51
|
Ciuffreda L, Falcone I, Incani UC, Del Curatolo A, Conciatori F, Matteoni S, Vari S, Vaccaro V, Cognetti F, Milella M. PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting. Adv Biol Regul 2014; 56:66-80. [PMID: 25088603 DOI: 10.1016/j.jbior.2014.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a non-redundant lipid phosphatase that restrains and fine tunes the phosphatidylinositol-3-kinase (PI3K) signaling pathway. PTEN is involved in inherited syndromes, which predispose to different types of cancers and is among the most frequently inactivated tumor suppressor genes in sporadic cancers. Indeed, loss of PTEN function occurs in a wide spectrum of human cancers through a variety of mechanisms, including mutations, deletions, transcriptional silencing, or protein instability. PTEN prevents tumorigenesis through multiple mechanisms and regulates a plethora of cellular processes, including survival, proliferation, energy metabolism and cellular architecture. Moreover, recent studies have demonstrated that PTEN is able to exit, exist, and function outside the cell, allowing for inhibition of the PI3K pathway in neighboring cells in a paracrine fashion. Most recently, studies have shown that PTEN is also critical for stem cell maintenance and that PTEN loss can lead to the emergence and proliferation of cancer stem cell (CSC) clones. Depending on the cellular and tissue context of origin, PTEN deletion may result in increased self-renewal capacity or normal stem cell exhaustion and PTEN-defìcient stem and progenitor cells have been reported in prostate, lung, intestinal, and pancreatic tissues before tumor formation; moreover, reversible or irreversible PTEN loss is frequently observed in CSC from a variety of solid and hematologic malignancies, where it may contribute to the functional phenotype of CSC. In this review, we will focus on the role of PTEN expression and function and downstream pathway activation in cancer stem cell biology and regulation of the tumorigenic potential; the emerging role of PTEN in mediating the crosstalk between the PI3K and MAPK pathways will also be discussed, together with prospects for the therapeutic targeting of tumors lacking PTEN expression.
Collapse
Affiliation(s)
- Ludovica Ciuffreda
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Italia Falcone
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Ursula Cesta Incani
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Anais Del Curatolo
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Fabiana Conciatori
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Matteoni
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Sabrina Vari
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Vanja Vaccaro
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Francesco Cognetti
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Michele Milella
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
52
|
Park GH, Lee SJ, Yim H, Han JH, Kim HJ, Sohn YB, Ko JM, Jeong SY. TAGLN expression is upregulated in NF1-associated malignant peripheral nerve sheath tumors by hypomethylation in its promoter and subpromoter regions. Oncol Rep 2014; 32:1347-54. [PMID: 25109740 PMCID: PMC4148385 DOI: 10.3892/or.2014.3379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/21/2014] [Indexed: 12/23/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) caused by NF1 gene mutation is a commonly inherited autosomal dominant disorder. Malignant peripheral nerve sheath tumors (MPNSTs), a type of aggressive sarcoma, are a major cause of mortality in NF1 patients. The malignant transformation of benign plexiform neurofibromas (PNs) to MPNSTs is a marked peculiarity in NF1 patients, yet the pathogenesis remains poorly understood. We found that an actin-associated protein transgelin (SM22) was highly expressed in NF1-deficient MPNST tissues compared to NF1-deficient PN tissues using immunohistological staining and primary cultured MPNST cells in western blot analysis. We further found that this transgelin upregulation was caused by increased transcriptional expression of the TAGLN gene encoding transgelin. Comparison of DNA methylation values in the promoter and subpromoter regions of the TAGLN gene in three types of NF1-deficient primary-cultured cells, derived from an NF1 patient's normal phenotype, a benign PN and MPNST tissues, revealed that the TAGLN gene was hypomethylated in the MPNST cells. Next, to determine the functional role of transgelin in MPNST pathogenesis, we manipulated the TAGLN gene expression and investigated the alteration of the RAS-mitogen-activated protein kinase (MAPK) signaling pathway in the normal-phenotypic and malignant tumor cells. The downregulation of TAGLN expression in NF1-deficient MPNST tumor cells through the treatment of the small interfering RNA resulted in a decrease in the RAS activation (GTP-RAS) and the downstream ERK1/2 activation (phosphorylated ERK1/2), while the overexpression of TAGLN in normal-phenotypic NF1-deficient cells caused an increase in RAS and ERK1/2 activation. These results indicate that upregulation of transgelin caused by hypomethylation of the TAGLN gene is closely involved in tumor progression in NF1.
Collapse
Affiliation(s)
- Gun-Hoo Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Su-Jin Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyunee Yim
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyon J Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young-Bae Sohn
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
53
|
Ruiz YM, Molina A, Reymundo C, Moyano R, de Las Mulas JM. An ulcerating mass in the dorsum of a Swiss OF1 mouse. Lab Anim (NY) 2014; 43:87-90. [PMID: 24552913 DOI: 10.1038/laban.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ana Molina
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, University of Córdoba, Córdoba, Spain
| | - Carlos Reymundo
- Department of Pathology, University of Córdoba, Córdoba, Spain
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, University of Córdoba, Córdoba, Spain
| | | |
Collapse
|
54
|
Farid M, Demicco EG, Garcia R, Ahn L, Merola PR, Cioffi A, Maki RG. Malignant peripheral nerve sheath tumors. Oncologist 2014; 19:193-201. [PMID: 24470531 PMCID: PMC3926794 DOI: 10.1634/theoncologist.2013-0328] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/16/2013] [Indexed: 12/12/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are uncommon, biologically aggressive soft tissue sarcomas of neural origin that pose tremendous challenges to effective therapy. In 50% of cases, they occur in the context of neurofibromatosis type I, characterized by loss of function mutations to the tumor suppressor neurofibromin; the remainder arise sporadically or following radiation therapy. Prognosis is generally poor, with high rates of relapse following multimodality therapy in early disease, low response rates to cytotoxic chemotherapy in advanced disease, and propensity for rapid disease progression and high mortality. The last few years have seen an explosion in data surrounding the potential molecular drivers and targets for therapy above and beyond neurofibromin loss. These data span multiple nodes at various levels of cellular control, including major signal transduction pathways, angiogenesis, apoptosis, mitosis, and epigenetics. These include classical cancer-driving genetic aberrations such as TP53 and phosphatase and tensin homolog (PTEN) loss of function, and upregulation of mitogen-activated protein kinase (MAPK) and (mechanistic) target of rapamycin (TOR) pathways, as well as less ubiquitous molecular abnormalities involving inhibitors of apoptosis proteins, aurora kinases, and the Wingless/int (Wnt) signaling pathway. We review the current understanding of MPNST biology, current best practices of management, and recent research developments in this disease, with a view to informing future advancements in patient care.
