DeltaD and Vegfa/Tgfβ1. Our results define Rspo1 as a key upstream regulator of two crucial pathways necessary for HSC specification.
Collapse
Affiliation(s)
- Jamie R Genthe
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
69
|
Raza SI, Navid AK, Noor Z, Shah K, Dar NR, Ahmad W, Rashid S. GLY67ARG substitution in RSPO4 disrupts the WNT signaling pathway due to an abnormal binding pattern with LGRs leading to anonychia. RSC Adv 2017. [DOI: 10.1039/c7ra00762k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
R-Spondins regulate the WNT/β-catenin signaling pathway by interacting with leucine rich-repeat containing G-protein coupled receptors (LGR4–6).
Collapse
Affiliation(s)
- Syed Irfan Raza
- Department of Biochemistry
- Faculty of Biological Sciences
- Quaid-i-Azam University
- Islamabad
- Pakistan
| | | | - Zainab Noor
- National Centre for Bioinformatics
- Quaid-i-Azam University
- Islamabad
- Pakistan
| | - Khadim Shah
- Department of Biochemistry
- Faculty of Biological Sciences
- Quaid-i-Azam University
- Islamabad
- Pakistan
| | - Nasser Rashid Dar
- Department of Dermatology
- Combined Military Hospital
- Rawalpindi
- Pakistan
| | - Wasim Ahmad
- Department of Biochemistry
- Faculty of Biological Sciences
- Quaid-i-Azam University
- Islamabad
- Pakistan
| | - Sajid Rashid
- National Centre for Bioinformatics
- Quaid-i-Azam University
- Islamabad
- Pakistan
| |
Collapse
|
70
|
Cui S, Chang PY. Current understanding concerning intestinal stem cells. World J Gastroenterol 2016; 22:7099-7110. [PMID: 27610020 PMCID: PMC4988314 DOI: 10.3748/wjg.v22.i31.7099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same.
Collapse
|
71
|
Fujiwara M, Kato S, Niwa Y, Suzuki T, Tsuchiya M, Sasazawa Y, Dohmae N, Simizu S. C-mannosylation of R-spondin3 regulates its secretion and activity of Wnt/β-catenin signaling in cells. FEBS Lett 2016; 590:2639-49. [DOI: 10.1002/1873-3468.12274] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/28/2016] [Accepted: 06/24/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Miho Fujiwara
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Shintaro Kato
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Yuki Niwa
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit; RIKEN Center for Sustainable Resource Science; Wako Japan
| | - Miyu Tsuchiya
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Yukiko Sasazawa
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit; RIKEN Center for Sustainable Resource Science; Wako Japan
| | - Siro Simizu
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| |
Collapse
|
72
|
Jackson H, Granger D, Jones G, Anderson L, Friel S, Rycroft D, Fieles W, Tunstead J, Steward M, Wattam T, Walker A, Griggs J, Al-Hajj M, Shelton C. Novel Bispecific Domain Antibody to LRP6 Inhibits Wnt and R-spondin Ligand-Induced Wnt Signaling and Tumor Growth. Mol Cancer Res 2016; 14:859-68. [DOI: 10.1158/1541-7786.mcr-16-0088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/22/2016] [Indexed: 11/16/2022]
|
73
|
Jiang X, Cong F. Novel Regulation of Wnt Signaling at the Proximal Membrane Level. Trends Biochem Sci 2016; 41:773-783. [PMID: 27377711 DOI: 10.1016/j.tibs.2016.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
Abstract
Wnt pathways are crucial for embryonic development and adult tissue homeostasis in all multicellular animals. Our understanding of Wnt signaling networks has grown increasingly complex. Recent studies have revealed many regulatory proteins that function at the proximal membrane level to fine-tune signaling output and enhance signaling specificity. These proteins regulate crucial points in Wnt signaling, including post-translational modification of Wnt proteins, regulation of Wnt receptor degradation, internalization of Wnt receptor complex, and specific ligand-receptor complex formation. Such regulators not only provide us with molecular details of Wnt regulation but also serve as potential targets for therapeutic intervention. In this review we highlight new insights into Wnt regulation at the plasma membrane, especially newly identified feedback regulators.
