51
|
Martin OA, Yin X, Forrester HB, Sprung CN, Martin RF. Potential strategies to ameliorate risk of radiotherapy-induced second malignant neoplasms. Semin Cancer Biol 2015; 37-38:65-76. [PMID: 26721424 DOI: 10.1016/j.semcancer.2015.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 12/18/2022]
Abstract
This review is aimed at the issue of radiation-induced second malignant neoplasms (SMN), which has become an important problem with the increasing success of modern cancer radiotherapy (RT). It is imperative to avoid compromising the therapeutic ratio while addressing the challenge of SMN. The dilemma is illustrated by the role of reactive oxygen species in both the mechanisms of tumor cell kill and of radiation-induced carcinogenesis. We explore the literature focusing on three potential routes of amelioration to address this challenge. An obvious approach to avoiding compromise of the tumor response is the use of radioprotectors or mitigators that are selective for normal tissues. We also explore the opportunities to avoid protection of the tumor by topical/regional radioprotection of normal tissues, although this strategy limits the scope of protection. Finally, we explore the role of the bystander/abscopal phenomenon in radiation carcinogenesis, in association with the inflammatory response. Targeted and non-targeted effects of radiation are both linked to SMN through induction of DNA damage, genome instability and mutagenesis, but differences in the mechanisms and kinetics between targeted and non-targeted effects may provide opportunities to lessen SMN. The agents that could be employed to pursue each of these strategies are briefly reviewed. In many cases, the same agent has potential utility for more than one strategy. Although the parallel problem of chemotherapy-induced SMN shares common features, this review focuses on RT associated SMN. Also, we avoid the burgeoning literature on the endeavor to suppress cancer incidence by use of antioxidants and vitamins either as dietary strategies or supplementation.
Collapse
Affiliation(s)
- Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Xiaoyu Yin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia.
| | - Helen B Forrester
- Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| | - Carl N Sprung
- Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| | - Roger F Martin
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
52
|
Zakhvataev VE. Possible scenarios of the influence of low-dose ionizing radiation on neural functioning. Med Hypotheses 2015; 85:723-35. [PMID: 26526727 DOI: 10.1016/j.mehy.2015.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
Abstract
Possible scenarios of the influence of ionizing radiation on neural functioning and the CNS are suggested. We argue that the radiation-induced bystander mechanisms associated with Ca(2+) flows, reactive nitrogen and oxygen species, and cytokines might lead to modulation of certain neuronal signaling pathways. The considered scenarios of conjugation of the bystander signaling and the neuronal signaling might result in modulation of certain synaptic receptors, neurogenesis, neurotransmission, channel conductance, synaptic signaling, different forms of neural plasticity, memory formation and storage, and learning. On this basis, corresponding new possible strategies for treating neurodegenerative deceases and mental disorders are proposed. The mechanisms considered might also be associated with neuronal survival and relevant to the treatment for brain injuries. At the same time, these mechanisms might be associated with detrimental effects and might facilitate the development of some neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Vladimir E Zakhvataev
- Neuroinformatics Department, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; Laboratory of Biological Action of Low-Intensity Factors, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia.
| |
Collapse
|
53
|
Hasselbalch HC. Perspectives on the increased risk of second cancer in patients with essential thrombocythemia, polycythemia vera and myelofibrosis. Eur J Haematol 2015; 94:96-8. [PMID: 25689636 DOI: 10.1111/ejh.12437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hans Carl Hasselbalch
- Department of Hematology, Roskilde Hospital, University of Copenhagen, Roskilde, Denmark
| |
Collapse
|
54
|
Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. DNA damage foci: Meaning and significance. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:491-504. [PMID: 25773265 DOI: 10.1002/em.21944] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The discovery of DNA damage response proteins such as γH2AX, ATM, 53BP1, RAD51, and the MRE11/RAD50/NBS1 complex, that accumulate and/or are modified in the vicinity of a chromosomal DNA double-strand break to form microscopically visible, subnuclear foci, has revolutionized the detection of these lesions and has enabled studies of the cellular machinery that contributes to their repair. Double-strand breaks are induced directly by a number of physical and chemical agents, including ionizing radiation and radiomimetic drugs, but can also arise as secondary lesions during replication and DNA repair following exposure to a wide range of genotoxins. Here we aim to review the biological meaning and significance of DNA damage foci, looking specifically at a range of different settings in which such markers of DNA damage and repair are being studied and interpreted.
Collapse
Affiliation(s)
- Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Radiotherapy, Laboratory of Radiation Biology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Michele Ellender
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Zohaib Rana
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Susanne Burdak-Rothkamm
- Department of Cellular Pathology, Oxford University Hospitals, Headley Way, Headington, Oxford, United Kingdom
| |
Collapse
|
55
|
Yoshimura T, Liu M, Chen X, Li L, Wang JM. Crosstalk between Tumor Cells and Macrophages in Stroma Renders Tumor Cells as the Primary Source of MCP-1/CCL2 in Lewis Lung Carcinoma. Front Immunol 2015; 6:332. [PMID: 26167165 PMCID: PMC4481164 DOI: 10.3389/fimmu.2015.00332] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/15/2015] [Indexed: 11/13/2022] Open
Abstract
The chemokine MCP-1/CCL2 is produced by a variety of tumors and plays an important role in cancer progression. We and others previously demonstrated that the primary source of MCP-1 in several mouse tumors, including 4T1 breast cancer, M5076 sarcoma, and B16 melanoma, was stromal cells. In the present study, we identified that tumor cells were the primary source of MCP-1 in Lewis lung carcinoma (LLC), because MCP-1 mRNA was highly expressed in tumors grown in both wild type (WT) and MCP-1(-/-) mice with elevated serum MCP-1 levels. Since LLC cells isolated from tumors expressed low levels of MCP-1 in vitro, it appeared that the tumor-stromal cell interaction in a tumor microenvironment increased MCP-1 expression in LLC cells. In fact, co-culture of LLC cells with normal mouse peritoneal macrophages or normal lung cells containing macrophages increased MCP-1 expression by LLC cells. Macrophages from TNFα(-/-) mice failed to activate LLC cells and anti-TNFα neutralizing antibody abolished the effect of WT macrophages on LLC cells. When LLC cells were transplanted into TNFα(-/-) mice, the levels of MCP-1 mRNA in tumors and serum MCP-1 levels were markedly lower as compared to WT mice, and importantly, tumors grew more slowly. Taken together, our results indicate that TNFα released by tumor cell-activated macrophages is critical for increased MCP-1 production by tumors cells. Thus, disruption of tumor-stromal cell interaction may inhibit tumor progression by reducing the production of tumor-promoting proinflammatory mediators, such as MCP-1.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mingyong Liu
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Department of Spine Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Liangzhu Li
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Engineering Research Center for Cell and Therapeutic Antibody of Ministry of Education, School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
56
|
Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, Massfelder T, Rathmell WK, Xia M, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Prudhomme KR, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Lowe L, Jensen L, Bisson WH, Kleinstreuer N. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis 2015; 36 Suppl 1:S184-202. [PMID: 26106137 PMCID: PMC4492067 DOI: 10.1093/carcin/bgv036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
Collapse
Affiliation(s)
- Zhiwei Hu
- To whom correspondence should be addressed. Tel: +1 614 685 4606; Fax: +1-614-247-7205;
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valérian Dormoy
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Chia-Wen Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, Taipei Medical University, Taiwan, Republic of China
| | - Thierry Massfelder
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
| | - W. Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Fahd Al-Mulla
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate
, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - A. Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advance Research), King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden and
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems, Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, NIEHS, MD K2-16, RTP, NC 27709, USA
| |
Collapse
|
57
|
Geiger-Maor A, Guedj A, Even-Ram S, Smith Y, Galun E, Rachmilewitz J. Macrophages Regulate the Systemic Response to DNA Damage by a Cell Nonautonomous Mechanism. Cancer Res 2015; 75:2663-73. [DOI: 10.1158/0008-5472.can-14-3635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/29/2015] [Indexed: 11/16/2022]
|
58
|
Dong C, He M, Tu W, Konishi T, Liu W, Xie Y, Dang B, Li W, Uchihori Y, Hei TK, Shao C. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation. Cancer Lett 2015; 363:92-100. [PMID: 25896631 DOI: 10.1016/j.canlet.2015.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/21/2015] [Accepted: 04/14/2015] [Indexed: 12/30/2022]
Abstract
The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in the γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation, while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury.