Collapse
Affiliation(s)
- Mohamad Farid
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Patel AJ, Liao CP, Chen Z, Liu C, Wang Y, Le LQ. BET bromodomain inhibition triggers apoptosis of NF1-associated malignant peripheral nerve sheath tumors through Bim induction. Cell Rep 2013; 6:81-92. [PMID: 24373973 DOI: 10.1016/j.celrep.2013.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/25/2013] [Accepted: 12/03/2013] [Indexed: 01/02/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive sarcomas that develop sporadically or in neurofibromatosis type 1 (NF1) patients. There is no effective treatment for MPNSTs and they are typically fatal. To gain insights into MPNST pathogenesis, we utilized an MPNST mouse model that allowed us to study the evolution of these tumors at the transcriptome level. Strikingly, in MPNSTs we found upregulation of a chromatin regulator, Brd4, and show that BRD4 inhibition profoundly suppresses both growth and tumorigenesis. Our findings reveal roles for BET bromodomains in MPNST development and report a mechanism by which bromodomain inhibition induces apoptosis through induction of proapoptotic Bim, which may represent a paradigm shift in therapy for MPNST patients. Moreover, these findings indicate epigenetic mechanisms underlying the balance of anti- and proapoptotic molecules and that bromodomain inhibition can shift this balance in favor of cancer cell apoptosis.
Collapse
Affiliation(s)
- Amish J Patel
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9133, USA; Cancer Biology Graduate Program, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9133, USA
| | - Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9133, USA
| | - Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9133, USA
| | - Chiachi Liu
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9133, USA
| | - Yong Wang
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9133, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9133, USA; Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9133, USA; UTSW Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9133, USA.
| |
Collapse
|
56
|
Chau V, Lim SK, Mo W, Liu C, Patel AJ, McKay RM, Wei S, Posner BA, De Brabander JK, Williams NS, Parada LF, Le LQ. Preclinical therapeutic efficacy of a novel pharmacologic inducer of apoptosis in malignant peripheral nerve sheath tumors. Cancer Res 2013; 74:586-97. [PMID: 24285727 DOI: 10.1158/0008-5472.can-13-1934] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurofibromatosis type I (NF1) is an autosomal disorder that affects neural crest-derived tissues, leading to a wide spectrum of clinical presentations. Patients commonly present with plexiform neurofibromas, benign but debilitating growths that can transform into malignant peripheral nerve sheath tumors (MPNST), a main cause of mortality. Currently, surgery is the primary course of treatment for MPNST, but with the limitation that these tumors are highly invasive. Radiotherapy is another treatment option, but is undesirable because it can induce additional mutations. Patients with MPNST may also receive doxorubicin as therapy, but this DNA-intercalating agent has relatively low tumor specificity and limited efficacy. In this study, we exploited a robust genetically engineered mouse model of MPNST that recapitulates human NF1-associated MPNST to identify a novel small chemical compound that inhibits tumor cell growth. Compound 21 (Cpd21) inhibits growth of all available in vitro models of MPNST and human MPNST cell lines, while remaining nontoxic to normally dividing Schwann cells or mouse embryonic fibroblasts. We show that this compound delays the cell cycle and leads to cellular apoptosis. Moreover, Cpd21 can reduce MPNST burden in a mouse allograft model, underscoring the compound's potential as a novel chemotherapeutic agent.
Collapse
Affiliation(s)
- Vincent Chau
- Authors' Affiliations: Departments of Dermatology, Developmental Biology, and Biochemistry, and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Dodd RD, Mito JK, Eward WC, Chitalia R, Sachdeva M, Ma Y, Barretina J, Dodd L, Kirsch DG. NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to MEK inhibition. Mol Cancer Ther 2013; 12:1906-17. [PMID: 23858101 PMCID: PMC3825462 DOI: 10.1158/1535-7163.mct-13-0189] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soft-tissue sarcomas are a heterogeneous group of tumors arising from connective tissue. Recently, mutations in the neurofibromin 1 (NF1) tumor suppressor gene were identified in multiple subtypes of human soft-tissue sarcomas. To study the effect of NF1 inactivation in the initiation and progression of distinct sarcoma subtypes, we have developed a novel mouse model of temporally and spatially restricted NF1-deleted sarcoma. To generate primary sarcomas, we inject adenovirus containing Cre recombinase into NF1(flox/flox); Ink4a/Arf(flox/flox) mice at two distinct orthotopic sites: intramuscularly or in the sciatic nerve. The mice develop either high-grade myogenic sarcomas or malignant peripheral nerve sheath tumor (MPNST)-like tumors, respectively. These tumors reflect the histologic properties and spectrum of sarcomas found in patients. To explore the use of this model for preclinical studies, we conducted a study of mitogen-activated protein kinase (MAPK) pathway inhibition with the MEK inhibitor PD325901. Treatment with PD325901 delays tumor growth through decreased cyclin D1 mRNA and cell proliferation. We also examined the effects of MEK inhibition on the native tumor stroma and find that PD325901 decreases VEGFα expression in tumor cells with a corresponding decrease in microvessel density. Taken together, our results use a primary tumor model to show that sarcomas can be generated by loss of NF1 and Ink4a/Arf, and that these tumors are sensitive to MEK inhibition by direct effects on tumor cells and the surrounding microenvironment. These studies suggest that MEK inhibitors should be further explored as potential sarcoma therapies in patients with tumors containing NF1 deletion.
Collapse
Affiliation(s)
- Rebecca D Dodd
- Corresponding Author: David G. Kirsch, Duke University Medical Center, Box 91006, Durham, NC 27708.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Zhang G, Hoersch S, Amsterdam A, Whittaker CA, Beert E, Catchen JM, Farrington S, Postlethwait JH, Legius E, Hopkins N, Lees JA. Comparative oncogenomic analysis of copy number alterations in human and zebrafish tumors enables cancer driver discovery. PLoS Genet 2013; 9:e1003734. [PMID: 24009526 PMCID: PMC3757083 DOI: 10.1371/journal.pgen.1003734] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/05/2013] [Indexed: 01/11/2023] Open
Abstract
The identification of cancer drivers is a major goal of current cancer research. Finding driver genes within large chromosomal events is especially challenging because such alterations encompass many genes. Previously, we demonstrated that zebrafish malignant peripheral nerve sheath tumors (MPNSTs) are highly aneuploid, much like human tumors. In this study, we examined 147 zebrafish MPNSTs by massively parallel sequencing and identified both large and focal copy number alterations (CNAs). Given the low degree of conserved synteny between fish and mammals, we reasoned that comparative analyses of CNAs from fish versus human MPNSTs would enable elimination of a large proportion of passenger mutations, especially on large CNAs. We established a list of orthologous genes between human and zebrafish, which includes approximately two-thirds of human protein-coding genes. For the subset of these genes found in human MPNST CNAs, only one quarter of their orthologues were co-gained or co-lost in zebrafish, dramatically narrowing the list of candidate cancer drivers for both focal and large CNAs. We conclude that zebrafish-human comparative analysis represents a powerful, and broadly applicable, tool to enrich for evolutionarily conserved cancer drivers.