Collapse
Affiliation(s)
- Xiaomo Jiang
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Feng Cong
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
74
|
Zhu C, Zheng XF, Yang YH, Li B, Wang YR, Jiang SD, Jiang LS. LGR4 acts as a key receptor for R-spondin 2 to promote osteogenesis through Wnt signaling pathway. Cell Signal 2016; 28:989-1000. [PMID: 27140682 DOI: 10.1016/j.cellsig.2016.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/01/2016] [Accepted: 04/27/2016] [Indexed: 02/01/2023]
Abstract
R-spondin proteins are identified as secreted agonists of the canonical Wnt/β-catenin signaling pathway, and leucine-rich repeat-containing G-protein-coupled receptors (LGR) are recognized as R-spondin receptors. The potential role of R-spondin 2 (Rspo2) and LGR4 in mediating osteogenesis remains poorly understood. In our in vitro experiments, we found that Rspo2 could promote osteogenesis through activating the Wnt signaling pathway in MC3T3-E1 cells. However, this effect of Rsop2 disappeared in the cells with functional disruption of LGR4. Meanwhile, Rspo2 significantly inhibited osteoclastogenesis and this effect of Rspo2 was dependent on the presence of osteoblasts with normal function of LGR4. In our in vivo experiments, we found that application of exogenous Rspo2 rescued the bone loss and improved the microarchitecture of bone in OVX mice. Rspo2 could be a positive regulator of bone metabolism through activating the canonical Wnt/β-catenin signaling, and LGR4 acted as a key receptor for Rspo2 to promote osteogenesis.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xin-Feng Zheng
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yue-Hua Yang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Bo Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yu-Ren Wang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Sheng-Dan Jiang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Lei-Sheng Jiang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
75
|
Silencing of R-Spondin1 increases radiosensitivity of glioma cells. Oncotarget 2016; 6:9756-65. [PMID: 25865226 PMCID: PMC4496395 DOI: 10.18632/oncotarget.3395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/17/2015] [Indexed: 11/25/2022] Open
Abstract
Although radiation therapy is the most effective postoperative adjuvant treatment, it does not substantially improve the long-term outcomes of glioma patients because of the characteristic radioresistance of glioma. We found that R-Spondin1 (Rspo1) expression was elevated in high-grade gliomas and was associated with worse overall survival and disease-free survival. Rspo1 expression was also associated with reduced survival rates in glioma patients after treatment with radiotherapy and temozolomide (RT-TMZ). Importantly, Rspo1 was dramatically upregulated after radiation treatment in patients with glioma. Rspo1 silencing by shRNA potentiated glioma cell death upon radiation treatment. In a xenograft nude mouse model, combining radiation and silencing of Rspo1 potentiated tumor growth inhibition. Thus, combining radiotherapy with silencing of Rspo1 is a potential therapeutic approach.
Collapse
|
76
|
Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation. J Mol Signal 2016; 11:1. [PMID: 27096005 PMCID: PMC4834752 DOI: 10.5334/1750-2187-11-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carboxy (C)-termini of G protein coupled receptors (GPCR) dictate essential functions. The KTXXXW motif C-terminus of Frizzleds (FZD) has been implicated in recruitment of Dishevelled (DVL). Through study of FZD4 and its associated ligand Norrin, we report that a minimum of three residues distal to the KTXXXW motif in the C-terminal tail of Frizzled-4 are essential for DVL recruitment and robust Lef/Tcf-dependent transcriptional activation in response to Norrin.
Collapse
|
77
|
Boone JD, Arend RC, Johnston BE, Cooper SJ, Gilchrist SA, Oelschlager DK, Grizzle WE, McGwin G, Gangrade A, Straughn JM, Buchsbaum DJ. Targeting the Wnt/β-catenin pathway in primary ovarian cancer with the porcupine inhibitor WNT974. J Transl Med 2016; 96:249-59. [PMID: 26658453 DOI: 10.1038/labinvest.2015.150] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 01/18/2023] Open
Abstract
Preclinical studies in ovarian cancer have demonstrated upregulation of the Wnt/β-catenin pathway promoting tumor proliferation and chemoresistance. Our objective was to evaluate the effect of the Wnt/β-catenin pathway inhibitor, WNT974, in primary ovarian cancer ascites cells. Ascites cells from patients with papillary serous ovarian cancer were isolated and treated with 1 μM WNT974±100 μM carboplatin. Viability was evaluated with the ATPlite assay. The IC50 was calculated using a dose-response analysis. Immunohistochemistry (IHC) was performed on ascites cells and tumor. Expression of R-spondin 2 (RSPO2), RSPO3, PORCN, WLS, AXIN2, and three previously characterized RSPO fusion transcripts were assessed using Taqman assays. Sixty ascites samples were analyzed for response to WNT974. The ascites samples that showed a decrease in ATP concentration after treatment demonstrated no difference from the untreated cells in percent viability with trypan blue staining. Flow cytometry demonstrated fewer cells in the G2 phase and more in the G1 and S phases after treatment with WNT974. Combination therapy with WNT974 and carboplatin resulted in a higher percentage of samples that showed ≥30% reduction in ATP concentration than either single drug treatment. IHC analysis of Wnt pathway proteins suggests cell cycle arrest rather than cytotoxicity after WNT974 treatment. QPCR indicated that RSPO fusions are not prevalent in ovarian cancer tissues or ascites. However, higher PORCN expression correlated to sensitivity to WNT974 (P=0.0073). In conclusion, WNT974 produces cytostatic effects in patient ascites cells with primary ovarian cancer through inhibition of the Wnt/β-catenin pathway. The combination of WNT974 and carboplatin induces cytotoxicity plus cell cycle arrest in a higher percentage of ascites samples than with single drug treatment. RSPO fusions do not contribute to WNT974 sensitivity; however, higher PORCN expression indicates increased WNT974 sensitivity.