Collapse
Affiliation(s)
- Chen Dong
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Mingyuan He
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China; Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Teruaki Konishi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Weili Liu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Yuexia Xie
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China; Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Yukio Uchihori
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Tom K Hei
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
59
|
Fernandez-Palomo C, Mothersill C, Bräuer-Krisch E, Laissue J, Seymour C, Schültke E. γ-H2AX as a marker for dose deposition in the brain of wistar rats after synchrotron microbeam radiation. PLoS One 2015; 10:e0119924. [PMID: 25799425 PMCID: PMC4370487 DOI: 10.1371/journal.pone.0119924] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/17/2015] [Indexed: 01/01/2023] Open
Abstract
Objective Synchrotron radiation has shown high therapeutic potential in small animal models of malignant brain tumours. However, more studies are needed to understand the radiobiological effects caused by the delivery of high doses of spatially fractionated x-rays in tissue. The purpose of this study was to explore the use of the γ-H2AX antibody as a marker for dose deposition in the brain of rats after synchrotron microbeam radiation therapy (MRT). Methods Normal and tumour-bearing Wistar rats were exposed to 35, 70 or 350 Gy of MRT to their right cerebral hemisphere. The brains were extracted either at 4 or 8 hours after irradiation and immediately placed in formalin. Sections of paraffin-embedded tissue were incubated with anti γ-H2AX primary antibody. Results While the presence of the C6 glioma does not seem to modulate the formation of γ-H2AX in normal tissue, the irradiation dose and the recovery versus time are the most important factors affecting the development of γ-H2AX foci. Our results also suggest that doses of 350 Gy can trigger the release of bystander signals that significantly amplify the DNA damage caused by radiation and that the γ-H2AX biomarker does not only represent DNA damage produced by radiation, but also damage caused by bystander effects. Conclusion In conclusion, we suggest that the γ-H2AX foci should be used as biomarker for targeted and non-targeted DNA damage after synchrotron radiation rather than a tool to measure the actual physical doses.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- Stereotactic Neurosurgery and Laboratory for Molecular Neurosurgery, Freiburg University Medical Center, Freiburg, Germany
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| | - Carmel Mothersill
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | | | - Jean Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | - Elisabeth Schültke
- Stereotactic Neurosurgery and Laboratory for Molecular Neurosurgery, Freiburg University Medical Center, Freiburg, Germany
- Department of Radiotherapy/Laboratory of Radiobiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
60
|
Denoyer D, Lobachevsky P, Jackson P, Thompson M, Martin OA, Hicks RJ. Analysis of 177Lu-DOTA-Octreotate Therapy–Induced DNA Damage in Peripheral Blood Lymphocytes of Patients with Neuroendocrine Tumors. J Nucl Med 2015; 56:505-11. [DOI: 10.2967/jnumed.114.145581] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/08/2014] [Indexed: 12/24/2022] Open
|
61
|
Keszenman DJ, Kolodiuk L, Baulch JE. DNA damage in cells exhibiting radiation-induced genomic instability. Mutagenesis 2015; 30:451-8. [PMID: 25711497 DOI: 10.1093/mutage/gev006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cells exhibiting radiation-induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.
Collapse
Affiliation(s)
- Deborah J Keszenman
- Biosciences Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA, Laboratory of Medical and Environmental Radiobiology, Biophysical Chemistry Group, Department of Biological Sciences, CENUR del Noroeste, UdelaR, Rivera 1350, Salto 50000, Uruguay,
| | - Lucia Kolodiuk
- 107-112 CMM/BLL, Stony Brook University, Stony Brook, NY 11794, USA and
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Medical Sciences I, B149, Irvine, CA 92697, USA
| |
Collapse
|
62
|
Yang Y, Crosbie JC, Paiva P, Ibahim M, Stevenson A, Rogers PAW. In vitro study of genes and molecular pathways differentially regulated by synchrotron microbeam radiotherapy. Radiat Res 2015; 182:626-39. [PMID: 25409126 DOI: 10.1667/rr13778.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this study was to identify genes and molecular pathways differentially regulated by synchrotron-generated microbeam radiotherapy (MRT) versus conventional broadbeam radiotherapy (CRT) in vitro using cultured EMT6.5 cells. We hypothesized (based on previous findings) that gene expression and molecular pathway changes after MRT are different from those seen after CRT. We found that at 24 h postirradiation, MRT exerts a broader regulatory effect on multiple pathways than CRT. MRT regulated those pathways involved in gene transcription, translation initiation, macromolecule metabolism, oxidoreductase activity and signaling transduction in a different manner compared to CRT. We also found that MRT/CRT alone, or when combined with inflammatory factor lipopolysaccharide, upregulated expression of Ccl2, Ccl5 or Csf2, which are involved in host immune cell recruitment. Our findings demonstrated differences in the molecular pathway for MRT versus CRT in the cultured tumor cells, and were consistent with the idea that radiation plays a role in recruiting tumor-associated immune cells to the tumor. Our results also suggest that a combination of MRT/CRT with a treatment targeting CCL2 or CSF2 could repress the tumor-associated immune cell recruitment, delay tumor growth and/or metastasis and yield better tumor control than radiation alone.
Collapse
Affiliation(s)
- Yuqing Yang
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
63
|
Haikerwal SJ, Hagekyriakou J, MacManus M, Martin OA, Haynes NM. Building immunity to cancer with radiation therapy. Cancer Lett 2015; 368:198-208. [PMID: 25592036 DOI: 10.1016/j.canlet.2015.01.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 12/14/2022]
Abstract
Over the last decade there has been a dramatic shift in the focus of cancer research toward understanding how the body's immune defenses can be harnessed to promote the effectiveness of cytotoxic anti-cancer therapies. The ability of ionizing radiation to elicit anti-cancer immune responses capable of controlling tumor growth has led to the emergence of promising combination-based radio-immunotherapeutic strategies for the treatment of cancer. Herein we review the immunoadjuvant properties of localized radiation therapy and discuss how technological advances in radio-oncology and developments in the field of tumor-immunotherapy have started to revolutionize the therapeutic application of radiotherapy.
Collapse
Affiliation(s)
- Suresh J Haikerwal
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Jim Hagekyriakou
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Michael MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Nicole M Haynes
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia.
| |
Collapse
|
64
|
Kim M, Park IH, Lee KS, Ro J, Jung SY, Lee S, Kang HS, Lee ES, Kim TH, Cho KH, Shin KH. Breast Cancer-Related Lymphedema after Neoadjuvant Chemotherapy. Cancer Res Treat 2014; 47:416-23. [PMID: 25544575 PMCID: PMC4506114 DOI: 10.4143/crt.2014.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/01/2014] [Indexed: 11/21/2022] Open
Abstract
Purpose The risk for lymphedema (LE) after neoadjuvant chemotherapy (NCT) in breast cancer patients has not been fully understood thus far. This study is conducted to investigate the incidence and time course of LE after NCT. Materials and Methods A total of 313 patients with clinically node-positive breast cancer who underwent NCT followed by surgery with axillary lymph node (ALN) dissection from 2004 to 2009 were retrospectively analyzed. All patients received breast and supraclavicular radiation therapy (SCRT). The determination of LE was based on both objective and subjective methods, as part of a prospective database. Results At a median follow-up of 5.6 years, 132 patients had developed LE: 88 (28%) were grade 1; 42 (13%) were grade 2; and two (1%) were grade 3. The overall 5-year cumulative incidence of LE was 42%. LE first occurred within 6 months after surgery in 62%; 1 year in 77%; 2 years in 91%; and 3 years in 96%. In a multivariate analysis, age (hazard ratio [HR], 1.66; p < 0.01) and the number of dissected ALNs (HR, 1.68; p < 0.01) were independent risk factors for LE. Patients with both of these risk factors showed a significantly higher 5-year cumulative incidence of LE compared with patients with no or one risk factor (61% and 37%, respectively; p < 0.001). The addition of adjuvant chemotherapy did not significantly correlate with LE. Conclusion LE after NCT, surgery, and SCRT developed early after treatment, and with a high incidence rate. More frequent surveillance of arm swelling may be necessary in patients after NCT, especially during the first few years of follow-up.