Collapse
Affiliation(s)
- GuangJun Zhang
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Sebastian Hoersch
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Bioinformatics Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Adam Amsterdam
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Charles A. Whittaker
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Eline Beert
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Julian M. Catchen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Sarah Farrington
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Eric Legius
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Nancy Hopkins
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
59
|
Masliah-Planchon J, Pasmant E, Luscan A, Laurendeau I, Ortonne N, Hivelin M, Varin J, Valeyrie-Allanore L, Dumaine V, Lantieri L, Leroy K, Parfait B, Wolkenstein P, Vidaud M, Vidaud D, Bièche I. MicroRNAome profiling in benign and malignant neurofibromatosis type 1-associated nerve sheath tumors: evidences of PTEN pathway alterations in early NF1 tumorigenesis. BMC Genomics 2013; 14:473. [PMID: 23848554 PMCID: PMC3744175 DOI: 10.1186/1471-2164-14-473] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/11/2013] [Indexed: 11/22/2022] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a common dominant tumor predisposition syndrome affecting 1 in 3,500 individuals. The hallmarks of NF1 are the development of peripheral nerve sheath tumors either benign (dermal and plexiform neurofibromas) or malignant (MPNSTs). Results To comprehensively characterize the role of microRNAs in NF1 tumorigenesis, we analyzed 377 miRNAs expression in a large panel of dermal and plexiform neurofibromas, and MPNSTs. The most significantly upregulated miRNA in plexiform neurofibromas was miR-486-3p that targets the major tumor suppressor gene, PTEN. We confirmed PTEN downregulation at mRNA level. In plexiform neurofibromas, we also report aberrant expression of four miRNAs involved in the RAS-MAPK pathway (miR-370, miR-143, miR-181a, and miR-145). In MPNSTs, significant deregulated miRNAs were involved in PTEN repression (miR-301a, miR-19a, and miR-106b), RAS-MAPK pathway regulation (Let-7b, miR-195, and miR-10b), mesenchymal transition (miR-200c, let-7b, miR-135a, miR-135b, and miR-9), HOX genes expression (miR-210, miR-196b, miR-10a, miR-10b, and miR-9), and cell cycle progression (miR-195, let-7b, miR-20a, miR-210, miR-129-3p, miR-449a, and miR-106b). Conclusion We confirmed the implication of PTEN in genesis of plexiform neurofibromas and MPNSTs in NF1. Markedly deregulated miRNAs might have potential diagnostic or prognostic value and could represent novel strategies for effective pharmacological therapies of NF1 tumors.
Collapse
Affiliation(s)
- Julien Masliah-Planchon
- UMR745 INSERM, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet 2013; 45:756-66. [PMID: 23685747 PMCID: PMC3695033 DOI: 10.1038/ng.2641] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/25/2013] [Indexed: 12/27/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are sarcomas of Schwann cell-lineage origin that occur sporadically or in association with the inherited syndrome, Neurofibromatosis Type 1. To identify genetic drivers of MPNST development, we utilized the Sleeping Beauty (SB) transposon-based somatic mutagenesis system in mice with somatic loss of tumor protein p53 (Trp53) function and/or overexpression of epidermal growth factor receptor (EGFR). Common insertion site (CIS) analysis of 269 neurofibromas and 106 MPNSTs identified 695 and 87 sites with a statistically significant number of recurrent transposon insertions, respectively. Comparison to human data sets revealed novel and known driver genes for MPNST formation at these sites. Pairwise co-occurrence analysis of CIS-associated genes identified many cooperating mutations that are enriched for in Wnt/CTNNB1, PI3K/Akt/mTor, and growth factor receptor signaling pathways. Lastly, we identified several novel proto-oncogenes including forkhead box R2 (Foxr2), which we functionally validated as a proto-oncogene involved in MPNST maintenance.
Collapse
|
61
|
Watson AL, Rahrmann EP, Moriarity BS, Choi K, Conboy CB, Greeley AD, Halfond AL, Anderson LK, Wahl BR, Keng VW, Rizzardi AE, Forster CL, Collins MH, Sarver AL, Wallace MR, Schmechel SC, Ratner N, Largaespada DA. Canonical Wnt/β-catenin signaling drives human schwann cell transformation, progression, and tumor maintenance. Cancer Discov 2013; 3:674-89. [PMID: 23535903 DOI: 10.1158/2159-8290.cd-13-0081] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic changes required for the formation and progression of human Schwann cell tumors remain elusive. Using a Sleeping Beauty forward genetic screen, we identified several genes involved in canonical Wnt signaling as potential drivers of benign neurofibromas and malignant peripheral nerve sheath tumors (MPNSTs). In human neurofibromas and MPNSTs, activation of Wnt signaling increased with tumor grade and was associated with downregulation of β-catenin destruction complex members or overexpression of a ligand that potentiates Wnt signaling, R-spondin 2 (RSPO2). Induction of Wnt signaling was sufficient to induce transformed properties in immortalized human Schwann cells, and downregulation of this pathway was sufficient to reduce the tumorigenic phenotype of human MPNST cell lines. Small-molecule inhibition of Wnt signaling effectively reduced the viability of MPNST cell lines and synergistically induced apoptosis when combined with an mTOR inhibitor, RAD-001, suggesting that Wnt inhibition represents a novel target for therapeutic intervention in Schwann cell tumors.
Collapse
Affiliation(s)
- Adrienne L Watson
- Masonic Cancer Center, University of Minnesota, Minneapolis,MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Kazmi SJ, Byer SJ, Eckert JM, Turk AN, Huijbregts RP, Brossier NM, Grizzle WE, Mikhail FM, Roth KA, Carroll SL. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:646-67. [PMID: 23321323 PMCID: PMC3586689 DOI: 10.1016/j.ajpath.2012.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/19/2012] [Accepted: 11/13/2012] [Indexed: 12/12/2022]
Abstract
Patients with neurofibromatosis type 1 (NF1) develop benign plexiform neurofibromas that frequently progress to become malignant peripheral nerve sheath tumors (MPNSTs). A genetically engineered mouse model that accurately models plexiform neurofibroma-MPNST progression in humans would facilitate identification of somatic mutations driving this process. We previously reported that transgenic mice overexpressing the growth factor neuregulin-1 in Schwann cells (P(0)-GGFβ3 mice) develop MPNSTs. To determine whether P(0)-GGFβ3 mice accurately model human neurofibroma-MPNST progression, cohorts of these animals were monitored through death and were necropsied; 94% developed multiple neurofibromas, with 70% carrying smaller numbers of MPNSTs. Nascent MPNSTs were identified within neurofibromas, suggesting that these sarcomas arise from neurofibromas. Although neurofibromin expression was maintained, P(0)-GGFβ3 MPNSTs exhibited Ras hyperactivation, as in human NF1-associated MPNSTs. P(0)-GGFβ3 MPNSTs also exhibited abnormalities in the p16(INK4A)-cyclin D/CDK4-Rb and p19(ARF)-Mdm-p53 pathways, analogous to their human counterparts. Array comparative genomic hybridization (CGH) demonstrated reproducible chromosomal alterations in P(0)-GGFβ3 MPNST cells (including universal chromosome 11 gains) and focal gains and losses affecting 39 neoplasia-associated genes (including Pten, Tpd52, Myc, Gli1, Xiap, and Bbc3/PUMA). Array comparative genomic hybridization also identified recurrent focal copy number variations affecting genes not previously linked to neurofibroma or MPNST pathogenesis. We conclude that P(0)-GGFβ3 mice represent a robust model of neurofibroma-MPNST progression useful for identifying novel genes driving neurofibroma and MPNST pathogenesis.