Collapse
Affiliation(s)
- Jonathan D Boone
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Scott A Gilchrist
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Denise K Oelschlager
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerald McGwin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhishek Gangrade
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Michael Straughn
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
78
|
Gao Y, Lu X. Decreased expression of MEG3 contributes to retinoblastoma progression and affects retinoblastoma cell growth by regulating the activity of Wnt/β-catenin pathway. Tumour Biol 2016; 37:1461-1469. [PMID: 26662307 DOI: 10.1007/s13277-015-4564-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023] Open
Abstract
The aberrant expression of MEG3 has been found in some types of cancers; however, little is known concerning the function of MEG3 in retinoblastoma. To elucidate the roles of MEG3 in retinoblastoma, MEG3 expression was quantified in 63 retinoblastoma samples and corresponding nontumor tissues in this work. Moreover, retinoblastoma cell lines were transfected with pcDNA3.1-MEG3 or si-MEG3, after which proliferation, apoptosis, and expression of β-catenin were assayed. TOP-Flash reporter assay was also used to investigate the activity of the Wnt/β-catenin pathway. The results showed that MEG3 was downregulated in retinoblastoma tissues, and the level of MEG3 was negatively associated with IIRC stages and nodal or distant metastasis. More importantly, Kaplan-Meier survival analysis demonstrated that patients with low MEG3 expression had poorer survival and multivariate Cox regression analysis revealed that MEG3 was an independent prognostic factor in retinoblastoma patients. We also observed that MEG3 expression can be modulated by DNA methylation by using 5-aza-CdR treatment. In addition, overexpression of MEG3 suppressed proliferation, promoted apoptosis, and influences the activity of the Wnt/β-catenin pathway in retinoblastoma cell lines. Furthermore, we found that Wnt/β-catenin pathway activator rescued the anticancer effect of MEG3 in retinoblastoma. In conclusion, our study for the first time demonstrated that MEG3 was a tumor suppressor by negatively regulating the activity of the Wnt/β-catenin pathway in the progression of retinoblastoma and might serve as a prognostic biomarker and molecular therapeutic target.
Collapse
Affiliation(s)
- Yali Gao
- Department of Ophthalmology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
- Department of Ophthalmology, Shenzhen People's Hospital, Shenzhen, 518020, People's Republic of China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
79
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
80
|
Chang PY, Jin X, Jiang YY, Wang LX, Liu YJ, Wang J. Mensenchymal stem cells can delay radiation-induced crypt death: impact on intestinal CD44(+) fragments. Cell Tissue Res 2015; 364:331-44. [PMID: 26613604 PMCID: PMC4846698 DOI: 10.1007/s00441-015-2313-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
Abstract
Intestinal stem cells are primitive cells found within the intestinal epithelium that play a central role in maintaining epithelial homeostasis through self-renewal and commitment into functional epithelial cells. Several markers are available to identify intestinal stem cells, such as Lgr5, CD24 and EphB2, which can be used to sort intestinal stem cells from mammalian gut. Here, we identify and isolate intestinal stem cells from C57BL/6 mice by using a cell surface antigen, CD44. In vitro, some CD44+ crypt cells are capable of forming “villus-crypt”–like structures (organoids). A subset strongly positive for CD44 expresses high levels of intestinal stem-cell-related genes, including Lgr5, Bmi1, Hopx, Lrig1, Ascl2, Smoc2 and Rnf43. Cells from this subset are more capable of developing into organoids in vitro, compared with the subset weakly positive for CD44. However, the organoids are sensitive to ionizing irradiation. We investigate the specific roles of mesenchymal stem cells in protecting organoids against radiation-induced crypt death. When co-cultured with mesenchymal stem cells, the crypt domains of irradiated organoids possess more proliferative cells and fewer apoptotic cells than those not co-cultured with mesenchymal stem cells. Cd44v6 continues to be expressed in the crypt domains of irradiated organoids co-cultured with mesenchymal stem cells. Our results indicate specific roles of mesenchymal stem cells in delaying radiation-induced crypt death in vitro.
Collapse
Affiliation(s)
- Peng-Yu Chang
- Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun, 130021, People's Republic of China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130000, People's Republic of China
| | - Xing Jin
- Ever Union Biotechology, Tianjin, 300162, People's Republic of China
| | - Yi-Yao Jiang
- Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Tianjin, 300000, People's Republic of China
| | - Li-Xian Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300300, People's Republic of China
| | - Yong-Jun Liu
- Alliancells Bioscience, Tianjin, 300300, People's Republic of China.
| | - Jin Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130000, People's Republic of China.
| |
Collapse
|
81
|
Abstract
In multicellular organisms, a tight control of cell death is required to ensure normal development and tissue homeostasis. Improper function of apoptotic or survival pathways can not only affect developmental programs but also favor cancer progression. Here we describe a novel apoptotic signaling pathway involving the transmembrane receptor Kremen1 and its ligand, the Wnt-antagonist Dickkopf1. Using a whole embryo culture system, we first show that Dickkopf1 treatment promotes cell survival in a mouse model exhibiting increased apoptosis in the developing neural plate. Remarkably, this effect was not recapitulated by chemical Wnt inhibition. We then show that Dickkopf1 receptor Kremen1 is a bona fide dependence receptor, triggering cell death unless bound to its ligand. We performed Wnt-activity assays to demonstrate that the pro-apoptotic and anti-Wnt functions mediated by Kremen1 are strictly independent. Furthermore, we combined phylogenetic and mutagenesis approaches to identify a specific motif in the cytoplasmic tail of Kremen1, which is (i) specifically conserved in the lineage of placental mammals and (ii) strictly required for apoptosis induction. Finally, we show that somatic mutations of kremen1 found in human cancers can affect its pro-apoptotic activity, supporting a tumor suppressor function. Our findings thus reveal a new Wnt-independent function for Kremen1 and Dickkopf1 in the regulation of cell survival with potential implications in cancer therapies.