Collapse
Affiliation(s)
- Myungsoo Kim
- Research Institute and Hospital, National Cancer Center, Goyang, Korea ; Department of Radiation Oncology, Incheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - In Hae Park
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Keun Seok Lee
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jungsil Ro
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - So-Youn Jung
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Seeyoun Lee
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Eun Sook Lee
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Tae Hyun Kim
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Kwan Ho Cho
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Kyung Hwan Shin
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
65
|
Martin OA, Redon CE, Dickey JS, Nakamura AJ, Bonner WM. Para-inflammation mediates systemic DNA damage in response to tumor growth. Commun Integr Biol 2014. [DOI: 10.4161/cib.13942] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
66
|
Burdak-Rothkamm S, Rothkamm K, McClelland K, Al Rashid ST, Prise KM. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells. Cancer Lett 2014; 356:454-61. [PMID: 25304378 DOI: 10.1016/j.canlet.2014.09.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
Abstract
Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.
Collapse
Affiliation(s)
- Susanne Burdak-Rothkamm
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton/Didcot OX11 0RQ, UK
| | - Keeva McClelland
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shahnaz T Al Rashid
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
67
|
Burdak-Rothkamm S, Smith A, Lobachevsky P, Martin R, Prise KM. Radioprotection of targeted and bystander cells by methylproamine. Strahlenther Onkol 2014; 191:248-55. [PMID: 25245467 PMCID: PMC4338360 DOI: 10.1007/s00066-014-0751-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
Introduction Radioprotective agents are of interest for application in radiotherapy for cancer and in public health medicine in the context of accidental radiation exposure. Methylproamine is the lead compound of a class of radioprotectors which act as DNA binding anti-oxidants, enabling the repair of transient radiation-induced oxidative DNA lesions. This study tested methylproamine for the radioprotection of both directly targeted and bystander cells. Methods T98G glioma cells were treated with 15 μM methylproamine and exposed to 137Cs γ-ray/X-ray irradiation and He2+ microbeam irradiation. Radioprotection of directly targeted cells and bystander cells was measured by clonogenic survival or γH2AX assay. Results Radioprotection of directly targeted T98G cells by methylproamine was observed for 137Cs γ-rays and X-rays but not for He2+ charged particle irradiation. The effect of methylproamine on the bystander cell population was tested for both X-ray irradiation and He2+ ion microbeam irradiation. The X-ray bystander experiments were carried out by medium transfer from irradiated to non-irradiated cultures and three experimental designs were tested. Radioprotection was only observed when recipient cells were pretreated with the drug prior to exposure to the conditioned medium. In microbeam bystander experiments targeted and nontargeted cells were co-cultured with continuous methylproamine treatment during irradiation and postradiation incubation; radioprotection of bystander cells was observed. Discussion and conclusion Methylproamine protected targeted cells from DNA damage caused by γ-ray or X-ray radiation but not He2+ ion radiation. Protection of bystander cells was independent of the type of radiation which the donor population received.
Collapse
|
68
|
Clark YY, Wold LE, Szalacha LA, McCarthy DO. Ubiquinol reduces muscle wasting but not fatigue in tumor-bearing mice. Biol Res Nurs 2014; 17:321-9. [PMID: 25230747 DOI: 10.1177/1099800414543822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Fatigue is the most common and distressing symptom reported by cancer patients during and after treatment. Tumor growth increases oxidative stress and cytokine production, which causes skeletal muscle wasting and cardiac dysfunction. The purpose of this study was to determine whether treatment with the antioxidant ubiquinol improves muscle mass, cardiac function, and behavioral measures of fatigue in tumor-bearing mice. METHOD Adult female mice were inoculated with colon26 tumor cells. Half the control and tumor-bearing mice were administered ubiquinol (500 mg/kg/day) in their drinking water. Voluntary wheel running (i.e., voluntary running activity [VRA]) and grip strength were measured at Days 0, 8, 14, and 17 of tumor growth. Cardiac function was measured using echocardiography on Day 18 or 19. Biomarkers of inflammation, protein degradation, and oxidative stress were measured in serum and heart and gastrocnemius tissue. RESULTS VRA and grip strength progressively declined in tumor-bearing mice. Muscle mass and myocardial diastolic function were decreased, and expression of proinflammatory cytokines was increased in serum and muscle and heart tissue on Day 19 of tumor growth. Oxidative stress was present only in the heart, while biomarkers of protein degradation were increased only in the gastrocnemius muscle. Ubiquinol increased muscle mass in the tumor-bearing and control animals but had no effect on the expression of biomarkers of inflammation, protein degradation, or oxidative stress or on behavioral measures of fatigue.
Collapse
Affiliation(s)
- Yvonne Y Clark
- Pain Evaluation and Management Center of Ohio, Dayton, OH, USA
| | - Loren E Wold
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Laura A Szalacha
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
69
|
Jansen RJ, Fonseca-Williams S, Bamlet WR, Ayala-Peña S, Oberg AL, Petersen GM, Torres-Ramos CA. Detection of DNA damage in peripheral blood mononuclear cells from pancreatic cancer patients. Mol Carcinog 2014; 54:1220-6. [PMID: 25111947 DOI: 10.1002/mc.22189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/25/2014] [Accepted: 05/12/2014] [Indexed: 02/03/2023]
Abstract
DNA repair is a key mechanism in maintaining genomic stability: repair deficiencies increase DNA damage and mutations that lead to several diseases, including cancer. We extracted DNA from peripheral blood mononuclear cells (PBMCs) of 48 pancreatic adenocarcinoma cases and 48 healthy controls to determine relative levels of nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) damage by QPCR. All participants were never smokers and between the ages of 60 and 69. Average levels among cases were compared to controls using a rank sum test, and logistic regression adjusted for potential confounding factors (age, sex, and diabetes mellitus). Cases had less DNA damage, with a significant decrease in mtDNA damage (P-value = 0.03) and a borderline significant decrease in nDNA damage (P = 0.08). Across samples, we found mtDNA abundance was higher among non-diabetics compared to diabetics (P = 0.04). Our results suggest that patients with pancreatic adenocarcinoma have less DNA damage in their PBMCs, and that having diabetes, a known pancreatic cancer risk factor, is associated with lower levels of mtDNA abundance.
Collapse
Affiliation(s)
- Rick J Jansen
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota
| | | | - William R Bamlet
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Sylvette Ayala-Peña
- Department of Pharmacology and Toxicology, University of Puerto Rico, San Juan, Puerto Rico
| | - Ann L Oberg
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Gloria M Petersen
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota
| | - Carlos A Torres-Ramos
- Department of Physiology and Biophysics, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
70
|
Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant Tempol. Cancer Lett 2014; 353:248-57. [PMID: 25069035 DOI: 10.1016/j.canlet.2014.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/18/2022]
Abstract
Recently we found that mice bearing subcutaneous non-metastatic tumors exhibited elevated levels of two types of complex DNA damage, i.e., double-strand breaks and oxidatively-induced clustered DNA lesions in various tissues throughout the body, both adjacent to and distant from the tumor site. This DNA damage was dependent on CCL2, a cytokine involved in the recruitment and activation of macrophages, suggesting that this systemic DNA damage was mediated via tumor-induced chronic inflammatory responses involving cytokines, activation of macrophages, and consequent free radical production. If free radicals are involved, then a diet containing an antioxidant may decrease the distant DNA damage. Here we repeated our standard protocol in cohorts of two syngeneic tumor-bearing C57BL/6NCr mice that were on a Tempol-supplemented diet. We show that double-strand break and oxidatively-induced clustered DNA lesion levels were considerably decreased, about two- to three fold, in the majority of tissues studied from the tumor-bearing mice fed the antioxidant Tempol compared to the control tumor-bearing mice. Similar results were also observed in nude mice suggesting that the Tempol effects are independent of functioning adaptive immunity. This is the first in vivo study demonstrating the effect of a dietary antioxidant on abscopal DNA damage in tissues distant from a localized source of genotoxic stress. These findings may be important for understanding the mechanisms of genomic instability and carcinogenesis caused by chronic stress-induced systemic DNA damage and for developing preventative strategies.