Collapse
Affiliation(s)
- Syed J. Kazmi
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephanie J. Byer
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jenell M. Eckert
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Amy N. Turk
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Nicole M. Brossier
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, Alabama
- Medical Scientist Training Program, The University of Alabama at Birmingham, Birmingham, Alabama
| | - William E. Grizzle
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Fady M. Mikhail
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin A. Roth
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven L. Carroll
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
63
|
Conditional Inactivation of Pten with EGFR Overexpression in Schwann Cells Models Sporadic MPNST. Sarcoma 2012; 2012:620834. [PMID: 23319880 PMCID: PMC3539440 DOI: 10.1155/2012/620834] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/02/2012] [Indexed: 11/17/2022] Open
Abstract
The genetic mechanisms involved in the transformation from a benign neurofibroma to a malignant sarcoma in patients with neurofibromatosis-type-1- (NF1-)associated or sporadic malignant peripheral nerve sheath tumors (MPNSTs) remain unclear. It is hypothesized that many genetic changes are involved in transformation. Recently, it has been shown that both phosphatase and tensin homolog (PTEN) and epidermal growth factor receptor (EGFR) play important roles in the initiation of peripheral nerve sheath tumors (PNSTs). In human MPNSTs, PTEN expression is often reduced, while EGFR expression is often induced. We tested if these two genes cooperate in the evolution of PNSTs. Transgenic mice were generated carrying conditional floxed alleles of Pten, and EGFR was expressed under the control of the 2',3'-cyclic nucleotide 3'phosphodiesterase (Cnp) promoter and a desert hedgehog (Dhh) regulatory element driving Cre recombinase transgenic mice (Dhh-Cre). Complete loss of Pten and EGFR overexpression in Schwann cells led to the development of high-grade PNSTs. In vitro experiments using immortalized human Schwann cells demonstrated that loss of PTEN and overexpression of EGFR cooperate to increase cellular proliferation and anchorage-independent colony formation. This mouse model can rapidly recapitulate PNST onset and progression to high-grade PNSTs, as seen in sporadic MPNST patients.
Collapse
|
64
|
Bradtmöller M, Hartmann C, Zietsch J, Jäschke S, Mautner VF, Kurtz A, Park SJ, Baier M, Harder A, Reuss D, von Deimling A, Heppner FL, Holtkamp N. Impaired Pten expression in human malignant peripheral nerve sheath tumours. PLoS One 2012; 7:e47595. [PMID: 23139750 PMCID: PMC3490977 DOI: 10.1371/journal.pone.0047595] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 09/17/2012] [Indexed: 12/15/2022] Open
Abstract
Malignant peripheral nerve sheath tumours (MPNST) are aggressive sarcomas that develop in about 10% of patients with the genetic disease neurofibromatosis type 1 (NF1). Molecular alterations contributing to MPNST formation have only partially been resolved. Here we examined the role of Pten, a key regulator of the Pi3k/Akt/mTOR pathway, in human MPNST and benign neurofibromas. Immunohistochemistry showed that Pten expression was significantly lower in MPNST (n = 16) than in neurofibromas (n = 16) and normal nervous tissue. To elucidate potential mechanisms for Pten down-regulation or Akt/mTOR activation in MPNST we performed further experiments. Mutation analysis revealed absence of somatic mutations in PTEN (n = 31) and PIK3CA (n = 38). However, we found frequent PTEN promotor methylation in primary MPNST (11/26) and MPNST cell lines (7/8) but not in benign nerve sheath tumours. PTEN methylation was significantly associated with early metastasis. Moreover, we detected an inverse correlation of Pten-regulating miR-21 and Pten protein levels in MPNST cell lines. The examination of NF1−/− and NF1+/+Schwann cells and fibroblasts showed that Pten expression is not regulated by NF1. To determine the significance of Pten status for treatment with the mTOR inhibitor rapamycin we treated 5 MPNST cell lines with rapamycin. All cell lines were sensitive to rapamycin without a significant correlation to Pten levels. When rapamycin was combined with simvastatin a synergistic anti-proliferative effect was achieved. Taken together we show frequent loss/reduction of Pten expression in MPNST and provide evidence for the involvement of multiple Pten regulating mechanisms.
Collapse
Affiliation(s)
- Maren Bradtmöller
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, and Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Heidelberg, Germany
| | - Jan Zietsch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Jäschke
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Victor-F Mautner
- Department of Maxillofacial Surgery, University Hospital Eppendorf, Hamburg, Germany
| | - Andreas Kurtz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su-Jin Park
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Baier
- Project Neurodegenerative Diseases, Robert-Koch-Institute, Berlin, Germany
| | - Anja Harder
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - David Reuss
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, and Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, and Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Heidelberg, Germany
| | - Frank L. Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nikola Holtkamp
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
65
|
Lazovic J, Soto H, Piccioni D, Lou JR, Li S, Mirsadraei L, Yong W, Prins R, Liau LM, Ellingson BM, Cloughesy TF, Lai A, Pope WB. Detection of 2-hydroxyglutaric acid in vivo by proton magnetic resonance spectroscopy in U87 glioma cells overexpressing isocitrate dehydrogenase-1 mutation. Neuro Oncol 2012; 14:1465-72. [PMID: 23090985 DOI: 10.1093/neuonc/nos258] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The arginine 132 (R132) mutation of isocitrate dehydrogenase -1 (IDH1(R132)) results in production of 2-hydroxyglutarate (2-HG) and is associated with a better prognosis compared with wild-type (WT) in glioma patients. The majority of lower-grade gliomas express IDH1(R132), whereas this mutation is rare in grade IV gliomas. The aim of this study was to noninvasively investigate metabolic and physiologic changes associated with the IDH1 mutation in a mouse glioma model. Using a 7T magnet, we compared MRI and proton magnetic resonance spectroscopy (MRS) in U87 glioma cells overexpressing either the mutated IDH1(R132) or IDH1 wild-type (IDH1(WT)) gene in a mouse flank xenograft model. Flank tumors overexpressing IDH1(R132) showed a resonance at 2.25 ppm corresponding to the 2-HG peak described for human IDH1(R132) gliomas. WT tumors lacked this peak in all cases. IDH1 mutant tumors demonstrated significantly reduced glutamate by in vivo MRS. There were no significant differences in T(2), apparent diffusion coefficient (ADC), or perfusion values between the mutant and IDH1(WT) tumors. The IDH1(R132) mutation results in 2-HG resonance at 2.25 ppm and a reduction of glutamate levels as determined by MRS. Our results establish a model system where 2-HG can be monitored noninvasively, which should be helpful in validating 2-HG levels as a prognostic and/or predictive biomarker in glioma.