Collapse
|
82
|
Abstract
Primary Angle Closure Glaucoma (PACG) is one of the most common types of glaucoma affecting over 15 million individuals worldwide. Family history and ethnicity are strongly associated with the development of the disease, suggesting that one or more genetic factors contribute to PACG. Although strictly heritable disease-causing mutations have not been identified, a number of recent association studies have pointed out genetic factors that appear to contribute to an individual's risk to develop PACG. In addition, genetic factors have been identified that modify PACG endophenotypes for example, axial length. Herein we review the current literature on this important topic.
Collapse
|
83
|
Feng Q, Gao N. Keeping Wnt signalosome in check by vesicular traffic. J Cell Physiol 2015; 230:1170-80. [PMID: 25336320 DOI: 10.1002/jcp.24853] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
Wg/Wnts are paracrine and autocrine ligands that activate distinct signaling pathways while being internalized through surface receptors. Converging and contrasting views are shaping our understanding of whether, where, and how endocytosis may modulate Wnt signaling. We gather considerable amount of evidences to elaborate the point that signal-receiving cells utilize distinct, flexible, and sophisticated vesicular trafficking mechanisms to keep Wnt signaling activity in check. Same molecules in a highly context-dependent fashion serve as regulatory hub for various signaling purposes: amplification, maintenance, inhibition, and termination. Updates are provided for the regulatory mechanisms related to the three critical cell surface complexes, Wnt-Fzd-LRP6, Dkk1-Kremen-LRP6, and R-spondin-LGR5-RNF43, which potently influence Wnt signaling. We pay particular attentions to how cells achieve sustained and delicate control of Wnt signaling strength by employing comprehensive aspects of vesicular trafficking.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | |
Collapse
|
84
|
Caruso M, Ferranti F, Corano Scheri K, Dobrowolny G, Ciccarone F, Grammatico P, Catizone A, Ricci G. R-spondin 1/dickkopf-1/beta-catenin machinery is involved in testicular embryonic angiogenesis. PLoS One 2015; 10:e0124213. [PMID: 25910078 PMCID: PMC4409372 DOI: 10.1371/journal.pone.0124213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
Testicular vasculogenesis is one of the key processes regulating male gonad morphogenesis. The knowledge of the molecular cues underlining this phenomenon is one of today’s most challenging issues and could represent a major contribution toward a better understanding of the onset of testicular morphogenetic disorders. R-spondin 1 has been clearly established as a candidate for mammalian ovary determination. Conversely, very little information is available on the expression and role of R-spondin 1 during testicular morphogenesis. This study aims to clarify the distribution pattern of R-spondin 1 and other partners of its machinery during the entire period of testicular morphogenesis and to indicate the role of this system in testicular development. Our whole mount immunofluorescence results clearly demonstrate that R-spondin 1 is always detectable in the testicular coelomic partition, where testicular vasculature is organized, while Dickkopf-1 is never detectable in this area. Moreover, organ culture experiments of embryonic male UGRs demonstrated that Dickkopf-1 acted as an inhibitor of testis vasculature formation. Consistent with this observation, real-time PCR analyses demonstrated that DKK1 is able to slightly but significantly decrease the expression level of the endothelial marker Pecam1. The latter experiments allowed us to observe that DKK1 administration also perturbs the expression level of the Pdgf-b chain, which is consistent with some authors’ observations relating this factor with prenatal testicular patterning and angiogenesis. Interestingly, the DKK1 induced inhibition of testicular angiogenesis was rescued by the co-administration of R-spondin 1. In addition, R-spondin 1 alone was sufficient to enhance, in culture, testicular angiogenesis.
Collapse
Affiliation(s)
- Maria Caruso
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesca Ferranti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy; Italian Space Agency, Rome, Italy
| | - Katia Corano Scheri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gabriella Dobrowolny
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Fabio Ciccarone
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Paola Grammatico
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Giulia Ricci
- Department of Experimental Medicine-Histology and Embryology Laboratory, Second University of Naples, Naples, Italy
| |
Collapse
|
85
|
Genetic polymorphism in extracellular regulators of Wnt signaling pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:847529. [PMID: 25945348 PMCID: PMC4402192 DOI: 10.1155/2015/847529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/05/2015] [Indexed: 11/18/2022]
Abstract
The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively.
Collapse
|
86
|
Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles. PLoS One 2015; 10:e0121761. [PMID: 25781466 PMCID: PMC4363733 DOI: 10.1371/journal.pone.0121761] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/11/2015] [Indexed: 01/12/2023] Open
Abstract
Wnt signalling pathways play crucial roles in developmental biology, stem cell fate and tissue patterning and have become an attractive therapeutic target in the fields of tissue engineering and regenerative medicine. Wnt signalling has also been shown to play a role in human Mesenchymal Stem Cell (hMSC) fate, which have shown potential as a cell therapy in bone and cartilage tissue engineering. Previous work has shown that biocompatible magnetic nanoparticles (MNP) can be used to stimulate specific mechanosensitive membrane receptors and ion channels in vitro and in vivo. Using this strategy, we determined the effects of mechano-stimulation of the Wnt Frizzled receptor on Wnt pathway activation in hMSC. Frizzled receptors were tagged using anti-Frizzled functionalised MNP (Fz-MNP). A commercially available oscillating magnetic bioreactor (MICA Biosystems) was used to mechanically stimulate Frizzled receptors remotely. Our results demonstrate that Fz-MNP can activate Wnt/β-catenin signalling at key checkpoints in the signalling pathway. Immunocytochemistry indicated nuclear localisation of the Wnt intracellular messenger β-catenin after treatment with Fz-MNP. A Wnt signalling TCF/LEF responsive luciferase reporter transfected into hMSC was used to assess terminal signal activation at the nucleus. We observed an increase in reporter activity after treatment with Fz-MNP and this effect was enhanced after mechano-stimulation using the magnetic array. Western blot analysis was used to probe the mechanism of signalling activation and indicated that Fz-MNP signal through an LRP independent mechanism. Finally, the gene expression profiles of stress response genes were found to be similar when cells were treated with recombinant Wnt-3A or Fz-MNP. This study provides proof of principle that Wnt signalling and Frizzled receptors are mechanosensitive and can be remotely activated in vitro. Using magnetic nanoparticle technology it may be possible to modulate Wnt signalling pathways and thus control stem cell fate for therapeutic purposes.