Collapse
|
71
|
Gerić M, Gajski G, Garaj-Vrhovac V. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:13-21. [PMID: 24780228 DOI: 10.1016/j.ecoenv.2014.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
The visualisation of DNA damage response proteins enables the indirect measurement of DNA damage. Soon after the occurrence of a DNA double-strand break (DSB), the formation of γ-H2AX histone variants is to be expected. This review is focused on the potential use of the γ-H2AX foci assay in assessing the genotoxicity of environmental contaminants including cytostatic pharmaceuticals, since standard methods may not be sensitive enough to detect the damaging effect of low environmental concentrations of such drugs. These compounds are constantly released into the environment, potentially representing a threat to water quality, aquatic organisms, and, ultimately, human health. Our review of the literature revealed that this method could be used in the biomonitoring and risk assessment of aquatic systems affected by wastewater from the production, usage, and disposal of cytostatic pharmaceuticals.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| |
Collapse
|
72
|
Neagu M, Constantin C, Martin D, Albulescu L, Iacob N, Ighigeanu D. Whole body microwave irradiation for improved dacarbazine therapeutical action in cutaneous melanoma mouse model. Radiol Res Pract 2013; 2013:414816. [PMID: 24377047 PMCID: PMC3860147 DOI: 10.1155/2013/414816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022] Open
Abstract
A cutaneous melanoma mouse model was used to test the efficacy of a new therapeutical approach that uses low doses of cytostatics in conjunction with mild whole body microwave exposure of 2.45 GHz in order to enhance cytostatics antitumoral effect. Materials and Methods. A microwave exposure system for C57BL/6 mouse whole body microwave irradiation was designed; groups of 40 mice (males and females) bearing experimental tumours were subjected to a combined therapy comprising low doses of dacarbazine in combination with mild whole body irradiation. Clinical parameters and serum cytokine testing using xMAP technology were performed. Results. The group that was subjected to combined therapy, microwave and cytostatic, had the best clinical evolution in terms of overall survival, tumour volume, and metastatic potential. At day 14 the untreated group had 100% mortality, while in the combined therapy group 40% of mice were surviving. Quantifying serum IL-1 β , IL-6, IL-10, IL-12 (p70), IFN- γ , GM-CSF, TNF- α , MIP-1 α , MCP-1, and KC during tumorigenesis and therapy found that the combined experimental therapy decreases all the inflammatory cytokines, except chemokine MCP-1 that was found increased, suggesting an increase of the anti-tumoral immune response triggered by the combined therapy. The overall metastatic process is decreased in the combined therapy group.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Department, Immunobiology Laboratory, “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independentei, sector 5, Bucharest 050096, Romania
| | - Carolina Constantin
- Immunology Department, Immunobiology Laboratory, “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independentei, sector 5, Bucharest 050096, Romania
| | - Diana Martin
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele 077125, Romania
| | - Lucian Albulescu
- Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Nicusor Iacob
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele 077125, Romania
| | - Daniel Ighigeanu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele 077125, Romania
| |
Collapse
|
73
|
Siva S, MacManus MP, Martin RF, Martin OA. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett 2013; 356:82-90. [PMID: 24125863 DOI: 10.1016/j.canlet.2013.09.018] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/23/2013] [Accepted: 09/14/2013] [Indexed: 12/16/2022]
Abstract
An "abscopal" effect occurs when localized irradiation perturbs the organism as a whole, with consequences that can be either beneficial or detrimental. Mechanistic explanations of this effect are challenging. From the oncologist's perspective, the term refers to distant tumor regression after localized irradiation. On the other hand, from a biologist's point of view, abscopal effects include induction of genomic instability, cell death, and oncogenic transformation in normal tissues. This conceptual dichotomy is explored in this review, with a focus on clinically documented cases of anti-tumor abscopal effects and abscopal effects in normal tissues. This review also outlines several suggested mechanisms for abscopal effects.
Collapse
Affiliation(s)
- Shankar Siva
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Michael P MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Roger F Martin
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia; Molecular Radiation Biology Laboratory, Research Division, Peter MacCallum Cancer Centre, The University of Melbourne, VIC, Australia
| | - Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia; Molecular Radiation Biology Laboratory, Research Division, Peter MacCallum Cancer Centre, The University of Melbourne, VIC, Australia.
| |
Collapse
|
74
|
Glebova K, Veiko N, Kostyuk S, Izhevskaya V, Baranova A. Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy. Cancer Lett 2013; 356:22-33. [PMID: 24045040 DOI: 10.1016/j.canlet.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/28/2013] [Accepted: 09/08/2013] [Indexed: 12/24/2022]
Abstract
An increase in the levels of oxidation is a universal feature of genomic DNA of irradiated or aged or even malignant cells. In case of apoptotic death of stressed cells, oxidized DNA can be released in circulation (cfDNA). According to the results of the studies performed in vitro by our group and other researchers, the oxidized cfDNA serves as a biomarker for a stress and a stress signal that is transmitted from the "stressed" area i.e. irradiated cells or cells with deficient anti-oxidant defenses to distant (bystander) cells. In recipient cells, oxidized DNA stimulates biosynthesis of ROS that is followed up by an increase in the number of single strand and double strand breaks (SSBs and DSBs), and activation of DNA Damage Response (DDR) pathway. Effects of oxidized DNA are considered similar to that of irradiation. It seems that downstream effects of irradiation, in part, depend on the release of oxidized DNA fragments that mediate the effects in distant cells. The responses of normal and tumor cell to oxidized DNA may differ. It seems that tumor cells are more sensitive to oxidized DNA-dependent DNA damage, while developing pronounced adaptive response. This may suggest that in chemotherapy or irradiation-treated human body, the release of oxidized DNA from dying cancer cells may give a boost to remaining malignant cells by augmenting their survival and stress resistance. Further studies of the effects of oxidized DNA in both in vitro and in vivo systems are warranted.
Collapse
Affiliation(s)
- Kristina Glebova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Natalya Veiko
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Svetlana Kostyuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Vera Izhevskaya
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Ancha Baranova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia; Center for the Study of Chronic Metabolic Diseases, School of System Biology, MSN3E1, George Mason University, Fairfax, VA 22030, USA.
| |
Collapse
|
75
|
Sprung CN, Ivashkevich A, Forrester HB, Redon CE, Georgakilas A, Martin OA. Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Lett 2013; 356:72-81. [PMID: 24041866 DOI: 10.1016/j.canlet.2013.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 12/25/2022]
Abstract
A spectrum of radiation-induced non-targeted effects has been reported during the last two decades since Nagasawa and Little first described a phenomenon in cultured cells that was later called the "bystander effect". These non-targeted effects include radiotherapy-related abscopal effects, where changes in organs or tissues occur distant from the irradiated region. The spectrum of non-targeted effects continue to broaden over time and now embrace many types of exogenous and endogenous stressors that induce a systemic genotoxic response including a widely studied tumor microenvironment. Here we discuss processes and factors leading to DNA damage induction in non-targeted cells and tissues and highlight similarities in the regulation of systemic effects caused by different stressors.
Collapse
Affiliation(s)
- Carl N Sprung
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | - Alesia Ivashkevich
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Helen B Forrester
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Christophe E Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alexandros Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Olga A Martin
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre and the University of Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
76
|
Kefala M, Papageorgiou SG, Kontos CK, Economopoulou P, Tsanas A, Pappa V, Panayiotides IG, Gorgoulis VG, Patsouris E, Foukas PG. Increased expression of phosphorylated NBS1, a key molecule of the DNA damage response machinery, is an adverse prognostic factor in patients with de novo myelodysplastic syndromes. Leuk Res 2013; 37:1576-82. [PMID: 24054861 DOI: 10.1016/j.leukres.2013.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 01/02/2023]
Abstract
The expression of activated forms of key proteins of the DNA damage response machinery (pNBS1, pATM and γH2AX) was assessed by means of immunohistochemistry in bone marrow biopsies of 74 patients with de novo myelodysplastic syndromes (MDS) and compared with 15 cases of de novo acute myeloid leukemia (AML) and 20 with reactive bone marrow histology. Expression levels were significantly increased in both MDS and AML, compared to controls, being higher in high-risk than in low-risk MDS. Increased pNBS1 and γH2AX expression possessed a significant negative prognostic impact for overall survival in MDS patients, whereas pNBS1 was an independent marker of poor prognosis.