Collapse
Affiliation(s)
- Jelena Lazovic
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Thomas L, Mautner VF, Cooper DN, Upadhyaya M. Molecular heterogeneity in malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1. Hum Genomics 2012; 6:18. [PMID: 23244685 PMCID: PMC3500234 DOI: 10.1186/1479-7364-6-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/08/2012] [Indexed: 12/21/2022] Open
Abstract
Neurofibromatosis type-1 (NF1), resulting from NF1 gene loss of function, is characterized by an increased risk of developing benign and malignant peripheral nerve sheath tumors (MPNSTs). Whereas the cellular heterogeneity of NF1-associated tumors has been well studied, the molecular heterogeneity of MPNSTs is still poorly understood. Mutational heterogeneity within these malignant tumors greatly complicates the study of the underlying mechanisms of tumorigenesis. We have explored this molecular heterogeneity by performing loss of heterozygosity (LOH) analysis of the NF1, TP53, RB1, PTEN, and CDKN2A genes on sections of 10 MPNSTs derived from 10 unrelated NF1 patients. LOH data for the TP53 gene was found to correlate with the results of p53 immunohistochemical analysis in the same tumor sections. Further, approximately 70% of MPNSTs were found to display intra-tumoral molecular heterogeneity as evidenced by differences in the level of LOH between different sections of the same tumor samples. This study constitutes the first systematic analysis of molecular heterogeneity within MPNSTs derived from NF1 patients. Appreciation of the existence of molecular heterogeneity in NF1-associated tumors is important not only for optimizing somatic mutation detection, but also for understanding the mechanisms of NF1 tumorigenesis, a prerequisite for the development of specifically targeted cancer therapeutics.
Collapse
Affiliation(s)
- Laura Thomas
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | | | | |
Collapse
|
67
|
Ghadimi MP, Lopez G, Torres KE, Belousov R, Young ED, Liu J, Brewer KJ, Hoffman A, Lusby K, Lazar AJ, Pollock RE, Lev D. Targeting the PI3K/mTOR axis, alone and in combination with autophagy blockade, for the treatment of malignant peripheral nerve sheath tumors. Mol Cancer Ther 2012; 11:1758-69. [PMID: 22848094 DOI: 10.1158/1535-7163.mct-12-0015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There is a critical need for efficacious therapeutic strategies to improve the outcome of patients afflicted by malignant peripheral nerve sheath tumors (MPNST). Multiple lines of evidence suggest a role for deregulated phosphoinositide 3-kinase (PI3K)/mTOR signaling in MPNST, making this axis an attractive target for therapeutic manipulation. On the basis of previous observations obtained from in vitro experimentation, here we aimed to assess the effects of PI3K/mTOR blockade on MPNST growth in vivo. The anti-MPNST impact of XL765, a dual PI3K/mTOR inhibitor currently being evaluated in human cancer clinical trials, was tested in two human MPNST xenograft models (STS26T and MPNST724) and an experimental model of pulmonary metastasis (STS26T). XL765 abrogated human MPNST local and metastatic growth in severe combined immunodeficient mice. Notably, this therapeutic approach failed to induce apoptosis in MPNST cells but rather resulted in marked productive autophagy. Importantly, genetic and pharmacologic autophagy blockade reversed apoptotic resistance and resulted in significant PI3K/mTOR inhibition-induced MPNST cell death. The addition of the autophagy inhibitor, chloroquine, to the therapeutic regimen of MPNST xenografts after pretreatment with XL765 resulted in superior antitumor effects as compared with either agent alone. Together, preclinical studies described here expand our previous findings and suggest that PI3K/mTOR inhibition alone and (most importantly) in combination with autophagy blockade may comprise a novel and efficacious therapy for patients harboring MPNST.
Collapse
Affiliation(s)
- Markus P Ghadimi
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Keng VW, Rahrmann EP, Watson AL, Tschida BR, Moertel CL, Jessen WJ, Rizvi TA, Collins MH, Ratner N, Largaespada DA. PTEN and NF1 inactivation in Schwann cells produces a severe phenotype in the peripheral nervous system that promotes the development and malignant progression of peripheral nerve sheath tumors. Cancer Res 2012; 72:3405-13. [PMID: 22700876 DOI: 10.1158/0008-5472.can-11-4092] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The genetic evolution from a benign neurofibroma to a malignant sarcoma in patients with neurofibromatosis type 1 (NF1) syndrome remains unclear. Schwann cells and/or their precursor cells are believed to be the primary pathogenic cell in neurofibromas because they harbor biallelic neurofibromin 1 (NF1) gene mutations. However, the phosphatase and tensin homolog (Pten) and neurofibromatosis 1 (Nf1) genes recently were found to be comutated in high-grade peripheral nerve sheath tumors (PNST) in mice. In this study, we created transgenic mice that lack both Pten and Nf1 in Schwann cells and Schwann cell precursor cells to validate the role of these two genes in PNST formation in vivo. Haploinsufficiency or complete loss of Pten dramatically accelerated neurofibroma development and led to the development of higher grade PNSTs in the context of Nf1 loss. Pten dosage, together with Nf1 loss, was sufficient for the progression from low-grade to high-grade PNSTs. Genetic analysis of human malignant PNSTs (MPNST) also revealed downregulation of PTEN expression, suggesting that Pten-regulated pathways are major tumor-suppressive barriers to neurofibroma progression. Together, our findings establish a novel mouse model that can rapidly recapitulate the onset of human neurofibroma tumorigenesis and the progression to MPNSTs.