Collapse
|
87
|
Enzo MV, Rastrelli M, Rossi CR, Hladnik U, Segat D. The Wnt/β-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target. MOLECULAR AND CELLULAR THERAPIES 2015; 3:1. [PMID: 26056602 PMCID: PMC4452070 DOI: 10.1186/s40591-015-0038-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/04/2015] [Indexed: 02/06/2023]
Abstract
The canonical Wnt signaling pathway is involved in a variety of biological processes like cell proliferation, cell polarity, and cell fate determination. This pathway has been extensively investigated as its deregulation is linked to different diseases, including various types of cancer, skeletal defects, birth defect disorders (including neural tube defects), metabolic diseases, neurodegenerative disorders and several fibrotic diseases like desmoid tumors. In the "on state", beta-catenin, the key effector of Wnt signaling, enters the nucleus where it binds to the members of the TCF-LEF family of transcription factors and exerts its effect on gene transcription. Disease development can be caused by direct or indirect alterations of the Wnt/β-catenin signaling. In the first case germline or somatic mutations of the Wnt components are associated to several diseases such as the familial adenomatous polyposis (FAP) - caused by germline mutations of the tumor suppressor adenomatous polyposis coli gene (APC) - and the desmoid-like fibromatosis, a sporadic tumor associated with somatic mutations of the β-catenin gene (CTNNB1). In the second case, epigenetic modifications and microenvironmental factors have been demonstrated to play a key role in Wnt pathway activation. The natural autocrine Wnt signaling acts through agonists and antagonists competing for the Wnt receptors. Anomalies in this regulation, whichever is their etiology, are an important part in the pathogenesis of Wnt pathway linked diseases. An example is promoter hypermethylation of Wnt antagonists, such as SFRPs, that causes gene silencing preventing their function and consequently leading to the activation of the Wnt pathway. Microenvironmental factors, such as the extracellular matrix, growth factors and inflammatory mediators, represent another type of indirect mechanism that influence Wnt pathway activation. A favorable microenvironment can lead to aberrant fibroblasts activation and accumulation of ECM proteins with subsequent tissue fibrosis that can evolve in fibrotic disease or tumor. Since the development and progression of several diseases is the outcome of the Wnt pathway cross-talk with other signaling pathways and inflammatory factors, it is important to consider not only direct inhibitors of the Wnt signaling pathway but also inhibitors of microenvironmental factors as promising therapeutic approaches for several tumors of fibrotic origin.
Collapse
Affiliation(s)
- Maria Vittoria Enzo
- Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| | - Marco Rastrelli
- Melanoma and Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCSS, Via Gattamelata, 64-35128 Padua, Italy
| | - Carlo Riccardo Rossi
- Melanoma and Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCSS, Via Gattamelata, 64-35128 Padua, Italy ; Department of Surgical Oncological and Gastroenterological Science, University of Padua, Via Giustiniani, 2- 35124 Padua, Italy
| | - Uros Hladnik
- Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| | - Daniela Segat
- Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| |
Collapse
|
88
|
Enzo MV, Rastrelli M, Rossi CR, Hladnik U, Segat D. The Wnt/β-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target. MOLECULAR AND CELLULAR THERAPIES 2015; 3:1. [PMID: 26056602 PMCID: PMC4452070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/04/2015] [Indexed: 11/21/2023]
Abstract
The canonical Wnt signaling pathway is involved in a variety of biological processes like cell proliferation, cell polarity, and cell fate determination. This pathway has been extensively investigated as its deregulation is linked to different diseases, including various types of cancer, skeletal defects, birth defect disorders (including neural tube defects), metabolic diseases, neurodegenerative disorders and several fibrotic diseases like desmoid tumors. In the "on state", beta-catenin, the key effector of Wnt signaling, enters the nucleus where it binds to the members of the TCF-LEF family of transcription factors and exerts its effect on gene transcription. Disease development can be caused by direct or indirect alterations of the Wnt/β-catenin signaling. In the first case germline or somatic mutations of the Wnt components are associated to several diseases such as the familial adenomatous polyposis (FAP) - caused by germline mutations of the tumor suppressor adenomatous polyposis coli gene (APC) - and the desmoid-like fibromatosis, a sporadic tumor associated with somatic mutations of the β-catenin gene (CTNNB1). In the second case, epigenetic modifications and microenvironmental factors have been demonstrated to play a key role in Wnt pathway activation. The natural autocrine Wnt signaling acts through agonists and antagonists competing for the Wnt receptors. Anomalies in this regulation, whichever is their etiology, are an important part in the pathogenesis of Wnt pathway linked diseases. An example is promoter hypermethylation of Wnt antagonists, such as SFRPs, that causes gene silencing preventing their function and consequently leading to the activation of the Wnt pathway. Microenvironmental factors, such as the extracellular matrix, growth factors and inflammatory mediators, represent another type of indirect mechanism that influence Wnt pathway activation. A favorable microenvironment can lead to aberrant fibroblasts activation and accumulation of ECM proteins with subsequent tissue fibrosis that can evolve in fibrotic disease or tumor. Since the development and progression of several diseases is the outcome of the Wnt pathway cross-talk with other signaling pathways and inflammatory factors, it is important to consider not only direct inhibitors of the Wnt signaling pathway but also inhibitors of microenvironmental factors as promising therapeutic approaches for several tumors of fibrotic origin.