Collapse
Affiliation(s)
- Maria Kefala
- 2nd Department of Pathology, University of Athens Medical School, "Attikon" University Hospital, Chaidari, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Dickey JS, Gonzalez Y, Aryal B, Mog S, Nakamura AJ, Redon CE, Baxa U, Rosen E, Cheng G, Zielonka J, Parekh P, Mason KP, Joseph J, Kalyanaraman B, Bonner W, Herman E, Shacter E, Rao VA. Mito-tempol and dexrazoxane exhibit cardioprotective and chemotherapeutic effects through specific protein oxidation and autophagy in a syngeneic breast tumor preclinical model. PLoS One 2013; 8:e70575. [PMID: 23940596 PMCID: PMC3734284 DOI: 10.1371/journal.pone.0070575] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/19/2013] [Indexed: 11/18/2022] Open
Abstract
Several front-line chemotherapeutics cause mitochondria-derived, oxidative stress-mediated cardiotoxicity. Iron chelators and other antioxidants have not completely succeeded in mitigating this effect. One hindrance to the development of cardioprotectants is the lack of physiologically-relevant animal models to simultaneously study antitumor activity and cardioprotection. Therefore, we optimized a syngeneic rat model and examined the mechanisms by which oxidative stress affects outcome. Immune-competent spontaneously hypertensive rats (SHRs) were implanted with passaged, SHR-derived, breast tumor cell line, SST-2. Tumor growth and cytokine responses (IL-1A, MCP-1, TNF-α) were observed for two weeks post-implantation. To demonstrate the utility of the SHR/SST-2 model for monitoring both anticancer efficacy and cardiotoxicity, we tested cardiotoxic doxorubicin alone and in combination with an established cardioprotectant, dexrazoxane, or a nitroxide conjugated to a triphenylphosphonium cation, Mito-Tempol (4) [Mito-T (4)]. As predicted, tumor reduction and cardiomyopathy were demonstrated by doxorubicin. We confirmed mitochondrial accumulation of Mito-T (4) in tumor and cardiac tissue. Dexrazoxane and Mito-T (4) ameliorated doxorubicin-induced cardiomyopathy without altering the antitumor activity. Both agents increased the pro-survival autophagy marker LC3-II and decreased the apoptosis marker caspase-3 in the heart, independently and in combination with doxorubicin. Histopathology and transmission electron microscopy demonstrated apoptosis, autophagy, and necrosis corresponding to cytotoxicity in the tumor and cardioprotection in the heart. Changes in serum levels of 8-oxo-dG-modified DNA and total protein carbonylation corresponded to cardioprotective activity. Finally, 2D-electrophoresis/mass spectrometry identified specific serum proteins oxidized under cardiotoxic conditions. Our results demonstrate the utility of the SHR/SST-2 model and the potential of mitochondrially-directed agents to mitigate oxidative stress-induced cardiotoxicity. Our findings also emphasize the novel role of specific protein oxidation markers and autophagic mechanisms for cardioprotection.
Collapse
Affiliation(s)
- Jennifer S. Dickey
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Yanira Gonzalez
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Baikuntha Aryal
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Steven Mog
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Asako J. Nakamura
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Christophe E. Redon
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Elliot Rosen
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Palak Parekh
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Karen P. Mason
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Joy Joseph
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - William Bonner
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Eugene Herman
- Division of Drug Safety Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Emily Shacter
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - V. Ashutosh Rao
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| |
Collapse
|
78
|
Georgakilas AG, O'Neill P, Stewart RD. Induction and Repair of Clustered DNA Lesions: What Do We Know So Far? Radiat Res 2013; 180:100-109. [DOI: 10.1667/rr3041.1] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
79
|
Li F, Patterson AD, Krausz KW, Jiang C, Bi H, Sowers AL, Cook JA, Mitchell JB, Gonzalez FJ. Metabolomics reveals that tumor xenografts induce liver dysfunction. Mol Cell Proteomics 2013; 12:2126-35. [PMID: 23637421 DOI: 10.1074/mcp.m113.028324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Metabolomics, based on ultraperformance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry, was used to explore metabolic signatures of tumor growth in mice. Urine samples were collected from control mice and mice injected with squamous cell carcinoma (SCCVII) tumor cells. When tumors reached ∼2 cm, all mice were killed and blood and liver samples collected. The urine metabolites hexanoylglycine, nicotinamide 1-oxide, and 11β,20α-dihydroxy-3-oxopregn-4-en-21-oic acid were elevated in tumor-bearing mice, as was asymmetric dimethylarginine, a biomarker for oxidative stress. Interestingly, SCCVII tumor growth resulted in hepatomegaly, reduced albumin/globulin ratios, and elevated serum triglycerides, suggesting liver dysfunction. Alterations in liver metabolites between SCCVII-tumor-bearing and control mice confirmed the presence of liver injury. Hepatic mRNA analysis indicated that inflammatory cytokines, tumor necrosis factor α, and transforming growth factor β were enhanced in SCCVII-tumor-bearing mice, and the expression of cytochromes P450 was decreased in tumor-bearing mice. Further, genes involved in fatty acid oxidation were decreased, suggesting impaired fatty acid oxidation in SCCVII-tumor-bearing mice. Additionally, activated phospholipid metabolism and a disrupted tricarboxylic acid cycle were observed in SCCVII-tumor-bearing mice. These data suggest that tumor growth imposes a global inflammatory response that results in liver dysfunction and underscore the use of metabolomics to temporally examine these changes and potentially use metabolite changes to monitor tumor treatment response.
Collapse
Affiliation(s)
- Fei Li
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Priolli DG, Canelloi TP, Lopes CO, Valdívia JCM, Martinez NP, Açari DP, Cardinalli IA, Ribeiro ML. Oxidative DNA damage and β-catenin expression in colorectal cancer evolution. Int J Colorectal Dis 2013; 28:713-22. [PMID: 23559415 DOI: 10.1007/s00384-013-1688-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 02/04/2023]
Abstract
PURPOSE Oxidative DNA damage is one of the mechanisms associated to initial colorectal carcinogenesis, but how it interacts with β-catenin, an adherence protein related to cancer evolution, is not clear. This study investigates the relationship between oxidative DNA damage and β-catenin expression in normal mucosa and colon tumor tissue (adenoma and adenocarcinoma) in colorectal adenocarcinoma evolution. METHOD One hundred and 13 samples were studied. Hematoxylin-eosin determined histological grade. β-Catenin expression was analyzed by immunohistochemistry. The oxidative DNA damage was evaluated using comet assay technique. The coefficient for rejection of the nullity hypothesis was taken to 5 %. Kruskal-Wallis, Spearman test, and partial correlation were used to analyze the data. RESULTS There was oxidative DNA damage increase in colorectal cancer evolution (p < 0.01). Histological grade was correlated with oxidative DNA damage (p < 0.01). There were differences in β-catenin expression among normal, adenoma, and adenocarcinoma tissue with progressive increase of β-catenin expression (p < 0.00). Histological grade was correlated to β-catenin expression (p < 0.00). There was a relationship (p < 0.00) between β-catenin and histological grade while controlling for the effect of oxidative DNA damage. CONCLUSION The findings of this study make it possible to establish a relationship between oxidative DNA damage and β-catenin expression in normal mucosa and colorectal tumor tissue. Additionally, they show a causal relationship between variations of β-catenin in different tissues analyzed while controlling for the effect of oxidative DNA damage.