Collapse
Affiliation(s)
- Vincent W Keng
- Masonic Cancer Center, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Laycock-van Spyk S, Thomas N, Cooper DN, Upadhyaya M. Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum Genomics 2012; 5:623-90. [PMID: 22155606 PMCID: PMC3525246 DOI: 10.1186/1479-7364-5-6-623] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Somatic gene mutations constitute key events in the malignant transformation of human cells. Somatic mutation can either actively speed up the growth of tumour cells or relax the growth constraints normally imposed upon them, thereby conferring a selective (proliferative) advantage at the cellular level. Neurofibromatosis type-1 (NF1) affects 1/3,000-4,000 individuals worldwide and is caused by the inactivation of the NF1 tumour suppressor gene, which encodes the protein neurofibromin. Consistent with Knudson's two-hit hypothesis, NF1 patients harbouring a heterozygous germline NF1 mutation develop neurofibromas upon somatic mutation of the second, wild-type, NF1 allele. While the identification of somatic mutations in NF1 patients has always been problematic on account of the extensive cellular heterogeneity manifested by neurofibromas, the classification of NF1 somatic mutations is a prerequisite for understanding the complex molecular mechanisms underlying NF1 tumorigenesis. Here, the known somatic mutational spectrum for the NF1 gene in a range of NF1-associated neoplasms --including peripheral nerve sheath tumours (neurofibromas), malignant peripheral nerve sheath tumours, gastrointestinal stromal tumours, gastric carcinoid, juvenile myelomonocytic leukaemia, glomus tumours, astrocytomas and phaeochromocytomas -- have been collated and analysed.
Collapse
|
70
|
Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M, Wu H. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res 2012; 72:1878-89. [PMID: 22350410 PMCID: PMC3319847 DOI: 10.1158/0008-5472.can-11-3132] [Citation(s) in RCA: 389] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PTEN loss or PI3K/AKT signaling pathway activation correlates with human prostate cancer progression and metastasis. However, in preclinical murine models, deletion of Pten alone fails to mimic the significant metastatic burden that frequently accompanies the end stage of human disease. To identify additional pathway alterations that cooperate with PTEN loss in prostate cancer progression, we surveyed human prostate cancer tissue microarrays and found that the RAS/MAPK pathway is significantly elevated in both primary and metastatic lesions. In an attempt to model this event, we crossed conditional activatable K-ras(G12D/WT) mice with the prostate conditional Pten deletion model. Although RAS activation alone cannot initiate prostate cancer development, it significantly accelerated progression caused by PTEN loss, accompanied by epithelial-to-mesenchymal transition (EMT) and macrometastasis with 100% penetrance. A novel stem/progenitor subpopulation with mesenchymal characteristics was isolated from the compound mutant prostates, which was highly metastatic upon orthotopic transplantation. Importantly, inhibition of RAS/MAPK signaling by PD325901, a mitogen-activated protein (MAP)-extracellular signal-regulated (ER) kinase (MEK) inhibitor, significantly reduced the metastatic progression initiated from transplanted stem/progenitor cells. Collectively, our findings indicate that activation of RAS/MAPK signaling serves as a potentiating second hit to alteration of the PTEN/PI3K/AKT axis, and cotargeting both the pathways is highly effective in preventing the development of metastatic prostate cancers.
Collapse
Affiliation(s)
- David J Mulholland
- Department of Molecular and Medical Pharmacology and Institute for Molecular Medicine
| | - Naoko Kobayashi
- Department of Molecular and Medical Pharmacology and Institute for Molecular Medicine
| | - Marcus Ruscetti
- Department of Molecular and Medical Pharmacology and Institute for Molecular Medicine
| | - Allen Zhi
- Department of Molecular and Medical Pharmacology and Institute for Molecular Medicine
| | - Linh M Tran
- Department of Molecular and Medical Pharmacology and Institute for Molecular Medicine
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles
| | - Martin Gleave
- The Vancouver Prostate Centre and University of British Columbia, Vancouver, BC
| | - Hong Wu
- Department of Molecular and Medical Pharmacology and Institute for Molecular Medicine
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles
| |
Collapse
|
71
|
Ben-Yaakov K, Dagan SY, Segal-Ruder Y, Shalem O, Vuppalanchi D, Willis DE, Yudin D, Rishal I, Rother F, Bader M, Blesch A, Pilpel Y, Twiss JL, Fainzilber M. Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J 2012; 31:1350-63. [PMID: 22246183 DOI: 10.1038/emboj.2011.494] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/16/2011] [Indexed: 11/09/2022] Open
Abstract
Retrograde axonal injury signalling stimulates cell body responses in lesioned peripheral neurons. The involvement of importins in retrograde transport suggests that transcription factors (TFs) might be directly involved in axonal injury signalling. Here, we show that multiple TFs are found in axons and associate with dynein in axoplasm from injured nerve. Biochemical and functional validation for one TF family establishes that axonal STAT3 is locally translated and activated upon injury, and is transported retrogradely with dynein and importin α5 to modulate survival of peripheral sensory neurons after injury. Hence, retrograde transport of TFs from axonal lesion sites provides a direct link between axon and nucleus.
Collapse
Affiliation(s)
- Keren Ben-Yaakov
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Transgenic techniques for cell ablation or molecular deletion to investigate functions of astrocytes and other GFAP-expressing cell types. Methods Mol Biol 2012; 814:531-44. [PMID: 22144330 DOI: 10.1007/978-1-61779-452-0_35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic tools are enabling the molecular dissection of the functions and mechanisms of many biological processes. Transgenic manipulations provide powerful tools with which to test hypotheses regarding functions of specific cell types and molecules in vivo in combination with different types of experimental models. Various techniques are available that can target genetic manipulations specifically to astrocytes and that are enabling the molecular dissection of astrocyte biology in vivo. This article summarizes procedures and experience from our laboratory using transgenic strategies that enable either the ablation of proliferating astrocytes and related cells, or the deletion of specific molecules selectively from astrocytes, to study the functions of astrocytes and related cell types in health and disease in vivo using different experimental mouse models.
Collapse
|
73
|
Deletion of astroglial Dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J Neurosci 2011; 31:8306-19. [PMID: 21632951 DOI: 10.1523/jneurosci.0567-11.2011] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The endoribonuclease, Dicer, is indispensable for generating the majority of mature microRNAs (miRNAs), which are posttranscriptional regulators of gene expression involved in a wide range of developmental and pathological processes in the mammalian CNS. Although functions of Dicer-dependent miRNA pathways in neurons and oligodendrocytes have been extensively investigated, little is known about the role of Dicer in astrocytes. Here, we report the effect of Cre-loxP-mediated conditional deletion of Dicer selectively from postnatal astroglia on brain development. Dicer-deficient mice exhibited normal motor development and neurological morphology before postnatal week 5. Thereafter, mutant mice invariably developed a rapidly fulminant neurological decline characterized by ataxia, severe progressive cerebellar degeneration, seizures, uncontrollable movements, and premature death by postnatal week 9-10. Integrated transcription profiling, histological, and functional analyses of cerebella showed that deletion of Dicer in cerebellar astrocytes altered the transcriptome of astrocytes to be more similar to an immature or reactive-like state before the onset of neurological symptoms or morphological changes. As a result, critical and mature astrocytic functions including glutamate uptake and antioxidant pathways were substantially impaired, leading to massive apoptosis of cerebellar granule cells and degeneration of Purkinje cells. Collectively, our study demonstrates the critical involvement of Dicer in normal astrocyte maturation and maintenance. Our findings also reveal non-cell-autonomous roles of astrocytic Dicer-dependent pathways in regulating proper neuronal functions and implicate that loss of or dysregulation of astrocytic Dicer-dependent pathways may be involved in neurodegeneration and other neurological disorders.