Collapse
Affiliation(s)
- Maria Vittoria Enzo
- />Genetics Unit, “Mauro Baschirotto” Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| | - Marco Rastrelli
- />Melanoma and Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCSS, Via Gattamelata, 64-35128 Padua, Italy
| | - Carlo Riccardo Rossi
- />Melanoma and Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCSS, Via Gattamelata, 64-35128 Padua, Italy
- />Department of Surgical Oncological and Gastroenterological Science, University of Padua, Via Giustiniani, 2- 35124 Padua, Italy
| | - Uros Hladnik
- />Genetics Unit, “Mauro Baschirotto” Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| | - Daniela Segat
- />Genetics Unit, “Mauro Baschirotto” Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| |
Collapse
|
89
|
Li Z, Zhang W, Mulholland MW. LGR4 and Its Role in Intestinal Protection and Energy Metabolism. Front Endocrinol (Lausanne) 2015; 6:131. [PMID: 26379625 PMCID: PMC4548225 DOI: 10.3389/fendo.2015.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 01/04/2023] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptors were identified by the unique nature of their long leucine-rich repeat extracellular domains. Distinct from classical G protein-coupled receptors which act via G proteins, LGR4 functions mainly through Wnt/β-catenin signaling to regulate cell proliferation, differentiation, and adult stem cell homeostasis. LGR4 is widely expressed in tissues ranging from the reproductive system, urinary system, sensory organs, digestive system, and the central nervous system, indicating LGR4 may have multiple functions in development. Here, we focus on the digestive system by reviewing its effects on crypt cells differentiation and stem cells maintenance, which are important for cell regeneration after injury. Through effects on Wnt/β-catenin signaling and cell proliferation, LGR4 and its endogenous ligands, R-spondins, are involved in colon tumorigenesis. LGR4 also contributes to regulation of energy metabolism, including food intake, energy expenditure, and lipid metabolism, as well as pancreatic β-cell proliferation and insulin secretion. This review summarizes the identification of LGR4, its endogenous ligand, ligand-receptor binding and intracellular signaling. Physiological functions include intestinal development and energy metabolism. The potential effects of LGR4 and its ligand in the treatment of inflammatory bowel disease, chemoradiotherapy-induced gut damage, colorectal cancer, and diabetes are also discussed.
Collapse
Affiliation(s)
- Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Weizhen Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- *Correspondence: Weizhen Zhang, 4618B, MSII, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China, ; Michael W. Mulholland, 1500 East Medical Center Drive, 2101 Taubman Center SPC 5346, Ann Arbor, MI 48109, USA,
| | - Michael W. Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
- *Correspondence: Weizhen Zhang, 4618B, MSII, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China, ; Michael W. Mulholland, 1500 East Medical Center Drive, 2101 Taubman Center SPC 5346, Ann Arbor, MI 48109, USA,
| |
Collapse
|
90
|
Chen Q, Cao HZ, Zheng PS. LGR5 promotes the proliferation and tumor formation of cervical cancer cells through the Wnt/β-catenin signaling pathway. Oncotarget 2014; 5:9092-105. [PMID: 25193857 PMCID: PMC4253421 DOI: 10.18632/oncotarget.2377] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/20/2014] [Indexed: 01/02/2023] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), a seven transmembrane receptor known as a potential stem cell marker for intestinal crypts and hair follicles, has recently been found to be overexpressed in some types of human cancers. However, the role of LGR5 in cervical cancer remains unclear. In this study, the expression of LGR5 gradually increases from normal cervix to cervical cancer in situ and to cervical cancers as revealed by immunohistochemistry and western blot analyses. Through knocking down or overexpressing LGR5 in SiHa and HeLa cells, the expression level of LGR5 was found to be positively related to cell proliferation in vitro and to tumor formation in vivo. Further investigation indicated that LGR5 protein could significantly promote the acceleration of cell cycle. Moreover, the TOP-Flash reporter assay and western blot for β-catenin, cyclinD1, and c-myc proteins, target genes of the Wnt/β-catenin pathway, indicated that LGR5 significantly activated Wnt/β-catenin signaling. Additionally, the blockage of Wnt/β-catenin pathway resulted in a significant inhibition of cell proliferation induced by LGR5. Taken together, these results demonstrate that LGR5 can promote proliferation and tumor formation in cervical cancer cells by activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Qing Chen
- Department of Reproductive Medicine, the First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, the People's Republic of China
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Medical School, Xi'an, the People's Republic of China
| | - Hao-Zhe Cao
- Department of Reproductive Medicine, the First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, the People's Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, the First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, the People's Republic of China
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Medical School, Xi'an, the People's Republic of China
- Division of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Medical School, Xi'an, the People's Republic of China
| |
Collapse
|
91
|
Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt signaling in development, health, and disease. Int J Mol Sci 2014; 15:17852-85. [PMID: 25286307 PMCID: PMC4227194 DOI: 10.3390/ijms151017852] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development.