Collapse
Affiliation(s)
- Denise G Priolli
- Postgraduate Program Strictu Senso in Health Science, Sao Francisco University Medical School, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Oxidative Stress and DNA Damage in Human Gastric Carcinoma: 8-Oxo-7'8-dihydro-2'-deoxyguanosine (8-oxo-dG) as a Possible Tumor Marker. Int J Mol Sci 2013; 14:3467-86. [PMID: 23389043 PMCID: PMC3588053 DOI: 10.3390/ijms14023467] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/22/2022] Open
Abstract
We characterized the oxidative stress (OS) status by the levels of reduced/oxidized glutathione (GSH/GSSG), malondialdehyde (MDA) and the mutagenic base 8-oxo-7′8-dihydro-2′-deoxyguanosine (8-oxo-dG) in human gastric carcinoma (HGC) samples and compared the results with normal tissue from the same patients. We also analyzed 8-oxo-dG in peripheral mononuclear cells (PMNC) and urine from healthy control subjects and in affected patients in the basal state and one, three, six, nine and twelve months after tumor resection. The levels of DNA repair enzyme mRNA expression (hOGG1, RAD51, MUYTH and MTH1) were determined in tumor specimens and compared with normal mucosa. Tumor specimens exhibited increased levels of MDA and 8-oxo-dG compared with normal gastric tissue. GSH levels were also increased, while GSSG levels remained stable. DNA repair enzyme mRNA expression was induced in the tumor tissues. Levels of 8-oxo-dG were significantly elevated in both urine and PMNC of gastric cancer patients compared with healthy controls. After gastrectomy, the levels of the damaged base in urine and PMNC decreased progressively to values close to those found in the healthy population. The high levels of 8-oxo-dG in urine may be related to the increased induction of DNA repair activity in tumor tissue, and the changes observed after tumor resection support its potential use as a tumor marker.
Collapse
|
82
|
Ivashkevich A, Redon CE, Nakamura AJ, Martin RF, Martin OA. Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett 2012; 327:123-33. [PMID: 22198208 PMCID: PMC3329565 DOI: 10.1016/j.canlet.2011.12.025] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/11/2011] [Accepted: 12/14/2011] [Indexed: 12/30/2022]
Abstract
Formation of γ-H2AX in response to DNA double stranded breaks (DSBs) provides the basis for a sensitive assay of DNA damage in human biopsies. The review focuses on the application of γ-H2AX-based methods to translational studies to monitor the clinical response to DNA targeted therapies such as some forms of chemotherapy, external beam radiotherapy, radionuclide therapy or combinations thereof. The escalating attention on radiation biodosimetry has also highlighted the potential of the assay including renewed efforts to assess the radiosensitivity of prospective radiotherapy patients. Finally the γ-H2AX response has been suggested as a basis for an in vivo imaging modality.
Collapse
Affiliation(s)
- Alesia Ivashkevich
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Christophe E. Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Asako J. Nakamura
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Roger F. Martin
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Olga A. Martin
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
83
|
Expression of p53 and p21(WAF-1), apoptosis, and proliferation of smooth muscle cells in normal myometrium during the menstrual cycle: implication of DNA damage and repair for leiomyoma development. Med Mol Morphol 2012; 45:214-21. [PMID: 23224600 DOI: 10.1007/s00795-011-0562-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/12/2011] [Indexed: 10/27/2022]
Abstract
Uterine leiomyoma is the most common tumor in the female genital tract, although its pathogenesis remains unclear. Molecular analyses have demonstrated that each leiomyoma nodule is monoclonal and harbors various DNA abnormalities, suggesting that DNA damage in normal smooth muscle cells plays an important role in the pathogenesis of leiomyoma. The aim of this study is to evaluate precisely when and where DNA damage occurs in the myometrium. The localization of damaged, apoptotic, and proliferating cells was evaluated by immunohistochemical staining of p53, p21(WAF-1), TUNEL, and the cell proliferation marker, Ki-67, in normal myometrium during the menstrual cycle. p53-positive cells and p21(WAF-1)-positive cells were observed during the follicular phase, mostly in the submucosal layer of the myometrium. TUNEL-positive cells were sporadically identified in this layer during either the menstrual or follicular phase. In contrast, the number of Ki-67-positive cells was higher in the luteal phase. These results suggest that DNA damage, repair, and apoptosis occur cyclically in normal myometrium during the follicular phase. In addition, smooth muscle cells proliferate in the luteal phase, which may be a vulnerable period for DNA damage. Thus, these cyclic events during the menstrual cycle may contribute to a high incidence of leiomyoma development.
Collapse
|
84
|
Vera-Ramirez L, Ramirez-Tortosa MC, Perez-Lopez P, Granados-Principal S, Battino M, Quiles JL. Long-term effects of systemic cancer treatment on DNA oxidative damage: The potential for targeted therapies. Cancer Lett 2012; 327:134-41. [DOI: 10.1016/j.canlet.2011.12.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 01/10/2023]
|
85
|
Pleiotrophic effects of natural products in ROS-induced carcinogenesis: The role of plant-derived natural products in oral cancer chemoprevention. Cancer Lett 2012; 327:16-25. [DOI: 10.1016/j.canlet.2012.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 12/14/2022]
|
86
|
1 0 7. Cancer Biomark 2012. [DOI: 10.1201/b14318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
87
|
He H, Tian D, Guo J, Liu M, Chen Z, Hamdy FC, Helleday T, Su M, Ying S. DNA damage response in peritumoral regions of oesophageal cancer microenvironment. Carcinogenesis 2012; 34:139-45. [PMID: 23027622 DOI: 10.1093/carcin/bgs301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oesophageal cancer is a highly aggressive disease, ranking among the 10 most common cancers in the world. Oesophageal cancer patients often suffer from multi-origin tumours, and therefore, it is important to improve our understanding of the complex biology, which underpins microenvironmental interactions in this disease. Extensive evidence indicates that the interaction of tumours with their microenvironment may play a crucial role in tumour initiation and progression. In this study, we analysed DNA damage response (DDR), immune cell invasion and cancer progression in 47 patients with oesophageal cancer from three different regions (tumour tissue, tumour-proximal non-malignant tissue and distant non-malignant tissue). Accumulated DDR (positive staining for γH2AX and phospho-ATM) was evident within tumour tissue and significantly increased in non-malignant tissue surrounding the tumour cells although activation of p53 by phosphorylation at serine 15 was observed only in tumour tissue. The level of DDR detected in cancer microenvironment depended largely on the distance from the tumour, as stronger DDR was observed in tumour-proximal areas compared with that in tumour-distant tissue. Induction of DDR in non-malignant tissues correlated with increased invasion of lymphocytes and macrophages and with precancerous progression. Our results support that DDR is induced in oesophageal cancer surrounding non-malignant epithelial cells, via activation of an inflammatory process, which in turn contributes to the progression of precancerous lesions. These findings provide novel pathological evidence for inflammation and DDR in influencing non-metastatic progression of cancer in its microenvironment.
Collapse
Affiliation(s)
- Haiyan He
- Institute of Clinical Pathology & Department of Pathology, Medical College of Shantou University, Shantou 515031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Sprung CN, Yang Y, Forrester HB, Li J, Zaitseva M, Cann L, Restall T, Anderson RL, Crosbie JC, Rogers PAW. Genome-wide transcription responses to synchrotron microbeam radiotherapy. Radiat Res 2012; 178:249-59. [PMID: 22974124 DOI: 10.1667/rr2885.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.
Collapse
Affiliation(s)
- Carl N Sprung
- Centre for Innate Immunity and Infectious Disease, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Dickey JS, Baird BJ, Redon CE, Avdoshina V, Palchik G, Wu J, Kondratyev A, Bonner WM, Martin OA. Susceptibility to bystander DNA damage is influenced by replication and transcriptional activity. Nucleic Acids Res 2012; 40:10274-86. [PMID: 22941641 PMCID: PMC3488239 DOI: 10.1093/nar/gks795] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Direct cellular DNA damage may lead to genome destabilization in unexposed, bystander, cells sharing the same milieu with directly damaged cells by means of the bystander effect. One proposed mechanism involves double strand break (DSB) formation in S phase cells at sites of single strand lesions in the DNA of replication complexes, which has a more open structure compared with neighboring DNA. The DNA in transcription complexes also has a more open structure, and hence may be susceptible to bystander DSB formation from single strand lesions. To examine whether transcription predisposes non-replicating cells to bystander effect-induced DNA DSBs, we examined two types of primary cells that exhibit high levels of transcription in the absence of replication, rat neurons and human lymphocytes. We found that non-replicating bystander cells with high transcription rates exhibited substantial levels of DNA DSBs, as monitored by γ-H2AX foci formation. Additionally, as reported in proliferating cells, TGF-β and NO were found to mimic bystander effects in cell populations lacking DNA synthesis. These results indicate that cell vulnerability to bystander DSB damage may result from transcription as well as replication. The findings offer insights into which tissues may be vulnerable to bystander genomic destabilization in vivo.