Collapse
|
74
|
Brossier NM, Carroll SL. Genetically engineered mouse models shed new light on the pathogenesis of neurofibromatosis type I-related neoplasms of the peripheral nervous system. Brain Res Bull 2011; 88:58-71. [PMID: 21855613 DOI: 10.1016/j.brainresbull.2011.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 (NF1), the most common genetic disorder affecting the human nervous system, is characterized by the development of multiple benign Schwann cell tumors in skin and large peripheral nerves. These neoplasms, which are termed dermal and plexiform neurofibromas respectively, have distinct clinical courses; of particular note, plexiform, but not dermal, neurofibromas often undergo malignant progression to form malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy occurring in NF1 patients. In recent years, a number of genetically engineered mouse models have been created to investigate the molecular mechanisms driving the pathogenesis of these tumors. These models have been designed to address key questions including: (1) whether NF1 loss in the Schwann cell lineage is essential for tumorigenesis; (2) what cell type(s) in the Schwann cell lineage gives rise to dermal neurofibromas, plexiform neurofibromas and MPNSTs; (3) how the tumor microenvironment contributes to neoplasia; (4) what additional mutations contribute to neurofibroma-MPNST progression; (5) what role different neurofibromin-regulated Ras proteins play in this process and (6) how dysregulated growth factor signaling facilitates PNS tumorigenesis. In this review, we summarize the major findings from each of these models and their limitations as well as how discrepancies between these models may be reconciled. We also discuss how information gleaned from these models can be synthesized to into a comprehensive model of tumor formation in peripheral nervous system and consider several of the major questions that remain unanswered about this process.
Collapse
Affiliation(s)
- Nicole M Brossier
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
75
|
Taylor BS, Barretina J, Maki RG, Antonescu CR, Singer S, Ladanyi M. Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer 2011; 11:541-57. [PMID: 21753790 PMCID: PMC3361898 DOI: 10.1038/nrc3087] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasingly, human mesenchymal malignancies are being classified by the abnormalities that drive their pathogenesis. Although many of these aberrations are highly prevalent within particular sarcoma subtypes, few are currently targeted therapeutically. Indeed, most subtypes of sarcoma are still treated with traditional therapeutic modalities, and in many cases sarcomas are resistant to adjuvant therapies. In this Review, we discuss the core molecular determinants of sarcomagenesis and emphasize the emerging genomic and functional genetic approaches that, coupled with novel therapeutic strategies, have the potential to transform the care of patients with sarcoma.
Collapse
Affiliation(s)
- Barry S Taylor
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
76
|
Palaskas N, Larson SM, Schultz N, Komisopoulou E, Wong J, Rohle D, Campos C, Yannuzzi N, Osborne JR, Linkov I, Kastenhuber ER, Taschereau R, Plaisier SB, Tran C, Heguy A, Wu H, Sander C, Phelps ME, Brennan C, Port E, Huse JT, Graeber TG, Mellinghoff IK. 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res 2011; 71:5164-74. [PMID: 21646475 DOI: 10.1158/0008-5472.can-10-4633] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In contrast to normal cells, cancer cells avidly take up glucose and metabolize it to lactate even when oxygen is abundant, a phenomenon referred to as the Warburg effect. This fundamental alteration in glucose metabolism in cancer cells enables their specific detection by positron emission tomography (PET) following i.v. injection of the glucose analogue (18)F-fluorodeoxy-glucose ((18)FDG). However, this useful imaging technique is limited by the fact that not all cancers avidly take up FDG. To identify molecular determinants of (18)FDG retention, we interrogated the transcriptomes of human-cancer cell lines and primary tumors for metabolic pathways associated with (18)FDG radiotracer uptake. From ninety-five metabolic pathways that were interrogated, the glycolysis, and several glycolysis-related pathways (pentose phosphate, carbon fixation, aminoacyl-tRNA biosynthesis, one-carbon-pool by folate) showed the greatest transcriptional enrichment. This "FDG signature" predicted FDG uptake in breast cancer cell lines and overlapped with established gene expression signatures for the "basal-like" breast cancer subtype and MYC-induced tumorigenesis in mice. Human breast cancers with nuclear MYC staining and high RNA expression of MYC target genes showed high (18)FDG-PET uptake (P < 0.005). Presence of the FDG signature was similarly associated with MYC gene copy gain, increased MYC transcript levels, and elevated expression of metabolic MYC target genes in a human breast cancer genomic dataset. Together, our findings link clinical observations of glucose uptake with a pathologic and molecular subtype of human breast cancer. Furthermore, they suggest related approaches to derive molecular determinants of radiotracer retention for other PET-imaging probes.
Collapse
Affiliation(s)
- Nicolaos Palaskas
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Rodriguez EF, Scheithauer BW, Giannini C, Rynearson A, Cen L, Hoesley B, Gilmer-Flynn H, Sarkaria JN, Jenkins S, Long J, Rodriguez FJ. PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 2011; 121:407-20. [PMID: 21113787 DOI: 10.1007/s00401-010-0784-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/24/2010] [Accepted: 11/16/2010] [Indexed: 12/22/2022]
Abstract
Pilocytic astrocytomas (PA) are well-differentiated gliomas having a favorable prognosis when compared with other diffuse or infiltrative astrocytomas. Molecular genetic abnormalities and activation of signaling pathways associated with clinically aggressive PA and histologically anaplastic PA have not been adequately studied. We performed molecular genetic, gene expression, and immunohistochemical studies using three PA subsets, including conventional PA (n = 43), clinically aggressive/recurrent PA (n = 24), and histologically anaplastic PA (n = 25). A clinical diagnosis of NF1 was present in 28% of anaplastic PA. Molecular cytogenetic studies demonstrated heterozygous PTEN/10q and homozygous p16 deletions in 6/19 (32%) and 3/15 (20%) cases of anaplastic PA, respectively, but in neither of the two other groups. BRAF duplication was identified in 33% of sporadic anaplastic PA and 63% of cerebellar examples. BRAF (V600E) mutation was absent in four (of 4) sporadic cases lacking duplication. IDH1(R132H) immunohistochemistry was negative in 16 (of 16) cases. Neither PDGFRA nor EGFR amplifications were present. pERK staining levels were similar among the three PA subsets, but a stepwise increase in cytoplasmic pAKT and to a lesser extent pS6 immunoreactivity was noted by immunohistochemistry in aggressive PA groups. This was particularly true in histologically anaplastic PA when compared with conventional PA (p < 0.001 and p = 0.005, respectively). In addition, PTEN expression at the mRNA level was decreased in histologically anaplastic PA when compared to the other groups (p = 0.05). In summary, activation of the PI3K/AKT in addition to MAPK/ERK signaling pathways may underlie biological aggressiveness in PA. Specifically, it may mediate the increased proliferative activity observed in histologically anaplastic PA.