Collapse
Affiliation(s)
- Andrew J Schneider
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Amanda M Branam
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Richard E Peterson
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
92
|
Sharma AR, Chakraborty C, Lee SS, Sharma G, Yoon JK, George Priya Doss C, Song DK, Nam JS. Computational biophysical, biochemical, and evolutionary signature of human R-spondin family proteins, the member of canonical Wnt/β-catenin signaling pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:974316. [PMID: 25276837 PMCID: PMC4172882 DOI: 10.1155/2014/974316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/12/2014] [Accepted: 07/12/2014] [Indexed: 12/27/2022]
Abstract
In human, Wnt/β-catenin signaling pathway plays a significant role in cell growth, cell development, and disease pathogenesis. Four human (Rspo)s are known to activate canonical Wnt/β-catenin signaling pathway. Presently, (Rspo)s serve as therapeutic target for several human diseases. Henceforth, basic understanding about the molecular properties of (Rspo)s is essential. We approached this issue by interpreting the biochemical and biophysical properties along with molecular evolution of (Rspo)s thorough computational algorithm methods. Our analysis shows that signal peptide length is roughly similar in (Rspo)s family along with similarity in aa distribution pattern. In Rspo3, four N-glycosylation sites were noted. All members are hydrophilic in nature and showed alike GRAVY values, approximately. Conversely, Rspo3 contains the maximum positively charged residues while Rspo4 includes the lowest. Four highly aligned blocks were recorded through Gblocks. Phylogenetic analysis shows Rspo4 is being rooted with Rspo2 and similarly Rspo3 and Rspo1 have the common point of origin. Through phylogenomics study, we developed a phylogenetic tree of sixty proteins (n = 60) with the orthologs and paralogs seed sequences. Protein-protein network was also illustrated. Results demonstrated in our study may help the future researchers to unfold significant physiological and therapeutic properties of (Rspo)s in various disease models.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital, College of Medicine, Chuncheon-si, Gangwon-do 200-704, Republic of Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
- Department of Bioinformatics, School of Computer Sciences, Galgotias University, Greater Noida 203201, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
| | - Jeong Kyo Yoon
- Center for Molecular Medicine, Maine Medial Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - C. George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Dong-Keun Song
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
| | - Ju-Suk Nam
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
| |
Collapse
|
93
|
Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H, Sachs N, Vries RGJ, Cuppen E, Chen Y, Sawyers CL, Clevers HC. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 2014; 159:163-175. [PMID: 25201529 DOI: 10.1016/j.cell.2014.08.017] [Citation(s) in RCA: 546] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/08/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022]
Abstract
The prostate gland consists of basal and luminal cells arranged as pseudostratified epithelium. In tissue recombination models, only basal cells reconstitute a complete prostate gland, yet murine lineage-tracing experiments show that luminal cells generate basal cells. It has remained challenging to address the molecular details of these transitions and whether they apply to humans, due to the lack of culture conditions that recapitulate prostate gland architecture. Here, we describe a 3D culture system that supports long-term expansion of primary mouse and human prostate organoids, composed of fully differentiated CK5+ basal and CK8+ luminal cells. Organoids are genetically stable, reconstitute prostate glands in recombination assays, and can be experimentally manipulated. Single human luminal and basal cells give rise to organoids, yet luminal-cell-derived organoids more closely resemble prostate glands. These data support a luminal multilineage progenitor cell model for prostate tissue and establish a robust, scalable system for mechanistic studies.
Collapse
Affiliation(s)
- Wouter R Karthaus
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands
| | - Phillip J Iaquinta
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jarno Drost
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands
| | - Ana Gracanin
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands
| | - Ruben van Boxtel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands
| | - John Wongvipat
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Catherine M Dowling
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands
| | - Norman Sachs
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands
| | - Robert G J Vries
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute
| | - Hans C Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands.
| |
Collapse
|
94
|
Abstract
Sex determination refers to the developmental decision that directs the bipotential genital ridge to develop as a testis or an ovary. Genetic studies on mice and humans have led to crucial advances in understanding the molecular fundamentals of sex determination and the mutually antagonistic signaling pathway. In this review, we summarize the current molecular mechanisms of sex determination by focusing on the known critical sex determining genes and their related signaling pathways in mammalian vertebrates from mice to humans. We also discuss the underlying delicate balance between testis and ovary sex determination pathways, concentrating on the antagonisms between major sex determining genes.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm LaboratoryCollege of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm LaboratoryCollege of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| |
Collapse
|
95
|
Knight MN, Hankenson KD. R-spondins: novel matricellular regulators of the skeleton. Matrix Biol 2014; 37:157-61. [PMID: 24980904 DOI: 10.1016/j.matbio.2014.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/18/2014] [Accepted: 06/18/2014] [Indexed: 01/08/2023]
Abstract
R-spondins are a family of four matricellular proteins produced by a variety of cell-types. Structurally, R-spondins contain a TSR1 domain that retains the tryptophan structure and a modified cysteine-rich CSVCTG region. In addition, the R-spondins contain two furin repeats implicated in canonical Wnt signaling. R-spondins positively regulate canonical Wnt signaling by reducing Wnt receptor turnover and thereby increasing beta-catenin stabilization. R-spondins are prominently expressed in the developing skeleton and contribute to limb formation, particularly of the distal digit. Additionally, results suggest that R-spondins may contribute to the maintenance of adult bone mass by regulating osteoblastogenesis and bone formation.