Collapse
Affiliation(s)
- Jennifer S Dickey
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20952, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Magnander K, Elmroth K. Biological consequences of formation and repair of complex DNA damage. Cancer Lett 2012; 327:90-6. [PMID: 22353687 DOI: 10.1016/j.canlet.2012.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/11/2012] [Accepted: 02/13/2012] [Indexed: 12/29/2022]
Abstract
Endogenous processes or genotoxic agents can induce many types of single DNA damage (single-strand breaks, oxidized bases and abasic sites). In addition, ionizing radiation induces complex lesions such as double-strand breaks and clustered damage. To preserve the genomic stability and prevent carcinogenesis, distinct repair pathways have evolved. Despite this, complex DNA damage can cause severe problems and is believed to contribute to the biological consequences observed in cells exposed to genotoxic stress. In this review, the current knowledge of formation and repair of complex DNA damage is summarized and the risks and biological consequences associated with their repair are discussed.
Collapse
Affiliation(s)
- Karin Magnander
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | |
Collapse
|
91
|
Gourzones C, Barjon C, Busson P. Host-tumor interactions in nasopharyngeal carcinomas. Semin Cancer Biol 2012; 22:127-36. [PMID: 22249142 DOI: 10.1016/j.semcancer.2012.01.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 12/29/2011] [Accepted: 01/03/2012] [Indexed: 12/13/2022]
Abstract
Like other human solid tumors, nasopharyngeal carcinoma (NPC) is a tissue and a systemic disease as much as a cell disease. Tumor cell population in NPC is highly heterogeneous. Heavy infiltration by non-malignant leucocytes results at least in part from the production of abundant inflammatory cytokines by the malignant epithelial cells. There is indirect evidence that interactions between stromal and malignant cells contribute to tumor development. Peripheral blood samples collected from NPC patients contain multiple products derived from the tumor, including cytokines, non-cytokine tumor proteins, tumor exosomes and viral nucleic acids. These products represent a potential source of biomarkers for assessment of tumor aggressiveness, indirect exploration of cellular interactions and monitoring of tumor response to therapeutic agents. Most NPC patients are immunocompetent with evidence of active humoral and cellular immune responses against EBV-antigens at the systemic level. Tumor development is facilitated by local immunosuppressive factors which are not fully understood. Local accumulation of regulatory T-cells is probably one important factor. At least two NPC tumor products are suspected to contribute to their expansion, the cytokine CCL20 and the tumor exosomes carrying galectin 9. In the future, new therapeutic modalities will probably aim at breaking immune tolerance or at blocking cellular interactions critical for tumor growth.
Collapse
Affiliation(s)
- Claire Gourzones
- Université Paris-Sud-11, CNRS-UMR 8126 and Institut de cancérologie Gustave Roussy, 39 rue Camille Desmoulins, F-94805 Villejuif, France
| | | | | |
Collapse
|
92
|
Abstract
Recent scientific advances have contributed much to the dissection of the complex molecular and cellular pathways involved in the connection between cancer and inflammation. The evidence for this connection in humans is based on the association between infection or chronic sterile inflammation and cancer. The decreased incidence of tumors in individuals who have used nonsteroidal anti-inflammatory drugs is supportive of a role for inflammation in cancer susceptibility. The increased incidence of tumors in overweight patients points to a role for adipose tissue inflammation and energy metabolism in cancer. Energy metabolism, obesity, and genetic instability are regulated in part by the relationship of the organism with commensal bacteria that affect inflammation with both local and systemic effects. Different aspects of inflammation appear to regulate all phases of malignant disease, including susceptibility, initiation, progression, dissemination, morbidity, and mortality.
Collapse
Affiliation(s)
- Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702-1201, USA.
| |
Collapse
|
93
|
Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2011; 327:48-60. [PMID: 22182453 DOI: 10.1016/j.canlet.2011.12.012] [Citation(s) in RCA: 910] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 12/18/2022]
Abstract
Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes.
Collapse
|
94
|
Nowsheen S, Aziz K, Panayiotidis MI, Georgakilas AG. Molecular markers for cancer prognosis and treatment: have we struck gold? Cancer Lett 2011; 327:142-52. [PMID: 22120674 DOI: 10.1016/j.canlet.2011.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 12/22/2022]
Abstract
The last decade has witnessed an emerging role for molecular or biochemical markers indicating a specific cellular mechanism or tissue function, often called 'biomarkers'. Biomarkers such as altered DNA, proteins and inflammatory cytokines are critical in cancer research and strategizing treatment in the clinic. In this review we look at the application of biological indicators to cancer research and highlight their roles in cancer detection and treatment. With technological advances in gene expression, genomic and proteomic analysis, biomarker discovery is expanding fast. We focus on some of the predominantly used markers in different types of malignancies, their advantages, and their limitations. Finally we conclude by looking at the future of biomarkers, their utility in the tumorigenic studies, and the progress towards personalized treatment strategies.
Collapse
Affiliation(s)
- Somaira Nowsheen
- Department of Radiation Oncology, University of Alabama at Birmingham Comprehensive Cancer Center, 35294, USA
| | | | | | | |
Collapse
|
95
|
Shah C, Wilkinson JB, Baschnagel A, Ghilezan M, Riutta J, Dekhne N, Balaraman S, Mitchell C, Wallace M, Vicini F. Factors associated with the development of breast cancer-related lymphedema after whole-breast irradiation. Int J Radiat Oncol Biol Phys 2011; 83:1095-100. [PMID: 22099041 DOI: 10.1016/j.ijrobp.2011.09.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/31/2011] [Accepted: 09/21/2011] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the rates of breast cancer-related lymphedema (BCRL) in patients undergoing whole-breast irradiation as part of breast-conserving therapy (BCT) and to identify clinical, pathologic, and treatment factors associated with its development. METHODS AND MATERIALS A total of 1,861 patients with breast cancer were treated at William Beaumont Hospital with whole-breast irradiation as part of their BCT from January 1980 to February 2006, with 1,497 patients available for analysis. Determination of BCRL was based on clinical assessment. Differences in clinical, pathologic, and treatment characteristics between patients with BCRL and those without BCRL were evaluated, and the actuarial rates of BCRL by regional irradiation technique were determined. RESULTS The actuarial rate of any BCRL was 7.4% for the entire cohort and 9.9%, 14.7%, and 8.3% for patients receiving a supraclavicular field, posterior axillary boost, and internal mammary irradiation, respectively. BCRL was more likely to develop in patients with advanced nodal status (11.4% vs. 6.3%, p = 0.001), those who had a greater number of lymph nodes removed (14 nodes) (9.5% vs. 6.0%, p = 0.01), those who had extracapsular extension (13.4% vs. 6.9%, p = 0.009), those with Grade II/III disease (10.8% vs. 2.9%, p < 0.001), and those who received adjuvant chemotherapy (10.5% vs. 6.7%, p = 0.02). Regional irradiation showed small increases in the rates of BCRL (p = not significant). CONCLUSIONS These results suggest that clinically detectable BCRL will develop after traditional BCT in up to 10% of patients. High-risk subgroups include patients with advanced nodal status, those with more nodes removed, and those who receive chemotherapy, with patients receiving regional irradiation showing a trend toward increased rates.