Collapse
Affiliation(s)
- Erika F Rodriguez
- Department of Anatomic Pathology and Laboratory Medicine, Mayo Clinic, 200 First Street SE, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
PURPOSE OF REVIEW Neurofibromatosis type I (NF-1), affecting 1: 3000 people, is one of the most common disorders of the nervous system, and most pediatricians will care for a patient with this condition. It is imperative that careful attention be paid to screening for scoliosis and tibial dysplasia. Prompt referral to an orthopaedist at the time of diagnosis, as well as neurologist, ophthalmologist, and dermatologist, will provide a global spectrum of care for the individual. Patient care between surgical procedures will be inevitable, with 70% of patients with NF-1 undergoing hospitalization or surgery. RECENT FINDINGS This review provides a description of diagnosis, presurgical evaluation, and advances in understanding tibial dysplasia, scoliosis and malignant peripheral nerve sheath tumors. New pharmaceutical treatments such as lovastatin have improved bone healing in vivo and induced apoptosis in vitro. Multiple pharmaceuticals have shown neurofibroma arrest in vitro and are in phase II clinical trials. SUMMARY As animal models improve and clinical trials proceed, there is momentum toward eliminating the musculoskeletal morbidity associated with NF-1.
Collapse
|
79
|
Crouse NR, Dahiya S, Gutmann DH. Rethinking Pediatric Gliomas as Developmental Brain Abnormalities. Curr Top Dev Biol 2011; 94:283-308. [DOI: 10.1016/b978-0-12-380916-2.00009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
80
|
Sarver AL, Li L, Subramanian S. MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res 2010; 70:9570-80. [PMID: 21118966 DOI: 10.1158/0008-5472.can-10-2074] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor EGR1 is a tumor suppressor gene that is downregulated in many cancer types. Clinically, loss of EGR1 translates to increased tumor transformation and subsequent patient morbidity and mortality. In synovial sarcoma, the SS18-SSX fusion protein represses EGR1 expression through a direct association with the EGR1 promoter. However, the mechanism through which EGR1 becomes downregulated in other tumor types is unclear. Here, we report that EGR1 is regulated by microRNA (miR)-183 in multiple tumor types including synovial sarcoma, rhabdomyosarcoma (RMS), and colon cancer. Using an integrative network analysis, we identified that miR-183 is significantly overexpressed in these tumor types as well as in corresponding tumor cell lines. Bioinformatic analyses suggested that miR-183 could target EGR1 mRNA and this specific interaction was validated in vitro. miR-183 knockdown in synovial sarcoma, RMS, and colon cancer cell lines revealed deregulation of a miRNA network composed of miR-183-EGR1-PTEN in these tumors. Integrated miRNA- and mRNA-based genomic analyses indicated that miR-183 is an important contributor to cell migration in these tumor types and this result was functionally validated to be occurring via an EGR1-based mechanism. In conclusion, our findings have significant implications in the mechanisms underlying EGR1 regulation in cancers. miR-183 has a potential oncogenic role through the regulation of 2 tumor suppressor genes, EGR1 and PTEN, and the deregulation of this fundamental miRNA regulatory network may be central to many tumor types.
Collapse
Affiliation(s)
- Aaron L Sarver
- Biostatistics and Bioinformatics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
81
|
Mawrin C. Critical role of PTEN for development and progression of nerve sheath tumors in neurofibromatosis type 1. Future Oncol 2010; 6:499-501. [PMID: 20373864 DOI: 10.2217/fon.10.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Gregorian C, Nakashima J, Dry SM et al.: PTEN dosage is essential for neurofibroma development and malignant transformation. Proc. Natl Acad. Sci. USA 106(46), 19479-19484 (2009). Neurofibromatosis type 1 (NF1) is among the most common inherited tumor-predisposing syndromes in humans. Development of malignant peripheral nerve sheath tumors (MPNSTs) from neurofibroma significantly affects the morbidity and mortality of NF1 patients. The authors demonstrate, using different genetically engineered mouse models, that loss of the tumor suppressor Pten in combination with overexpression of the K-ras oncogene is an important step in MPNST development. In both mouse and human tumors, the transition from low-grade neurofibromas to MPNST is associated with reduced Pten expression, deregulated mTOR signaling activity and increased proliferation. This tumor transition can be monitored by (18)F-fluoro-D-glucose-PET, offering close clinical monitoring of NF1 patients and thus early detection of MPNST development in the future.
Collapse
Affiliation(s)
- Christian Mawrin
- Department of Neuropathology, University of Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
82
|
Staser K, Yang FC, Clapp DW. Plexiform neurofibroma genesis: questions of Nf1 gene dose and hyperactive mast cells. Curr Opin Hematol 2010; 17:287-93. [PMID: 20571392 PMCID: PMC3539783 DOI: 10.1097/moh.0b013e328339511b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Tumorigenic cells can co-opt normal functions of nonmalignant hematopoietic cells, promoting tumor progression. Recent mouse and human studies indicate that mast cells underpin inflammation in the plexiform neurofibroma microenvironment of neurofibromatosis type 1. In this model, Nf1 homozygous-deficient Schwann cells recruit hyperactive mast cells, promoting tumorigenesis. Here, we discuss the importance of Nf1 gene dosage, delineate hematopoietic contributions to the plexiform neurofibroma microenvironment, and highlight applications to human treatment. RECENT FINDINGS Previous studies found that plexiform neurofibroma formation in a mouse model requires biallelic loss of Nf1 in Schwann cells and an Nf1 heterozygous cellular background. Now, transplantation and pharmacological experiments have indicated that tumor formation specifically requires Nf1 heterozygosity of c-kit-dependent bone marrow. SUMMARY Neurofibromatosis type 1 results from autosomal dominant mutations of the NF1 tumor suppressor gene. Although unpredictable second-hit mutations in the remaining NF1 allele precede local manifestations such as tumor formation, human and mouse data indicate that NF1/Nf1 gene haploinsufficiency modulates cellular physiology and disease pathogeneses. In particular, Nf1 haplo insufficient mast cells demonstrate multiple gain-in-functions, and mast cells permeate neurofibroma tissue. Transplantation experiments have shown that these aberrant mast cells critically underpin the tumor microenvironment. Using these findings, clinicians have medically treated a patient with a debilitating plexiform neurofibroma.
Collapse
Affiliation(s)
- Karl Staser
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
83
|
|
84
|
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010; 119:7-35. [PMID: 20012068 PMCID: PMC2799634 DOI: 10.1007/s00401-009-0619-8] [Citation(s) in RCA: 3515] [Impact Index Per Article: 251.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/23/2009] [Accepted: 11/24/2009] [Indexed: 02/06/2023]
Abstract
Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions.
Collapse
|