Collapse
Affiliation(s)
- M Noelle Knight
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States
| | - Kurt D Hankenson
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
96
|
Rong X, Chen C, Zhou P, Zhou Y, Li Y, Lu L, Liu Y, Zhou J, Duan C. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/β-catenin signaling in zebrafish embryos. PLoS One 2014; 9:e99514. [PMID: 24918770 PMCID: PMC4053527 DOI: 10.1371/journal.pone.0099514] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/15/2014] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.
Collapse
Affiliation(s)
- Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Chen Chen
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Pin Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yumei Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- * E-mail: (CD); (JZ)
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (CD); (JZ)
| |
Collapse
|
97
|
Abstract
Adult stem cells are controlled by an intricate interplay of potent Wnt agonists, antagonists, and anti-antagonists. This review by de Lau et al. focuses on the complex physical and functional interactions of three recently discovered protein families that control stem cell activity by regulating surface expression of Wnt receptors: Lgr5 and its homologs, the E3 ligases Rnf43 and Znrf3, and the secreted R-spondin ligands. Lgr5 was originally discovered as a common Wnt target gene in adult intestinal crypts and colon cancer. It was subsequently identified as an exquisite marker of multiple Wnt-driven adult stem cell types. Lgr5 and its homologs, Lgr4 and Lgr6, constitute the receptors for R-spondins, potent Wnt signal enhancers and stem cell growth factors. The Lgr5/R-spondin complex acts by neutralizing Rnf43 and Znrf3, two transmembrane E3 ligases that remove Wnt receptors from the stem cell surface. Rnf43/Znrf3 are themselves encoded by Wnt target genes and constitute a negative Wnt feedback loop. Thus, adult stem cells are controlled by an intricate interplay of potent Wnt agonists, antagonists, and anti-antagonists.
Collapse
Affiliation(s)
- Wim de Lau
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|
98
|
The WNT receptor FZD7 is required for maintenance of the pluripotent state in human embryonic stem cells. Proc Natl Acad Sci U S A 2014; 111:1409-14. [PMID: 24474766 DOI: 10.1073/pnas.1323697111] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
WNT signaling is involved in maintaining stem cells in an undifferentiated state; however, it is often unclear which WNTs and WNT receptors are mediating these activities. Here we examined the role of the WNT receptor FZD7 in maintaining human embryonic stem cells (hESCs) in an undifferentiated and pluripotent state. FZD7 expression is significantly elevated in undifferentiated cells relative to differentiated cell populations, and interfering with its expression or function, either by short hairpin RNA-mediated knockdown or with a fragment antigen binding (Fab) molecule directed against FZD7, disrupts the pluripotent state of hESCs. The FZD7-specific Fab blocks signaling by Wnt3a protein by down-regulating FZD7 protein levels, suggesting that FZD7 transduces Wnt signals to activate Wnt/β-catenin signaling. These results demonstrate that FZD7 encodes a regulator of the pluripotent state and that hESCs require endogenous WNT/β-catenin signaling through FZD7 to maintain an undifferentiated phenotype.
Collapse
|
99
|
Regulation of the follistatin gene by RSPO-LGR4 signaling via activation of the WNT/β-catenin pathway in skeletal myogenesis. Mol Cell Biol 2013; 34:752-64. [PMID: 24344199 DOI: 10.1128/mcb.01285-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WNT signaling plays multiple roles in skeletal myogenesis during gestation and postnatal stages. The R-spondin (RSPO) family of secreted proteins and their cognate receptors, members of leucine-rich repeat-containing G protein-coupled receptor (LGR) family, have emerged as new regulatory components of the WNT signaling pathway. We previously showed that RSPO2 promoted myogenic differentiation via activation of WNT/β-catenin signaling in mouse myoblast C2C12 cells in vitro. However, the molecular mechanism by which RSPO2 regulates myogenic differentiation is unknown. Herein, we show that depletion of the LGR4 receptor severely disrupts myogenic differentiation and significantly diminishes the response to RSPO2 in C2C12 cells, showing a requirement of LGR4 in RSPO signaling during myogenic differentiation. We identify the transforming growth factor β (TGF-β) antagonist follistatin (Fst) as a key mediator of RSPO-LGR4 signaling in myogenic differentiation. We further demonstrate that Fst is a direct target of the WNT/β-catenin pathway. Activation and inactivation of β-catenin induced and inhibited Fst expression, respectively, in both C2C12 cells and mouse embryos. Specific TCF/LEF1 binding sites within the promoter and intron 1 region of the Fst gene were required for RSPO2 and WNT/β-catenin-induced Fst expression. This study uncovers a molecular cross talk between WNT/β-catenin and TGF-β signaling pivotal in myogenic differentiation.
Collapse
|
100
|
Van Camp JK, Beckers S, Zegers D, Van Hul W. Wnt Signaling and the Control of Human Stem Cell Fate. Stem Cell Rev Rep 2013; 10:207-29. [DOI: 10.1007/s12015-013-9486-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|