Collapse
Affiliation(s)
- Chirag Shah
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI 48073, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Dickey JS, Zemp FJ, Martin OA, Kovalchuk O. The role of miRNA in the direct and indirect effects of ionizing radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:491-499. [PMID: 21928045 DOI: 10.1007/s00411-011-0386-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 08/22/2011] [Indexed: 05/31/2023]
Abstract
This review focuses on a number of recent studies that have examined changes in microRNA (miRNA) expression profiles in response to ionizing radiation and other forms of oxidative stress. In both murine and human cells and tissues, a number of miRNAs display significant alterations in expression levels in response to both direct and indirect radiation exposure. In terms of direct irradiation, or exposure to agents that induce oxidative stress, miRNA array analyses indicate that a number of miRNAs are up- and down-regulated and, in particular, the let-7 family of miRNAs may well be critical in the cellular response to oxidative stress. In bystander cells that are not directly irradiated, but close to, or share media with directly irradiated cells or tissues, the miRNA expression profiles are also altered, but are somewhat distinct from the directly irradiated cells. Based on the results of these numerous studies, as well as our own data presented here, we conclude that miRNA regulation is a critical step in the cellular response to radiation and oxidative stress and that future studies should elucidate the mechanisms through which this altered regulation affects cell metabolism.
Collapse
Affiliation(s)
- Jennifer S Dickey
- Laboratory of Biochemistry, Division of Therapeutic Proteins, CDER, FDA, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
97
|
Westbrook AM, Wei B, Hacke K, Xia M, Braun J, Schiestl RH. The role of tumour necrosis factor-α and tumour necrosis factor receptor signalling in inflammation-associated systemic genotoxicity. Mutagenesis 2011; 27:77-86. [PMID: 21980144 DOI: 10.1093/mutage/ger063] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronic inflammatory diseases are characterised by systemically elevated levels of tumour necrosis factor (TNF)-α, a proinflammatory cytokine with pleiotropic downstream effects. We have previously demonstrated increased genotoxicity in peripheral leukocytes and various tissues in models of intestinal inflammation. In the present study, we asked whether TNF-α is sufficient to induce DNA damage systemically, as observed in intestinal inflammation, and whether tumour necrosis factor receptor (TNFR) signalling would be necessary for the resultant genotoxicity. In the wild-type mice, 500 ng per mouse of TNF-α was sufficient to induce DNA damage to multiple cell types and organs 1-h post-administration. Primary splenic T cells manifested TNF-α-induced DNA damage in the absence of other cell types. Furthermore, TNFR1(-/-)TNFR2(-/-) mice demonstrated decreased systemic DNA damage in a model of intestinal inflammation and after TNF-α injection versus wild-type mice, indicating the necessity of TNFR signalling. Nuclear factor (NF)-κB inhibitors were also able to decrease damage induced by TNF-α injection in wild-type mice. When TNF-α administration was combined with interleukin (IL)-1β, another proinflammatory cytokine, DNA damage persisted for up to 24 h. When combined with IL-10, an anti-inflammatory cytokine, decreased genotoxicity was observed in vivo and in vitro. TNF-α/TNFR-mediated signalling is therefore sufficient and plays a large role in mediating DNA damage to various cell types, subject to modulation by other cytokines and their mediators.
Collapse
Affiliation(s)
- Aya M Westbrook
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
98
|
Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 2011; 21:354-9. [PMID: 21925603 DOI: 10.1016/j.semcancer.2011.09.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/04/2011] [Indexed: 01/04/2023]
Abstract
Cellular senescence is an established cellular stress response that acts primarily to prevent the proliferation of cells that experience potentially oncogenic stress. In recent years, it has become increasingly apparent that the senescence response is a complex phenotype, which has a variety of cell non-autonomous effects. The senescence-associated secretory phenotype, or SASP, entails the secretion of numerous cytokines, growth factors and proteases. The SASP can have beneficial or detrimental effects, depending on the physiological context. One recently described beneficial effect is to aid tissue repair. Among the detrimental effects, the SASP can disrupt normal tissue structures and function, and, ironically, can promote malignant phenotypes in nearby cells. These detrimental effects in many ways recapitulate the degenerative and hyperplastic pathologies that develop during aging. Because the SASP is largely a response to genomic or epigenomic damage, we suggest it may be a model for a cellular damage response that can propagate damage signals both within and among tissues. We propose that both the degenerative and hyperplastic diseases of aging may be fueled by such damage signals.
Collapse
|
99
|
Westbrook AM, Wei B, Braun J, Schiestl RH. Intestinal inflammation induces genotoxicity to extraintestinal tissues and cell types in mice. Int J Cancer 2011; 129:1815-25. [PMID: 21520038 DOI: 10.1002/ijc.26146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/07/2011] [Indexed: 01/17/2023]
Abstract
Chronic intestinal inflammation leads to increased risk of colorectal and small intestinal cancers and is also associated with extraintestinal manifestations such as lymphomas, other solid cancers and autoimmune disorders. We have previously found that acute and chronic intestinal inflammation causes DNA damage to circulating peripheral leukocytes, manifesting a systemic effect in genetically and chemically induced models of intestinal inflammation. Our study addresses the scope of tissue targets and genotoxic damage induced by inflammation-associated genotoxicity. Using several experimental models of intestinal inflammation, we analyzed various types of DNA damage in leukocyte subpopulations of the blood, spleen, mesenteric and peripheral lymph nodes and in intestinal epithelial cells, hepatocytes and the brain. Genotoxicity in the form of DNA single- and double-stranded breaks accompanied by oxidative base damage was found in leukocyte subpopulations of the blood, diverse lymphoid organs, intestinal epithelial cells and hepatocytes. The brain did not demonstrate significant levels of DNA double-stranded breaks as measured by γ-H2AX immunostaining. CD4(+) and CD8(+) T-cells were most sensitive to DNA damage versus other cell types in the peripheral blood. In vivo measurements and in vitro modeling suggested that genotoxicity was induced by increased levels of systemically circulating proinflammatory cytokines. Moreover, genotoxicity involved increased damage rather than reduced repair, as it is not associated with decreased expression of the DNA double-strand break recognition and repair protein, ataxia telangiectasia mutated. These findings suggest that levels of intestinal inflammation contribute to the remote tissue burden of genotoxicity, with potential effects on nonintestinal diseases and cancer.
Collapse
Affiliation(s)
- Aya M Westbrook
- Molecular Toxicology Interdepartmental Program, UCLA School of Public Health, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
100
|
Belloni P, Latini P, Palitti F. Radiation-induced bystander effect in healthy G(o) human lymphocytes: biological and clinical significance. Mutat Res 2011; 713:32-38. [PMID: 21645526 DOI: 10.1016/j.mrfmmm.2011.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 05/30/2023]
Abstract
To study the bystander effects, G(0) human peripheral blood lymphocytes were X-irradiated with 0.1, 0.5 and 3 Gy. After 24h, cell-free conditioned media from irradiated cultures were transferred to unexposed lymphocytes. Following 48 h of medium transfer, viability, induction of apoptosis, telomere shortening, reactive oxygen species (ROS) levels and micronuclei (after stimulation) were analyzed. A statistically significant decrement in cell viability, concomitant with the loss of mitochondrial membrane potential, telomere shortening, increases in hydrogen peroxide (H(2)O(2)) and superoxide anion (O(2)(-)) with depletion of intracellular glutathione (GSH) level, and higher frequencies of micronuclei, were observed in bystander lymphocytes incubated with medium from 0.5 and 3 Gy irradiated samples, compared to lymphocytes unexposed. Furthermore, no statistically significant difference between the response to 0.5 and 3 Gy of irradiation in bystander lymphocytes, was found. However, when lymphocytes were irradiated with 0.1 Gy, no bystander effect with regard to viability, apoptosis, telomere length, and micronuclei was observed, although a high production of ROS level persisted. Radiation in the presence of the radical scavenger dimethyl sulfoxide (DMSO) suppressed oxidative stress induced by 3 Gy of X-rays with the effective elimination of bystander effects, suggesting a correlation between ROS and bystander signal formation in irradiated cells. The data propose that bystander effect might be mostly due to the reactions of radiation induced free radicals on DNA, with the existence of a threshold at which the bystander signal is not operative (0.1 Gy dose of X-rays). Our results may have clinical implications for health risk associated with radiation exposure.
Collapse
Affiliation(s)
- Paola Belloni
- Department of Agrobiology and Agrochemistry, University of Tuscia, Via San Camillo De Lellis, I-01100 Viterbo, Italy
| | | | | |
Collapse
|